• Citation: Y. Zuo, C. Chen, X. Li, Z. Deng, Y. Chen, J. Behler, G. Csányi, A.V. Shapeev, A.P. Thompson, M.A. Wood, and S.P. Ong (2020), "Performance and Cost Assessment of Machine Learning Interatomic Potentials", The Journal of Physical Chemistry A, 124(4), 731-745. DOI: 10.1021/acs.jpca.9b08723.
    Abstract: Machine learning of the quantitative relationship between local environment descriptors and the potential energy surface of a system of atoms has emerged as a new frontier in the development of interatomic potentials (IAPs). Here, we present a comprehensive evaluation of machine learning IAPs (ML-IAPs) based on four local environment descriptors—atom-centered symmetry functions (ACSF), smooth overlap of atomic positions (SOAP), the spectral neighbor analysis potential (SNAP) bispectrum components, and moment tensors—using a diverse data set generated using high-throughput density functional theory (DFT) calculations. The data set comprising bcc (Li, Mo) and fcc (Cu, Ni) metals and diamond group IV semiconductors (Si, Ge) is chosen to span a range of crystal structures and bonding. All descriptors studied show excellent performance in predicting energies and forces far surpassing that of classical IAPs, as well as predicting properties such as elastic constants and phonon dispersion curves. We observe a general trade-off between accuracy and the degrees of freedom of each model and, consequently, computational cost. We will discuss these trade-offs in the context of model selection for molecular dynamics and other applications.

    Notes: This is the SNAP Ni potential from the reference.

  • See Computed Properties
    Notes: Listing found at https://openkim.org.
    Link(s):
  • Citation: Y. Zuo, C. Chen, X. Li, Z. Deng, Y. Chen, J. Behler, G. Csányi, A.V. Shapeev, A.P. Thompson, M.A. Wood, and S.P. Ong (2020), "Performance and Cost Assessment of Machine Learning Interatomic Potentials", The Journal of Physical Chemistry A, 124(4), 731-745. DOI: 10.1021/acs.jpca.9b08723.
    Abstract: Machine learning of the quantitative relationship between local environment descriptors and the potential energy surface of a system of atoms has emerged as a new frontier in the development of interatomic potentials (IAPs). Here, we present a comprehensive evaluation of machine learning IAPs (ML-IAPs) based on four local environment descriptors—atom-centered symmetry functions (ACSF), smooth overlap of atomic positions (SOAP), the spectral neighbor analysis potential (SNAP) bispectrum components, and moment tensors—using a diverse data set generated using high-throughput density functional theory (DFT) calculations. The data set comprising bcc (Li, Mo) and fcc (Cu, Ni) metals and diamond group IV semiconductors (Si, Ge) is chosen to span a range of crystal structures and bonding. All descriptors studied show excellent performance in predicting energies and forces far surpassing that of classical IAPs, as well as predicting properties such as elastic constants and phonon dispersion curves. We observe a general trade-off between accuracy and the degrees of freedom of each model and, consequently, computational cost. We will discuss these trade-offs in the context of model selection for molecular dynamics and other applications.

    Notes: This is the qSNAP Ni potential from the reference.

  • See Computed Properties
    Notes: Listing found at https://openkim.org.
    Link(s):
  • Citation: S.A. Etesami, and E. Asadi (2018), "Molecular dynamics for near melting temperatures simulations of metals using modified embedded-atom method", Journal of Physics and Chemistry of Solids, 112, 61-72. DOI: 10.1016/j.jpcs.2017.09.001.
    Abstract: Availability of a reliable interatomic potential is one of the major challenges in utilizing molecular dynamics (MD) for simulations of metals at near the melting temperatures and melting point (MP). Here, we propose a novel approach to address this challenge in the concept of modified-embedded-atom (MEAM) interatomic potential; also, we apply the approach on iron, nickel, copper, and aluminum as case studies. We propose adding experimentally available high temperature elastic constants and MP of the element to the list of typical low temperature properties used for the development of MD interatomic potential parameters. We show that the proposed approach results in a reasonable agreement between the MD calculations of melting properties such as latent heat, expansion in melting, liquid structure factor, and solid-liquid interface stiffness and their experimental/computational counterparts. Then, we present the physical properties of mentioned elements near melting temperatures using the new MEAM parameters. We observe that the behavior of elastic constants, heat capacity and thermal linear expansion coefficient at room temperature compared to MP follows an empirical linear relation (α±β × MP) for transition metals. Furthermore, a linear relation between the tetragonal shear modulus and the enthalpy change from room temperature to MP is observed for face-centered cubic materials.

    Notes: S. A. Etesami (University of Memphis) noted that "We added both melting point and high temperature elastic constants into material properties database for MEAM parameter development process."

    Related Models:
  • See Computed Properties
    Notes: These files were sent by S. A. Etesami (University of Memphis) on 23 April 2018 and posted with his permission. This version is compatible with LAMMPS.
    File(s):
  • Citation: X.-G. Li, C. Hu, C. Chen, Z. Deng, J. Luo, and S.P. Ong (2018), "Quantum-accurate spectral neighbor analysis potential models for Ni-Mo binary alloys and fcc metals", Physical Review B, 98(9), 094104. DOI: 10.1103/physrevb.98.094104.
    Abstract: In recent years, efficient interatomic potentials approaching the accuracy of density functional theory (DFT) calculations have been developed using rigorous atomic descriptors satisfying strict invariances, for example, for translation, rotation, permutation of homonuclear atoms, among others. In this paper, we generalize the spectral neighbor analysis potential (SNAP) model to bcc-fcc binary alloy systems. We demonstrate that machine-learned SNAP models can yield significant improvements even over the well-established high-performing embedded atom method (EAM) and modified EAM potentials for fcc Cu and Ni. We also report on the development of a SNAP model for the fcc Ni-bcc Mo binary system by machine learning a carefully constructed large computed data set of elemental and intermetallic compounds. We demonstrate that this binary Ni-Mo SNAP model can achieve excellent agreement with experiments in the prediction of a Ni-Mo phase diagram as well as near-DFT accuracy in the prediction of many key properties, such as elastic constants, formation energies, melting points, etc., across the entire binary composition range. In contrast, the existing Ni-Mo EAM has significant errors in the prediction of the phase diagram and completely fails in binary compounds. This paper provides a systematic model development process for multicomponent alloy systems, including an efficient procedure to optimize the hyperparameters in the model fitting, and paves the way for long-time large-scale simulations of such systems.

  • See Computed Properties
    Notes: Listing found at https://openkim.org.
    Link(s):
  • Citation: R.E. Stoller, A. Tamm, L.K. Béland, G.D. Samolyuk, G.M. Stocks, A. Caro, L.V. Slipchenko, Y.N. Osetsky, A. Aabloo, M. Klintenberg, and Y. Wang (2016), "Impact of Short-Range Forces on Defect Production from High-Energy Collisions", Journal of Chemical Theory and Computation, 12(6), 2871-2879. DOI: 10.1021/acs.jctc.5b01194.
    Abstract: Primary radiation damage formation in solid materials typically involves collisions between atoms that have up to a few hundred keV of kinetic energy. During these collisions, the distance between two colliding atoms can approach 0.05 nm. At such small atomic separations, force fields fitted to equilibrium properties tend to significantly underestimate the potential energy of the colliding dimer. To enable molecular dynamics simulations of high-energy collisions, it is common practice to use a screened Coulomb force field to describe the interactions and to smoothly join this to the equilibrium force field at a suitable interatomic spacing. However, there is no accepted standard method for choosing the parameters used in the joining process, and our results prove that defect production is sensitive to how the force fields are linked. A new procedure is presented that involves the use of ab initio calculations to determine the magnitude and spatial dependence of the pair interactions at intermediate distances, along with systematic criteria for choosing the joining parameters. Results are presented for the case of nickel, which demonstrate the use and validity of the procedure.

    Notes: This potential is a re-parameterization of the Ni interaction from 2004--Mishin-Y--Ni-Al which focuses on improving short-range interactions. Prof. Beland notes that "The re-parametrization is useful for simulations of collision cascades."

    Related Models:
  • LAMMPS pair_style eam/alloy (2016--Stoller-R-E--Ni--LAMMPS--ipr1)
    See Computed Properties
    Notes: This file was provided by Laurent Béland on 7 Nov 2019 and posted with his permission.
    File(s):
  • Citation: E. Asadi, M. Asle Zaeem, S. Nouranian, and M.I. Baskes (2015), "Two-phase solid-liquid coexistence of Ni, Cu, and Al by molecular dynamics simulations using the modified embedded-atom method", Acta Materialia, 86, 169-181. DOI: 10.1016/j.actamat.2014.12.010.
    Abstract: The two-phase solid–liquid coexisting structures of Ni, Cu, and Al are studied by molecular dynamics (MD) simulations using the second nearest-neighbor (2NN) modified-embedded atom method (MEAM) potential. For this purpose, the existing 2NN-MEAM parameters for Ni and Cu were modified to make them suitable for the MD simulations of the problems related to the two-phase solid–liquid coexistence of these elements. Using these potentials, we compare calculated low-temperature properties of Ni, Cu, and Al, such as elastic constants, structural energy differences, vacancy formation energy, stacking fault energies, surface energies, specific heat and thermal expansion coefficient with experimental data. The solid–liquid coexistence approach is utilized to accurately calculate the melting points of Ni, Cu, and Al. The MD calculations of the expansion in melting, latent heat and the liquid structure factor are also compared with experimental data. In addition, the solid–liquid interface free energy and surface anisotropy of the elements are determined from the interface fluctuations, and the predictions are compared to the experimental and computational data in the literature.

    Notes: Prof. Mohsen Zaeem said that this potential was designed for accurately representing properties from 0K up to the melting point.

  • LAMMPS pair_style meam (2015--Asadi-E--Ni--LAMMPS--ipr1)
    See Computed Properties
    Notes: This file was sent by Prof. Mohsen Zaeem (Missouri S&T) on 12 April 2017 and posted on 5 May 2017. Update 5 Sept 2019: The 31 July 2018 update of the repository inadvertantly replaced the parameter files with those from the 2018--Etesami-S-A--Fe--LAMMPS--ipr1 potential. The links below now point to the correct files.
    File(s):
  • Citation: R.S. Elliott, and A. Akerson (2015), "Efficient "universal" shifted Lennard-Jones model for all KIM API supported species".

    Notes: This is the Ni interaction from the "Universal" parameterization for the openKIM LennardJones612 model driver.The parameterization uses a shifted cutoff so that all interactions have a continuous energy function at the cutoff radius. This model was automatically fit using Lorentz-Berthelotmixing rules. It reproduces the dimer equilibrium separation (covalent radii) and the bond dissociation energies. It has not been fitted to other physical properties and its ability to model structures other than dimers is unknown. See the README and params files on the KIM model page for more details.

  • See Computed Properties
    Notes: Listing found at https://openkim.org.
    Link(s):
  • Citation: M.I. Mendelev, M.J. Kramer, S.G. Hao, K.M. Ho, and C.Z. Wang (2012), "Development of interatomic potentials appropriate for simulation of liquid and glass properties of NiZr2 alloy", Philosophical Magazine, 92(35), 4454-4469. DOI: 10.1080/14786435.2012.712220.
    Abstract: A new interatomic potential for the Ni–Zr system is presented. This potential was developed specifically to match experimental scattering data from Ni, Zr and NiZr2 liquids. Both ab initio and published thermodynamic data were used to optimise the potential to study the liquid and amorphous structure of the NiZr2 alloy. This potential has the C16 phase, being more stable than C11b phase in the NiZr2 alloy, consistent with experiments. The potential leads to the correct glass structure in the molecular dynamics simulation and, therefore, can be used to study the liquid–glass transformation in the NiZr2 alloy.

    Notes: Mikhail Mendelev (Ames Laboratory) noted that the potential is designed to simulate liquid properties and melting. 31 May 2013: This reference was updated to reflect the publication status.

    Related Models:
  • LAMMPS pair_style eam/fs (2012--Mendelev-M-I--Ni--LAMMPS--ipr1)
    See Computed Properties
    Notes: This file was provided by Mikhail Mendelev (Ames Laboratory) and posted with his permission on 26 Oct. 2010. He noted that the potential is designed to simulate liquid properties and melting. 31 May 2013: The parameter file was renamed from Ni1_Mendelev_2010.eam.fs to Ni1_Mendelev_2012.eam.fs and the first line in the file's header was updated to reflect the publication status. Mikhail Mendelev approved this change. Update 19 July 2021: The contact email in the file's header has been changed.
    File(s):
  • See Computed Properties
    Notes: Listing found at https://openkim.org. This KIM potential is based on the files from 2012--Mendelev-M-I--Ni--LAMMPS--ipr1.
    Link(s):
  • Citation: X.W. Zhou, R.A. Johnson, and H.N.G. Wadley (2004), "Misfit-energy-increasing dislocations in vapor-deposited CoFe/NiFe multilayers", Physical Review B, 69(14), 144113. DOI: 10.1103/physrevb.69.144113.
    Abstract: Recent molecular dynamics simulations of the growth of [Ni0.8Fe0.2/Au] multilayers have revealed the formation of misfit-strain-reducing dislocation structures very similar to those observed experimentally. Here we report similar simulations showing the formation of edge dislocations near the interfaces of vapor-deposited (111) [NiFe/CoFe/Cu] multilayers. Unlike misfit dislocations that accommodate lattice mismatch, the dislocation structures observed here increase the mismatch strain energy. Stop-action observations of the dynamically evolving atomic structures indicate that during deposition on the (111) surface of a fcc lattice, adatoms may occupy either fcc sites or hcp sites. This results in the random formation of fcc and hcp domains, with dislocations at the domain boundaries. These dislocations enable atoms to undergo a shift from fcc to hcp sites, or vice versa. These shifts lead to missing atoms, and therefore a later deposited layer can have missing planes compared to a previously deposited layer. This dislocation formation mechanism can create tensile stress in fcc films. The probability that such dislocations are formed was found to quickly diminish under energetic deposition conditions.

    Related Models:
  • FORTRAN (2004--Zhou-X-W--Ni--FORTRAN--ipr1)
    Notes: These are the original files sent by X.W. Zhou (Sandia National Laboratory) and posted with his permission. C.A. Becker (NIST) modified create.f to include the reference in the generated potential files and the EAM.input file for this composition. These files can be used to generate alloy potentials for Cu, Ag, Au, Ni, Pd, Pt, Al, Pb, Fe, Mo, Ta, W, Mg, Co, Ti, and Zr by editing EAM.input. However, as addressed in the reference, these potentials were not designed for use with metal compounds.
    File(s): superseded


  • LAMMPS pair_style eam/alloy (2004--Zhou-X-W--Ni--LAMMPS--ipr1)
    See Computed Properties
    Notes: This file was generated by C.A. Becker (NIST) from create.f and posted with X.W. Zhou's (Sandia National Laboratory) permission.
    File(s): superseded


  • FORTRAN (2004--Zhou-X-W--Ni--FORTRAN--ipr2)
    Notes: The file Zhou04_create_v2.f is an updated version of create.f modified by L.M. Hale (NIST) following advice from X.W. Zhou (Sandia National Laboratory). This version removes spurious fluctuations in the tabulated functions of the original potential files caused by single/double precision floating point number conflicts.
    File(s):
  • LAMMPS pair_style eam/alloy (2004--Zhou-X-W--Ni--LAMMPS--ipr2)
    See Computed Properties
    Notes: This file was generated by L.M. Hale from Zhou04_create_v2.f on 13 April 2018 and posted with X.W. Zhou's (Sandia National Laboratory) permission. This version corrects an issue with spurious fluctuations in the tabulated functions.
    File(s):
  • See Computed Properties
    Notes: Listing found at https://openkim.org. This KIM potential is based on the files from 2004--Zhou-X-W--Ni--LAMMPS--ipr1.
    Link(s):
  • See Computed Properties
    Notes: Listing found at https://openkim.org. This KIM potential is based on the files from 2004--Zhou-X-W--Ni--LAMMPS--ipr2.
    Link(s):
  • Citation: Y. Mishin, D. Farkas, M.J. Mehl, and D.A. Papaconstantopoulos (1999), "Interatomic potentials for monoatomic metals from experimental data and ab initio calculations", Physical Review B, 59(5), 3393-3407. DOI: 10.1103/physrevb.59.3393.
    Abstract: We demonstrate an approach to the development of many-body interatomic potentials for monoatomic metals with improved accuracy and reliability. The functional form of the potentials is that of the embedded-atom method, but the interesting features are as follows: (1) The database used for the development of a potential includes both experimental data and a large set of energies of different alternative crystalline structures of the material generated by ab initio calculations. We introduce a rescaling of interatomic distances in an attempt to improve the compatibility between experimental and ab initio data. (2) The optimum parametrization of the potential for the given database is obtained by alternating the fitting and testing steps. The testing step includes a comparison between the ab initio structural energies and those predicted by the potential. This strategy allows us to achieve the best accuracy of fitting within the intrinsic limitations of the potential model. Using this approach we develop reliable interatomic potentials for Al and Ni. The potentials accurately reproduce basic equilibrium properties of these metals, the elastic constants, the phonon-dispersion curves, the vacancy formation and migration energies, the stacking fault energies, and the surface energies. They also predict the right relative stability of different alternative structures with coordination numbers ranging from 12 to 4. The potentials are expected to be easily transferable to different local environments encountered in atomistic simulations of lattice defects.

    Related Models:
  • EAM tabulated functions (1999--Mishin-Y--Ni--table--ipr1)
    Notes: These files were provided by Yuri Mishin.
    File(s):
    F(ρ): F_ni.plt
    ρ(r): fni.plt
    φ(r): pni.plt

  • LAMMPS pair_style eam/alloy (1999--Mishin-Y--Ni--LAMMPS--ipr1)
    See Computed Properties
    Notes: This conversion was produced by Chandler Becker on 14 February 2009 from the plt files listed above. This version is compatible with LAMMPS. Validation and usage information can be found in Ni99_releaseNotes_1.pdf. If you use this setfl file, please credit the website in addition to the original reference.
    File(s):
  • See Computed Properties
    Notes: Listing found at https://openkim.org. This KIM potential is based on the files from 1999--Mishin-Y--Ni--LAMMPS--ipr1.
    Link(s):
  • Citation: K.W. Jacobsen, P. Stoltze, and J.K. Nørskov (1996), "A semi-empirical effective medium theory for metals and alloys", Surface Science, 366(2), 394-402. DOI: 10.1016/0039-6028(96)00816-3.
    Abstract: A detailed derivation of the simplest form of the effective medium theory for bonding in metallic systems is presented, and parameters for the fcc metals Ni, Pd, Pt, Cu, Ag and Au are given. The derivation of parameters is discussed in detail to show how new parameterizations can be made. The method and the parameterization is tested for a number of surface and bulk problems. In particular we present calculations of the energetics of metal atoms deposited on metal surfaces. The calculated energies include heats of adsorption, energies of overlayers, both pseudomorphic and relaxed, as well as energies of atoms alloyed into the first surface layer.

    Related Models:
  • Citation: J.E. Angelo, N.R. Moody, and M.I. Baskes (1995), "Trapping of hydrogen to lattice defects in nickel", Modelling and Simulation in Materials Science and Engineering, 3(3), 289-307. DOI: 10.1088/0965-0393/3/3/001.
    Abstract: This paper addresses the energy associated with the trapping of hydrogen to defects in a nickel lattice. Several dislocations and grain boundaries which occur in nickel are studied. The dislocations include an edge, a screw, and a Lomer dislocation in the locked configuration, i.e. a Lomer-Cottrell lock (LCL). For both the edge and screw dislocations, the maximum trap site energy is approximately 0.1 eV occurring in the region where the lattice is in tension approximately 3-4 angstroms from the dislocation core. For the Lomer-Cottrell lock, the maximum binding energy is 0.33 eV and is located at the core of the a/6(110) dislocation. Several low-index coincident site lattice grain boundaries are investigated, specifically the Sigma 3(112), Sigma 9(221) and Sigma 11(113) tilt boundaries. The boundaries all show a maximum binding energy of approximately 0.25 eV at the tilt boundary. Relaxation of the boundary structures produces an asymmetric atomic structure for both the Sigma 3 and Sigma 9 boundaries and a symmetric structure for the Sigma 11 tilt boundary. The results of this study can be compared to recent experimental studies showing that the activation energy for hydrogen-initiated failure is approximately 0.3-0.4 eV in the Fe-based superalloy IN903. From the results of this comparison it can be concluded that the embrittlement process is likely associated with the trapping of hydrogen to grain boundaries and Lomer-Cottrell locks.

    Related Models:
  • See Computed Properties
    Notes: Listing found at https://openkim.org. The potential was smoothed by Laurent Dupuy to obtain consistent and continuous derivatives.
    Link(s):
  • Citation: J.B. Adams, S.M. Foiles, and W.G. Wolfer (1989), "Self-diffusion and impurity diffusion of fcc metals using the five-frequency model and the Embedded Atom Method", Journal of Materials Research, 4(1), 102-112. DOI: 10.1557/jmr.1989.0102.
    Abstract: The activation energies for self-diffusion of transition metals (Au, Ag, Cu, Ni, Pd, Pt) have been calculated with the Embedded Atom Method (EAM); the results agree well with available experimental data for both mono-vacancy and di-vacancy mechanisms. The EAM was also used to calculate activation energies for vacancy migration near dilute impurities. These energies determine the atomic jump frequencies of the classic "five-frequency formula," which yields the diffusion rates of impurities by a mono-vacancy mechanism. These calculations were found to agree fairly well with experiment and with Neumann and Hirschwald's "Tm" model.

    Related Models:
  • See Computed Properties
    Notes: niu6.txt was obtained from http://enpub.fulton.asu.edu/cms/ potentials/main/main.htm and posted with the permission of J.B. Adams. The name of the file was retained, even though the header information lists the potential as 'universal 4.' This file is compatible with the "pair_style eam" format in LAMMPS (19Feb09 version).
    File(s):
  • See Computed Properties
    Notes: Listing found at https://openkim.org. This KIM potential is based on the files from 1989--Adams-J-B--Ni--LAMMPS--ipr1.
    Link(s):
  • Citation: G.J. Ackland, G. Tichy, V. Vitek, and M.W. Finnis (1987), "Simple N-body potentials for the noble metals and nickel", Philosophical Magazine A, 56(6), 735-756. DOI: 10.1080/01418618708204485.
    Abstract: Using the approach of Finnis and Sinclair, N-body potentials for copper, silver, gold and nickel have been constructed. The total energy is regarded as consisting of a pair-potential part and a many body cohesive part. Both these parts are functions of the atomic separations only and are represented by cubic splines, fitted to various bulk properties. For the noble metals, the pair-potentials were fitted at short range to pressure-volume relationships calculated by Christensen and Heine so that interactions at separations smaller than that of the first-nearest neighbours can be treated in this scheme. Using these potentials, point defects, surfaces (including the surface reconstructions) and grain boundaries have been studied and satisfactory agreement with available experimental data has been found.

    Related Models:
  • Moldy FS (1987--Ackland-G-J--Ni--MOLDY--ipr1)
    Notes: The parameters in ni.moldy were obtained from http://homepages.ed.ac.uk/graeme/moldy/moldy.html and posted with the permission of G.J. Ackland.
    File(s):
  • LAMMPS pair_style eam/fs (1987--Ackland-G-J--Ni--LAMMPS--ipr1)
    See Computed Properties
    Notes: This conversion was performed from G.J. Ackland's parameters by M.I. Mendelev. Conversion checks from M.I. Mendelev can be found in the conversion_check.pdf. These files were posted on 30 June 2009 with the permission of G.J. Ackland and M.I. Mendelev. These potentials are not designed for simulations of radiation damage. Update 19 July 2021: The contact email in the file's header has been changed.
    File(s):
  • LAMMPS pair_style eam/fs (1987--Ackland-G-J--Ni--LAMMPS--ipr2)
    See Computed Properties
    Notes: A new conversion to LAMMPS performed by G.J. Ackland was submitted on 10 Oct. 2017. This version adds close-range repulsion for radiation studies.
    File(s):
  • See Computed Properties
    Notes: Listing found at https://openkim.org. This KIM potential is based on the files from 1987--Ackland-G-J--Ni--LAMMPS--ipr1.
    Link(s):
  • See Computed Properties
    Notes: Listing found at https://openkim.org. This KIM potential is based on the files from 1987--Ackland-G-J--Ni--LAMMPS--ipr2.
    Link(s):
  • Citation: S.M. Foiles, M.I. Baskes, and M.S. Daw (1986), "Embedded-atom-method functions for the fcc metals Cu, Ag, Au, Ni, Pd, Pt, and their alloys", Physical Review B, 33(12), 7983-7991. DOI: 10.1103/physrevb.33.7983.
    Abstract: A consistent set of embedding functions and pair interactions for use with the embedded-atom method [M.S. Daw and M. I. Baskes, Phys. Rev. B 29, 6443 (1984)] have been determined empirically to describe the fcc metals Cu, Ag, Au, Ni, Pd, and Pt as well as alloys containing these metals. The functions are determined empirically by fitting to the sublimation energy, equilibrium lattice constant, elastic constants, and vacancy-formation energies of the pure metals and the heats of solution of the binary alloys. The validity of the functions is tested by computing a wide range of properties: the formation volume and migration energy of vacancies, the formation energy, formation volume, and migration energy of divacancies and self-interstitials, the surface energy and geometries of the low-index surfaces of the pure metals, and the segregation energy of substitutional impurities to (100) surfaces.

    Related Models:
  • See Computed Properties
    Notes: This file was taken from the August 22, 2018 LAMMPS distribution.
    File(s):
  • See Computed Properties
    Notes: Listing found at https://openkim.org. This KIM potential is based on the same files as 1986--Foiles-S-M--Ni--LAMMPS--ipr1.
    Link(s):
 
  • Citation: X.W. Zhou, R.A. Johnson, and H.N.G. Wadley (2004), "Misfit-energy-increasing dislocations in vapor-deposited CoFe/NiFe multilayers", Physical Review B, 69(14), 144113. DOI: 10.1103/physrevb.69.144113.
    Abstract: Recent molecular dynamics simulations of the growth of [Ni0.8Fe0.2/Au] multilayers have revealed the formation of misfit-strain-reducing dislocation structures very similar to those observed experimentally. Here we report similar simulations showing the formation of edge dislocations near the interfaces of vapor-deposited (111) [NiFe/CoFe/Cu] multilayers. Unlike misfit dislocations that accommodate lattice mismatch, the dislocation structures observed here increase the mismatch strain energy. Stop-action observations of the dynamically evolving atomic structures indicate that during deposition on the (111) surface of a fcc lattice, adatoms may occupy either fcc sites or hcp sites. This results in the random formation of fcc and hcp domains, with dislocations at the domain boundaries. These dislocations enable atoms to undergo a shift from fcc to hcp sites, or vice versa. These shifts lead to missing atoms, and therefore a later deposited layer can have missing planes compared to a previously deposited layer. This dislocation formation mechanism can create tensile stress in fcc films. The probability that such dislocations are formed was found to quickly diminish under energetic deposition conditions.

    Notes: This is a combined potential that contains all 16 elements from the source reference. It is provided here due to various requests for more elemental combinations often for high entropy simulations. As a caution, note that all of the cross interactions are determined through a universal mixing function and that most elemental systems were not thoroughly explored and tested by the original authors meaning that most binary and higher-order systems may not be well optimized.

  • See Computed Properties
    Notes: This file was generated by Ilia Nikiforov using the Zhou04_create_v2.f FORTRAN code which can be found on the associated elemental listings. The code was slightly modified to increase the tabulation points to 3000 to ensure good interpolations of the embedding energy function for all elements as W has a noticeably larger delta rho than the other elements. Also, the header was fixed to include all 16 element symbol tags.
    File(s):
 
 
 
  • Citation: Z. Pan, V. Borovikov, M.I. Mendelev, and F. Sansoz (2018), "Development of a semi-empirical potential for simulation of Ni solute segregation into grain boundaries in Ag", Modelling and Simulation in Materials Science and Engineering, 26(7), 075004. DOI: 10.1088/1361-651x/aadea3.
    Abstract: An Ag–Ni semi-empirical potential was developed to simulate the segregation of Ni solutes at Ag grain boundaries (GBs). The potential combines a new Ag potential fitted to correctly reproduce the stable and unstable stacking fault energies in this metal and the existing Ni potential from Mendelev et al (2012 Phil. Mag. 92 4454–69). The Ag–Ni cross potential functions were fitted to ab initio data on the liquid structure of the Ag80Ni20 alloy to properly incorporate the Ag–Ni interaction at small atomic separations, and to the Ni segregation energies at different sites within a high-energy Σ9 (221) symmetric tilt GB. By deploying this potential with hybrid Monte Carlo/molecular dynamics simulations, it was found that heterogeneous segregation and clustering of Ni atoms at GBs and twin boundary defects occur at low Ni concentrations, 1 and 2 at%. This behavior is profoundly different from the homogeneous interfacial dispersion generally observed for the Cu segregation in Ag. A GB transformation to amorphous intergranular films was found to prevail at higher Ni concentrations (10 at%). The developed potential opens new opportunities for studying the selective segregation behavior of Ni solutes in interface-hardened Ag metals and its effect on plasticity.

    Notes: Update 2018-10-05: Reference information updated. Previously referred to as 2018--Mendelev-M-I--Ag-Ni.

    Related Models:
  • LAMMPS pair_style eam/fs (2018--Pan-Z--Ag-Ni--LAMMPS--ipr1)
    See Computed Properties
    Notes: This file was sent by M.I. Mendelev (Ames Laboratory) on 3 June 2018 and posted with his permission. Update 19 July 2021: The contact email in the file's header has been changed. Update Jan 14 2022: Citation information has been updated in the file's header.
    File(s):
 
  • Citation: H. Sharifi, and C.D. Wick (2025), "Developing interatomic potentials for complex concentrated alloys of Cu, Ti, Ni, Cr, Co, Al, Fe, and Mn", Computational Materials Science, 248, 113595. DOI: 10.1016/j.commatsci.2024.113595.
    Abstract: Complex concentrated alloys (CCAs) are a new generation of metallic alloys composed of three or more principal elements with physical and mechanical properties that can be tuned by adjusting their compositions. The extensive compositional workspace of CCAs makes it impractical to perform a comprehensive search for a specific material property using experimental measurements. The use of computational methods can rapidly narrow down the search span, improving the efficiency of the design process. We carried out a high-throughput parameterization of modified embedded atom method (MEAM) interatomic potentials for combinations of Cu, Ti, Ni, Cr, Co, Al, Fe, and Mn using a genetic algorithm. Unary systems were parameterized based on DFT calculations and experimental results. MEAM potentials for 28 binary and 56 ternary combinations of the elements were parameterized to DFT results that were carried out with semi-automated frameworks. Specific attention was made to reproduce properties that impact compositional segregation, material strength, and mechanics.

    Notes: This potential is designed for the structural properties of High Entropy Alloys (HEA)s and Complex Concentrated Alloys (CCAs). The fitting procedure involved developing all included unary, binary and ternary systems so it can be used for any alloy subset. This potential focuses on the structural analysis of alloys including shear strength and elastic constants, dislocation dynamics and their impact on alloy strength, and the analysis of defect effects, such as voids, on material properties. However, the potential was not optimized for temperature-dependent properties and was not fit to density, thermal expansion coefficients, or thermal conductivity data.

  • See Computed Properties
    Notes: These files were provided by Hamid Sharifi on February 11, 2025.
    File(s):
 
 
  • Citation: P. Brommer, and F. Gähler (2006), "Effective potentials for quasicrystals fromab-initiodata", Philosophical Magazine, 86(6-8), 753-758. DOI: 10.1080/14786430500333349.
    Abstract: Classical effective potentials are indispensable for any large-scale atomistic simulations, and the relevance of simulation results crucially depends on the quality of the potentials used. For complex alloys such as quasicrystals, however, realistic effective potentials are almost non-existent. We report here our efforts to develop effective potentials especially for quasicrystalline alloy systems. We use the so-called force-matching method, in which the potential parameters are adapted so as to reproduce the forces and energies optimally in a set of suitably chosen reference configurations. These reference data are calculated with ab-initio methods. As a first application, embedded-atom method potentials for decagonal Al–Ni–Co, icosahedral Ca–Cd, and both icosahedral and decagonal Mg–Zn quasicrystals have been constructed. The influence of the potential range and degree of specialization on the accuracy and other properties is discussed and compared.

    Notes: This is for the Potential A model described in the reference

    Related Models:
  • See Computed Properties
    Notes: Listing found at https://openkim.org.
    Link(s):
  • Citation: P. Brommer, and F. Gähler (2006), "Effective potentials for quasicrystals fromab-initiodata", Philosophical Magazine, 86(6-8), 753-758. DOI: 10.1080/14786430500333349.
    Abstract: Classical effective potentials are indispensable for any large-scale atomistic simulations, and the relevance of simulation results crucially depends on the quality of the potentials used. For complex alloys such as quasicrystals, however, realistic effective potentials are almost non-existent. We report here our efforts to develop effective potentials especially for quasicrystalline alloy systems. We use the so-called force-matching method, in which the potential parameters are adapted so as to reproduce the forces and energies optimally in a set of suitably chosen reference configurations. These reference data are calculated with ab-initio methods. As a first application, embedded-atom method potentials for decagonal Al–Ni–Co, icosahedral Ca–Cd, and both icosahedral and decagonal Mg–Zn quasicrystals have been constructed. The influence of the potential range and degree of specialization on the accuracy and other properties is discussed and compared.

    Notes: This is for the Potential B model described in the reference

    Related Models:
  • See Computed Properties
    Notes: Listing found at https://openkim.org.
    Link(s):
 
 
 
  • Citation: J.E. Angelo, N.R. Moody, and M.I. Baskes (1995), "Trapping of hydrogen to lattice defects in nickel", Modelling and Simulation in Materials Science and Engineering, 3(3), 289-307. DOI: 10.1088/0965-0393/3/3/001.
    Abstract: This paper addresses the energy associated with the trapping of hydrogen to defects in a nickel lattice. Several dislocations and grain boundaries which occur in nickel are studied. The dislocations include an edge, a screw, and a Lomer dislocation in the locked configuration, i.e. a Lomer-Cottrell lock (LCL). For both the edge and screw dislocations, the maximum trap site energy is approximately 0.1 eV occurring in the region where the lattice is in tension approximately 3-4 angstroms from the dislocation core. For the Lomer-Cottrell lock, the maximum binding energy is 0.33 eV and is located at the core of the a/6(110) dislocation. Several low-index coincident site lattice grain boundaries are investigated, specifically the Sigma 3(112), Sigma 9(221) and Sigma 11(113) tilt boundaries. The boundaries all show a maximum binding energy of approximately 0.25 eV at the tilt boundary. Relaxation of the boundary structures produces an asymmetric atomic structure for both the Sigma 3 and Sigma 9 boundaries and a symmetric structure for the Sigma 11 tilt boundary. The results of this study can be compared to recent experimental studies showing that the activation energy for hydrogen-initiated failure is approximately 0.3-0.4 eV in the Fe-based superalloy IN903. From the results of this comparison it can be concluded that the embrittlement process is likely associated with the trapping of hydrogen to grain boundaries and Lomer-Cottrell locks.

    Notes: M.I. Baskes provided the reference property calculations in NiAlH_properties.pdf and a list of papers using this potential. If others should be included, please send the citations.
      \n
    • N.R. Moody, J.E. Angelo, S.M. Foiles, and M.I. Baskes, "Atomistic Simulation of the Hydrogen-Induced Fracture Process in an Iron-Based Superalloy," Sandia National Laboratories Report Number SAND-95-8549C CONF-9510273-1 (1995).
    • \n
    • J.E. Angelo and M.I. Baskes, "Interfacial Studies Using the EAM and MEAM," Interface Sci. 4, 47-63 (1996).
    • \n
    • M.I. Baskes, J.E. Angelo, and N.R. Moody, "Atomistic calculations of hydrogen interactions with Ni3Al grain boundaries and Ni/Ni3Al interfaces," in A.W. Thompson and N.R. Moody, editors. Hydrogen effects in materials: proceedings of the fifth international conference on the effect of hydrogen on the behavior of materials, Moran, Wyoming, 1994. Warrendale, PA: The Minerals, Metals and Materials Society; 1996. p. 77-90.
    • \n
    • J.E. Angelo, N.R. Moody, and M.I. Baskes, "Modeling the segregation of hydrogen to lattice defects in nickel," in A.W. Thompson and N.R. Moody, editors. Hydrogen effects in materials: proceedings of the fifth international conference on the effect of hydrogen on the behavior of materials, Moran, Wyoming, 1994. Warrendale, PA: The Minerals, Metals and Materials Society; 1996. p. 161-170.
    • \n
    • M.F. Horstemeyer, M.I. Baskes, and S.J. Plimpton, "Length Scale and Time Scale Effects on the Plastic Flow of FCC Metals," Acta Mater. 49, 4363-4374 (2001).
    • \n
    • M.F. Horstemeyer, M.I. Baskes, A. Godfrey, and D.A. Hughes, "A large deformation atomistic study examining crystal orientation effects on the stress-strain relationship," International Journal of Plasticity 18, 203-229 (2002).
    • \n
    • S.G. Srinivasan, X.Z. Liao, M.I. Baskes, R.J. McCabe, Y.H. Zhao, and Y.T. Zhu, "Compact and dissociated dislocations in aluminum: Implications for deformation," Phys. Rev. Lett. 94, 125502 (2005).
    • \n
    • S.G. Srinivasan, M.I. Baskes, and G.J. Wagner, "Atomistic simulations of shock induced microstructural evolution and spallation in single crystal nickel," J. Appl. Phys. 101, 043504 (2007).
    • \n
    • Mei. Q. Chandler, M.F. Horstemeyer, M.I. Baskes, P.M. Gullett, G.J. Wagner, and B. Jelinek, "Hydrogen effects on nanovoid nucleation in face-centered cubic single-crystals," Acta Mat. 56, 95-104 (2008).
    • \n
    • Mei. Q. Chandler, M.F. Horstemeyer, M.I. Baskes, G.J. Wagner, P.M. Gullett, and B. Jelinek, "Hydrogen effects on nanovoid nucleation at nickel grain boundaries," Acta Mat. 56, 619-631 (2008).

    Related Models:
  • LAMMPS pair_style eam/alloy (1995--Angelo-J-E--Ni-Al-H--LAMMPS--ipr1)
    See Computed Properties
    Notes: This file was obtained from the 7 July 2009 LAMMPS distribution and approved by M.I. Baskes.
    File(s):
  • See Computed Properties
    Notes: Listing found at https://openkim.org. This KIM potential is based on the files from 1995--Angelo-J-E-Moody-N-R-Baskes-M-I--Ni-Al-H.
    Link(s):
 
 
  • Citation: A. Mahata, T. Mukhopadhyay, and M. Asle Zaeem (2022), "Modified embedded-atom method interatomic potentials for Al-Cu, Al-Fe and Al-Ni binary alloys: From room temperature to melting point", Computational Materials Science, 201, 110902. DOI: 10.1016/j.commatsci.2021.110902.
    Abstract: Second nearest neighbor modified embedded-atom method (2NN-MEAM) interatomic potentials are developed for binary aluminum (Al) alloys applicable from room temperature to the melting point. The binary alloys studied in this work are Al-Cu, Al-Fe and Al-Ni. Sensitivity and uncertainty analyses are performed on potential parameters based on the perturbation approach. The outcome of the sensitivity analysis shows that some of the MEAM parameters interdependently influence all MEAM model outputs, allowing for the definition of an ordered calibration procedure to target specific MEAM outputs. Using these 2NN-MEAM interatomic potentials, molecular dynamics (MD) simulations are performed to calculate low and high-temperature properties, such as the formation energies of stable phases and unstable intermetallics, lattice parameters, elastic constants, thermal expansion coefficients, enthalpy of formation of solids, liquid mixing enthalpy, and liquidus temperatures at a wide range of compositions. The computed data are compared with the available first principle calculations and experimental data, showing high accuracy of the 2NN-MEAM interatomic potentials. In addition, the liquidus temperature of the Al binary alloys is compared to the phase diagrams determined by the CALPHAD method.

  • See Computed Properties
    Notes: These files were provided by Mohsen Asle Zaeem on Oct 8, 2021 and posted with his permission.
    File(s):
  • Citation: A. Kumar, A. Chernatynskiy, T. Liang, K. Choudhary, M.J. Noordhoek, Y.-T. Cheng, S.R. Phillpot, and S.B. Sinnott (2015), "Charge optimized many-body (COMB) potential for dynamical simulation of Ni-Al phases", Journal of Physics: Condensed Matter, 27(33), 336302. DOI: 10.1088/0953-8984/27/33/336302.
    Abstract: An interatomic potential for the Ni–Al system is presented within the third-generation charge optimized many-body (COMB3) formalism. The potential has been optimized for Ni3Al, or the γ' phase in Ni-based superalloys. The formation energies predicted for other Ni–Al phases are in reasonable agreement with first-principles results. The potential further predicts good mechanical properties for Ni3Al, which includes the values of the complex stacking fault (CSF) and the anti-phase boundary (APB) energies for the (1 1 1) and (1 0 0) planes. It is also used to investigate dislocation propagation across the Ni3Al (1 1 0)–Ni (1 1 0) interface, and the results are consistent with simulation results reported in the literature. The potential is further used in combination with a recent COMB3 potential for Al2O3 to investigate the Ni3Al (1 1 1)–Al2O3 (0 0 0 1) interface, which has not been modeled previously at the classical atomistic level due to the lack of a reactive potential to describe both Ni3Al and Al2O3 as well as interactions between them. The calculated work of adhesion for this interface is predicted to be 1.85 J m−2, which is in agreement with available experimental data. The predicted interlayer distance is further consistent with the available first-principles results for Ni (1 1 1)–Al2O3 (0 0 0 1).

    Related Models:
  • LAMMPS pair_style comb3 (2015--Kumar-A--Al-Ni--LAMMPS--ipr1)
    See Computed Properties
    Notes: This file was obtained from Jarvis-FF (https://www.ctcms.nist.gov/~knc6/periodic.html) on 9 Nov. 2018 and posted at Kamal Choudhary's (NIST) request.
    File(s):
  • Citation: Y. Mishin, M.J. Mehl, and D.A. Papaconstantopoulos (2002), "Embedded-atom potential for B2-NiAl", Physical Review B, 65(22), 224114. DOI: 10.1103/physrevb.65.224114.
    Abstract: An embedded-atom potential has been constructed for the intermetallic compound B2−NiAl by fitting to both experimental properties and ab initio data. The ab initio data have been generated in the form of energy-volume relations for a number of alternative structures of NiAl and Ni3Al, as well as for Ni and Al. The potential accurately reproduces the basic lattice properties of B2−NiAl, planar faults, and point-defect characteristics. It also reproduces the energetics and stability of all other structures included in the fit. The potential is applied to calculate equilibrium point-defect concentrations in B2−NiAl as functions of temperature and composition near the stoichiometry. In contrast to previous calculations, the defect formation entropies arising from atomic vibrations are included in our calculation within the quasiharmonic approximation. Such entropies tend to increase the concentrations of thermal point defects in B2−NiAl at high temperatures, but the atomic disorder mechanism remains triple-defect type up to the melting point.

    Notes: As described in the reference, this potential was highly optimized for the B2 phase of NiAl. For other phases (including the elements), it does not work nearly as well as other potentials. For additional information, see C.A. Becker, et al., Phil. Mag. 91, 3578 (2011).

    Related Models:
  • EAM tabulated functions (2002--Mishin-Y--Ni-Al--table--ipr1)
    Notes: These files were provided by Yuri Mishin.
    File(s):
    Notes: README.txt
    Al F(ρ): F_al.plt
    Ni F(ρ): F_ni.plt
    Al ρ(r): fal.plt
    Ni ρ(r): fni.plt
    Al φ(r): pal.plt
    Ni φ(r): pni.plt
    Ni-Al φ(r): pnial.plt

  • LAMMPS pair_style eam/alloy (2002--Mishin-Y--Ni-Al--LAMMPS--ipr1)
    See Computed Properties
    Notes: This conversion was produced by Chandler Becker on 14 February 2009 from the plt files listed above. This version is compatible with LAMMPS. Validation and usage information can be found in NiAl02_releaseNotes_1.pdf. If you use this setfl file, please credit the website in addition to the original reference.
    File(s):
  • See Computed Properties
    Notes: Listing found at https://openkim.org. This KIM potential is based on the files from 2002--Mishin-Y--Ni-Al--LAMMPS--ipr1.
    Link(s):
 
 
 
  • Citation: E.B. Kalika, A.V. Verkhovtsev, M.M. Maslov, K.P. Katin, and A.V. Solov'yov (2024), "Computational characterization of novel nanostructured materials: A case study of NiCl2", Computational Materials Science, 239, 112975. DOI: 10.1016/j.commatsci.2024.112975.
    Abstract: A computational approach combining dispersion-corrected density functional theory (DFT) and classical molecular dynamics is employed to characterize the geometrical and thermomechanical properties of a recently proposed 2D transition metal dihalide NiCl2. The characterization is performed using a classical interatomic force field whose parameters are determined and verified through the comparison with the results of DFT calculations. The developed force field is used to study the mechanical response, thermal stability, melting and solidification of a NiCl2 monolayer on the atomistic level of detail. The 2D NiCl2 sheet is found to be thermally stable at temperatures below its melting point of ~695 K. At higher temperatures, several subsequent structural transformations of NiCl2 are observed, namely a transition into a porous 2D sheet and a 1D nanowire. The MD simulations of NiCl2 cooling show that the molten NiCl2 system solidifies into an amorphous porous 2D structure at T ~450 K. The resulting structure has lower cohesive energy with respect to the initial 2D sheet. The computational methodology presented through the case study of NiCl2 can also be utilized to study the properties of other novel 2D materials, including recently synthesized NiO2, NiS2, and NiSe2.

    Notes: The potential was designed to describe the geometrical and thermomechanical characteristics of the 2D NiCl2 material. It was checked against the interatomic distances obtained from DFT calculations, Young's modulus upon biaxial stretching of the NiCl2 sheet, and the analysis of the thermal stability of the system including simulations of the melting and solidification processes.

  • ASE calculator (2024--Kalika-E-B--Ni-Cl--equations--ipr1)
    Notes: This file and equations were provided by Alexey Verkhovtsev on March 19, 2024. The .pdf collects the equation and parameter values as described in the paper. The .pot file are the parameters as used by the MBN Explorer software package.
    File(s):
 
  • Citation: O.R. Deluigi, R.C. Pasianot, F.J. Valencia, A. Caro, D. Farkas, and E.M. Bringa (2021), "Simulations of primary damage in a High Entropy Alloy: Probing enhanced radiation resistance", Acta Materialia, 213, 116951. DOI: 10.1016/j.actamat.2021.116951.
    Abstract: High Entropy Alloys (HEA) attract attention as possible radiation resistant materials, a feature observed in some experiments that has been attributed to several unique properties of HEA, in particular to the disorder-induced reduced thermal conductivity and to the peculiar defect properties originating from the chemical complexity. To explore the origin of such behavior we study the early stages (less than 0.1 ns), of radiation damage response of a HEA using molecular dynamics simulations of collision cascades induced by primary knock-on atoms (PKA) with 10, 20 and 40 keV, at room temperature, on an idealized model equiatomic quinary fcc FeNiCrCoCu alloy, the corresponding "Average Atom" (AA) material, and on pure Ni. We include accurate corrections to describe short-range atomic interactions during the cascade. In all cases the average number of defects in the HEA is lower than for pure Ni, which has been previously used to help claiming that HEA is radiation resistant. However, simulated defect evolution during primary damage, including the number of surviving Frenkel Pairs, and the defect cluster size distributions are nearly the same in all cases, within our statistical uncertainty. The number of surviving FP in the alloy is predicted fairly well by analytical models of defect production in pure materials. All of this indicates that the origin of radiation resistance in HEAs as observed in experiments may not be related to a reduction in primary damage due to chemical disorder, but is probably caused by longer-time defect evolution.

    Notes: This is a modified version of 2018--Farkas-D-Caro-A--Fe-Ni-Cr-Co-Cu that adds the ZBL correction at shorter interatomic distances making it suitable for radiation studies.

  • See Computed Properties
    Notes: This file was provided by Diana Farkas (Virginia Tech) on May 16, 2021 and posted with her permission.
    File(s):
 
  • Citation: R. Gröger, V. Vitek, and A. Dlouhý (2020), "Effective pair potential for random fcc CoCrFeMnNi alloys", Modelling and Simulation in Materials Science and Engineering, 28(7), 075006. DOI: 10.1088/1361-651x/ab7f8b.
    Abstract: The single-phase equiatomic CoCrFeMnNi alloy is a random solid solution of five elements on the face-centered cubic lattice, whose pure constituents crystallize in very different structures and exhibit diverse magnetic properties. Due to the randomness of the alloy, 80% of nearest neighbor bonds are between unlike elements and thus the details of bonding in pure structures are less important. The elastic moduli of this alloy give rise to small Cauchy pressure C12 − C44, which suggests that the dominant part of bonding may be described by a simple pair potential. We test this hypothesis by developing a long-range Lennard-Jones potential in which the equilibrium crystal structures of pure constituents are taken as reference. The standard mixing rules for regular solutions are then adopted to obtain parameters for bonds between unlike elements in the quinary system. The transferability of this potential to quaternary CoCrFeNi, ternary CoCrNi, and binary FeNi alloys is investigated and the predictions compared with experiments and density functional theory calculations. By sampling over a large number of random configurations, we investigate the effect of compositional randomness on misfit volumes, energies of point defects and stacking faults, and the dislocation friction stresses experienced by moving edge and screw dislocations.

    Notes: R. Gröger notes that "This is the Mie n-2n potential, where n=6 was found to give the best results - it is the same as the Lennard-Jones 6-12 potential. These potential files contain parameterizations of the Co-Cr-Fe-Mn-Ni system intended for studies of compositionally complex alloys with spatially random distributions of individual elements. Although it was developed primarily for studies of the quinary fcc CoCrFeMnNi system, the paper above demonstrates that it can be used equally well for quaternaries and ternaries. We emphasize that the model ceases to be applicable for binary and unary systems, where most or all first neighbor bonds are between the same elements."

  • See Computed Properties
    Notes: These files were provided by Roman Gröger on Oct 23, 2021 and posted with his permission. The file mie.mod shows how to include these potentials in LAMMPS simulations via "include mie.mod".
    File(s):
 
  • Citation: A. Liang, D.C. Goodelman, A.M. Hodge, D. Farkas, and P.S. Branicio (2023), "CoFeNiTix and CrFeNiTix high entropy alloy thin films microstructure formation", Acta Materialia, 257, 119163. DOI: 10.1016/j.actamat.2023.119163.
    Abstract: High entropy alloys (HEA) composition-structure relationships are crucial for guiding their design and applications. Here, we use a combined experimental and molecular dynamics (MD) approach to investigate phase formation during physical vapor deposition (PVD) of CoFeNiTix and CrFeNiTix HEA thin films. We vary titanium molar ratio from 0 to 1 to understand the role of a larger element in the alloy mixture. The experiments show that a high titanium content favors amorphous phase formation in the samples produced by magnetron co-sputtering. In contrast, a low titanium content results in the formation of a face-centered cubic (FCC) structure in both HEA families. This effect of titanium content on the stability of the amorphous and FCC phases is reproduced in PVD MD simulations. The threshold titanium molar ratio is identified to be ~0.53 and ~0.16 for the CoFeNiTix and CrFeNiTix films in the experiments, and ~0.53 and ~0.53 in the MD simulations. In addition, the atomistic modeling allows for energy versus volume calculations with increasing titanium content, which demonstrate the stabilization of the amorphous phase with respect to crystalline structures. To isolate the effect of atomic sizes, additional simulations are performed using an average-atom model, which disregards differences in atomic radii while preserving the average properties of the alloy. In these simulations, the energetic stability of the amorphous phase disappears. The combined experimental and simulation results demonstrate that the formation of the amorphous phase in HEA thin films generated by PVD is directly caused by the atomic size difference.

  • See Computed Properties
    Notes: This file was provided by Diana Farkas on January 12, 2024.
    File(s):
 
  • Citation: M.I. Mendelev (2024), "to be published".

    Notes: Mikhail Mendelev notes "This Ni-Co-Cr potential is designed to simulate the plastic deformation in the NiCoCr HEA. The potential correctly reproduces all element ground states and melting temperature as well as hcp-fcc transformation in pure Co. Note that the potential was fit to the PBEsol VASP data, therefore, it systematically underestimates the lattice parameters."

  • See Computed Properties
    Notes: This file was provided by Mikhail Mendelev on July 9, 2024.
    File(s):
 
  • Citation: L.K. Béland, C. Lu, Y.N. Osetskiy, G.D. Samolyuk, A. Caro, L. Wang, and R.E. Stoller (2016), "Features of primary damage by high energy displacement cascades in concentrated Ni-based alloys", Journal of Applied Physics, 119(8), 085901. DOI: 10.1063/1.4942533.
    Abstract: Alloying of Ni with Fe or Co has been shown to reduce primary damage production under ion irradiation. Similar results have been obtained from classical molecular dynamics simulations of 1, 10, 20, and 40 keV collision cascades in Ni, NiFe, and NiCo. In all cases, a mix of imperfect stacking fault tetrahedra, faulted loops with a 1/3⟨111⟩ Burgers vector, and glissile interstitial loops with a 1/2⟨110⟩ Burgers vector were formed, along with small sessile point defect complexes and clusters. Primary damage reduction occurs by three mechanisms. First, Ni-Co, Ni-Fe, Co-Co, and Fe-Fe short-distance repulsive interactions are stiffer than Ni-Ni interactions, which lead to a decrease in damage formation during the transition from the supersonic ballistic regime to the sonic regime. This largely controls final defect production. Second, alloying decreases thermal conductivity, leading to a longer thermal spike lifetime. The associated annealing reduces final damage production. These two mechanisms are especially important at cascades energies less than 40 keV. Third, at the higher energies, the production of large defect clusters by subcascades is inhibited in the alloys. A number of challenges and limitations pertaining to predictive atomistic modeling of alloys under high-energy particle irradiation are discussed.

    Notes: Prof. Beland notes that "The potential takes elemental Ni from 2004--Mishin-Y--Ni-Al and Co from 2012--Purja-Pun-G-P-Mishin-Y--Co and mixes them. We first applied the effective gauge transformation, and then fitted the cross-term as to reproduce the heat of mixing of Ni(x)-Co(1-x). The potential is very soft at short distances. In order to perform collision cascades, it should be overlaid to the ZBL potential, with an outer cutoff of 2.0 Angstroms."

    Related Models:
  • LAMMPS pair_style eam/alloy (2016--Beland-L-K--Ni-Co--LAMMPS--ipr1)
    See Computed Properties
    Notes: This file was provided by Laurent Béland on 7 Nov 2019 and posted with his permission. Note: The EAM potential by itself is very soft at short distances. In order to perform collision cascades, use the hybrid style listed below.
    File(s):
  • LAMMPS pair_style hybrid/overlay zbl eam/alloy (2016--Beland-L-K--Ni-Co--LAMMPS--ipr2)
    See Computed Properties
    Notes: The eam file was provided by Laurent Béland on 7 Nov 2019 and posted with his permission. It is the same eam/alloy file as the above implementation. example.lammps.in provides an example of how to call the potential with the ZBL overlay applied.
    File(s):
 
  • Citation: A. Daramola, G. Bonny, G. Adjanor, C. Domain, G. Monnet, and A. Fraczkiewicz (2022), "Development of a plasticity-oriented interatomic potential for CrFeMnNi high entropy alloys", Computational Materials Science, 203, 111165. DOI: 10.1016/j.commatsci.2021.111165.
    Abstract: An interatomic potential (termed EAM-21) has been developed with the embedded atomic method (EAM) for CrFeMnNi quaternary HEAs. This potential is based on a previously developed potential for CrFeNi ternary alloys. The parameters to develop the potential were determined by fitting to experimental values, density functional theory (DFT) and thermodynamic calculations, to reproduce the main crystal characteristics, namely: the stability of the fcc phase, elastic constants, and stacking fault energy. Its applicability for the study of plastic deformation mechanisms was checked by calculations of behaviour of a ½<1 1 0>1 1 1 edge dislocation in equiatomic quaternary CrFeMnNi alloy, as well as its less-complex subsystems (ternaries, binaries, and pure metals). The calculations were performed in the domain of temperatures between 0 and 900 K; smooth and stable glide of an edge dislocation and fcc phase stability in this temperature range was confirmed. This study demonstrates the suitability of the EAM-21 potential for the analysis of plasticity mechanisms and mechanical properties of CrFeMnNi HEAs.

    Notes: This potential is mostly suitable for microplasticity studies. This version of the potential is not stiffened for irradiation damage and displacement cascades studies.

  • See Computed Properties
    Notes: This file was provided by Giovanni Bonny on April 3, 2024 with the agreement of all the authors.
    File(s):
 
  • Citation: X.W. Zhou, M.E. Foster, and R.B. Sills (2018), "An Fe-Ni-Cr embedded atom method potential for austenitic and ferritic systems", Journal of Computational Chemistry, 39(29), 2420-2431. DOI: 10.1002/jcc.25573.
    Abstract: Fe‐Ni‐Cr stainless‐steels are important structural materials because of their superior strength and corrosion resistance. Atomistic studies of mechanical properties of stainless‐steels, however, have been limited by the lack of high‐fidelity interatomic potentials. Here using density functional theory as a guide, we have developed a new Fe‐Ni‐Cr embedded atom method potential. We demonstrate that our potential enables stable molecular dynamics simulations of stainless‐steel alloys at high temperatures, accurately reproduces the stacking fault energy-known to strongly influence the mode of plastic deformation (e.g., twinning vs. dislocation glide vs. cross‐slip)-of these alloys over a range of compositions, and gives reasonable elastic constants, energies, and volumes for various compositions. The latter are pertinent for determining short‐range order and solute strengthening effects. Our results suggest that our potential is suitable for studying mechanical properties of austenitic and ferritic stainless‐steels which have vast implementation in the scientific and industrial communities. Published 2018. This article is a U.S. Government work and is in the public domain in the USA.

    Related Models:
  • LAMMPS pair_style eam/alloy (2018--Zhou-X-W--Fe-Ni-Cr--LAMMPS--ipr1)
    See Computed Properties
    Notes: This file was provided by Xiaowang Zhou (Sandia National Laboratories) on 1 January 2019 and posted with his permission. The function tabulations are identical to 2018--Zhou-X-W--Fe-Ni-Cr--LAMMPS--ipr2 below, only the file format is different.
    File(s):
  • See Computed Properties
    Notes: This file was provided by Xiaowang Zhou (Sandia National Laboratories) on 1 January 2019 and posted with his permission. The function tabulations are identical to 2018--Zhou-X-W--Fe-Ni-Cr--LAMMPS--ipr1 above, only the file format is different.
    File(s):
  • Citation: L.K. Béland, A. Tamm, S. Mu, G.D. Samolyuk, Y.N. Osetsky, A. Aabloo, M. Klintenberg, A. Caro, and R.E. Stoller (2017), "Accurate classical short-range forces for the study of collision cascades in Fe–Ni–Cr", Computer Physics Communications, 219, 11-19. DOI: 10.1016/j.cpc.2017.05.001.
    Abstract: The predictive power of a classical molecular dynamics simulation is largely determined by the physical validity of its underlying empirical potential. In the case of high-energy collision cascades, it was recently shown that correctly modeling interactions at short distances is necessary to accurately predict primary damage production. An ab initio based framework is introduced for modifying an existing embedded-atom method FeNiCr potential to handle these short-range interactions. Density functional theory is used to calculate the energetics of two atoms approaching each other, embedded in the alloy, and to calculate the equation of state of the alloy as it is compressed. The pairwise terms and the embedding terms of the potential are modified in accordance with the ab initio results. Using this reparametrized potential, collision cascades are performed in Ni50Fe50, Ni80Cr20 and Ni33Fe33Cr33. The simulations reveal that alloying Ni and NiCr to Fe reduces primary damage production, in agreement with some previous calculations. Alloying Ni and NiFe to Cr does not reduce primary damage production, in contradiction with previous calculations.

    Notes: Prof. Béland notes that "The potential takes the 2011--Bonny-G-Terentyev-D-Pasianot-R-C-et-al--Fe-Ni-Cr potential and re-parameterizes the short-distance interactions based on DFT calculations, as explained in the paper and https://doi.org/10.1021/acs.jctc.5b01194. We recommend using this potential for simulating collision cascades."

    Related Models:
  • LAMMPS pair_style eam/alloy (2017--Beland-L-K--Fe-Ni-Cr--LAMMPS--ipr1)
    See Computed Properties
    Notes: This file was provided by Laurent Béland on 7 Nov 2019 and posted with his permission.
    File(s):
  • Citation: G. Bonny, N. Castin, and D. Terentyev (2013), "Interatomic potential for studying ageing under irradiation in stainless steels: the FeNiCr model alloy", Modelling and Simulation in Materials Science and Engineering, 21(8), 085004. DOI: 10.1088/0965-0393/21/8/085004.
    Abstract: The degradation of austenitic stainless steels in a radiation environment is a known problem for the in-core components of nuclear light water reactors. For a better understanding of the prevailing mechanisms responsible for the materials' degradation, large-scale atomistic simulations are desirable. In this framework and as a follow-up on Bonny et al (2011 Modelling Simul. Mater. Sci. Eng. 19 085008), we developed an embedded atom method type interatomic potential for the ternary FeNiCr system to model the production and evolution of radiation defects. Special attention has been drawn to the Fe10Ni20Cr alloy, whose properties were ensured to be close to those of 316L austenitic stainless steels. The potential is extensively benchmarked against density functional theory calculations and the potential developed in our earlier work. As a first validation, the potential is used in AKMC simulations to simulate thermal annealing experiments in order to determine the self-diffusion coefficients of the components in FeNiCr alloys around the Fe10Ni20Cr composition. The results from these simulations are consistent with experiments, i.e., DCr > DNi > DFe.

    Notes: Notes from Giovanni Bonny: "The present potential was developed to model POINT DEFECTS near the Fe-10Ni-20Cr composition.

    Related Models:
  • LAMMPS pair_style eam/alloy (2013--Bonny-G--Fe-Ni-Cr--LAMMPS--ipr1)
    See Computed Properties
    Notes: This file was provided by Giovanni Bonny (Nuclear Materials Science Institute of SCK-CEN, Belgium) on 13 Jan. 2014.
    File(s):
  • EAM tabulated functions (2013--Bonny-G--Fe-Ni-Cr--table--ipr1)
    Notes: These files were provided by Giovanni Bonny on 13 Jan. 2014.
    File(s):
  • See Computed Properties
    Notes: Listing found at https://openkim.org. This KIM potential is based on the files from 2013--Bonny-G--Fe-Ni-Cr--LAMMPS--ipr1.
    Link(s):
  • Citation: G. Bonny, D. Terentyev, R.C. Pasianot, S. Poncé, and A. Bakaev (2011), "Interatomic potential to study plasticity in stainless steels: the FeNiCr model alloy", Modelling and Simulation in Materials Science and Engineering, 19(8), 085008. DOI: 10.1088/0965-0393/19/8/085008.
    Abstract: Austenitic stainless steels are commonly used materials for in-core components of nuclear light water reactors. In service, such components are exposed to harsh conditions: intense neutron irradiation, mechanical and thermal stresses, and aggressive corrosion environment which all contribute to the components' degradation. For a better understanding of the prevailing mechanisms responsible for the materials degradation, large-scale atomistic simulations are desirable. In this framework we developed an embedded atom method type interatomic potential for the ternary FeNiCr system to model movement of dislocations and their interaction with radiation defects. Special attention has been drawn to the Fe-10Ni-20Cr alloy, whose properties were ensured to be close to those of 316L austenitic stainless steel. In particular, the stacking fault energy and elastic constants are well reproduced. The fcc phase for the Fe–10Ni-20Cr random alloy was proven to be stable in the temperature range 0–900 K and under shear strain up to 5%. For the same alloy the stable glide of screw dislocations and stability of Frank loops was confirmed.

    Notes: Notes from Giovanni Bonny: "The present potential was developed to model dislocations around the Fe-10Ni-20Cr composition."

    Related Models:
  • LAMMPS pair_style eam/alloy (2011--Bonny-G--Fe-Ni-Cr--LAMMPS--ipr1)
    See Computed Properties
    Notes: This file was provided by Giovanni Bonny (Nuclear Materials Science Institute of SCK-CEN, Belgium) on 2 Sept. 2013. Update May 26 2021: This version is not compatible for LAMMPS versions starting with 29 Oct 2020 due to Infinify and NaN values no longer allowed.
    File(s): superseded


  • EAM tabulated functions (2011--Bonny-G--Fe-Ni-Cr--table--ipr1)
    Notes: These files were provided by Giovanni Bonny on 2 Sept. 2013.
    File(s):
    Fe F(ρ): F_Fe.spt
    Ni F(ρ): F_Ni.spt
    Cr F(ρ): F_Cr.spt
    Fe ρ(r): rhoFe.spt
    Ni ρ(r): rhoNi.spt
    Cr ρ(r): rhoCr.spt
    Fe φ(r): pFeFe.spt
    Ni φ(r): pNiNi.spt
    Cr φ(r): pCrCr.spt
    Fe-Ni φ(r): pFeNi.spt
    Fe-Cr φ(r): pFeCr.spt
    Ni-Cr φ(r): pNiCr.spt

  • LAMMPS pair_style eam/alloy (2011--Bonny-G--Fe-Ni-Cr--LAMMPS--ipr2)
    See Computed Properties
    Notes: This is a modification to the previous LAMMPS version and was posted by Lucas Hale on May 26, 2021. To make the file compatible with LAMMPS versions after 29 Oct 2020, INF values at r=0 for the elemental r*phi tables were replaced by values computed using the parameters listed in the paper.
    File(s):
 
  • Citation: G. Arora, G. Bonny, N. Castin, and D.S. Aidhy (2021), "Effect of different point-defect energetics in Ni80X20 (X=Fe, Pd) on contrasting vacancy cluster formation from atomistic simulations", Materialia, 15, 100974. DOI: 10.1016/j.mtla.2020.100974.
    Abstract: Recent irradiation experiments have shown that smaller vacancy clusters are observed in Ni80Pd20 compared to Ni80Fe20. Using atomistic calculations, we find that the vacancy energetics are significantly different between the two alloys. Ni80Pd20 has lower vacancy migration barriers and lower vacancy-vacancy binding energies than Ni80Fe20. The consequence of these energetic differences is observed in molecular dynamics (MD) simulations, where despite higher vacancy diffusivity that would help in cluster formation, significantly reduced vacancy clusters are observed in Ni80Pd20 than Ni80Fe20. Calculations show that binding energy decreases and formation energy increases with increasing Ni-Ni bond lengths, and larger Ni-Ni bond lengths are observed in Ni80Pd20 than Ni80Fe20. Thus, the reduced vacancy-vacancy binding and higher formation energy due to longer Ni-Ni bonds in Ni80Pd20 are possibly the underlying reasons for smaller vacancy clusters in Ni80-Pd20 than Ni80Fe20. This study illustrates the unique effects of alloying elements on defect energetics and microstructural evolution in random alloys.

    Notes: Gaurav Arora notes that "This is one of the first types of potentials used to study radiation defects in alloys containing Pd and is a modified version of 2018--Bonny-G-Chakraborty-D-Pandey-S-et-al--Ni-Fe-Cr-Pd. This potential was specifically developed to study defect energetics, such as vacancy formation energies, binding energies, voids, stacking fault tetrahedra (SFTs) formation, and other radiation defects in high entropy alloys."

  • LAMMPS pair_style eam/alloy (2021--Arora-G--Fe-Ni-Cr-Pd--LAMMPS--ipr1)
    See Computed Properties
    Notes: This file was provided by Gaurav Arora on July 17, 2024.
    File(s):
  • Citation: G. Bonny, D. Chakraborty, S. Pandey, A. Manzoor, N. Castin, S.R. Phillpot, and D.S. Aidhy (2018), "Classical interatomic potential for quaternary Ni-Fe-Cr-Pd solid solution alloys", Modelling and Simulation in Materials Science and Engineering, 26(6), 065014. DOI: 10.1088/1361-651x/aad2e7.
    Abstract: In this paper, we present a new quaternary interatomic potential for the NiFeCrPd system, which is an extension on the previous NiFeCr potential. Density functional theory is used to calculate the quantities to be fitted, with particular focus on the energetics of point defects with solutes, for the potential to be used towards understanding radiation damage properties. The potential thus will enable the modeling of multi-elemental solid solution alloys consisting of up to four elements. To test the potential, we have performed atomistic kinetic Monte Carlo simulations to investigate the effect of configurational entropy on the self-diffusion coefficients. The self-diffusion coefficients are found to increase with chemical complexity, contrary to the common postulation of sluggish diffusion in high entropy alloys (HEAs). In addition, we have performed molecular dynamics simulations to elucidate the effect of Pd on vacancy diffusion and clustering in pure Ni and binary alloys. In agreement with recent irradiation experiments, our simulations show that while large vacancy clusters, such as stacking fault tetrahedra, are formed in pure Ni, Ni-Fe and Ni-Cr systems, negligible vacancy clustering is observed in Ni-Pd systems, indicating a possible effect of Pd in reducing cluster sizes. We suggest that this potential will be useful for studying the defect evolution in multi-component HEAs.

 
  • Citation: C.A. Howells, and Y. Mishin (2018), "Angular-dependent interatomic potential for the binary Ni-Cr system", Modelling and Simulation in Materials Science and Engineering, 26(8), 085008. DOI: 10.1088/1361-651x/aae400.
    Abstract: A new interatomic potential has been developed for the Ni–Cr system in the angular-dependent potential (ADP) format by fitting the potential parameters to a set of experimental and first-principles data. The ADP potential reproduces a wide range of properties of both elements as well as binary alloys with reasonable accuracy, including thermal and mechanical properties, defects, melting points of Ni and Cr, and the Ni–Cr phase diagram. The potential can be used for atomistic simulations of solidification, mechanical behavior and microstructure of the Ni-based and Cr-based phases as well as two-phase alloys.

    Related Models:
  • See Computed Properties
    Notes: This file was provided by Yuri Mishin (George Mason University) on 2 Nov. 2018.
    File(s):
 
 
 
  • Citation: B. Onat, and S. Durukanoğlu (2013), "An optimized interatomic potential for Cu–Ni alloys with the embedded-atom method", Journal of Physics: Condensed Matter, 26(3), 035404. DOI: 10.1088/0953-8984/26/3/035404.
    Abstract: We have developed a semi-empirical and many-body type model potential using a modified charge density profile for Cu–Ni alloys based on the embedded-atom method (EAM) formalism with an improved optimization technique. The potential is determined by fitting to experimental and first-principles data for Cu, Ni and Cu–Ni binary compounds, such as lattice constants, cohesive energies, bulk modulus, elastic constants, diatomic bond lengths and bond energies. The generated potentials were tested by computing a variety of properties of pure elements and the alloy of Cu, Ni: the melting points, alloy mixing enthalpy, lattice specific heat, equilibrium lattice structures, vacancy formation and interstitial formation energies, and various diffusion barriers on the (100) and (111) surfaces of Cu and Ni.

    Related Models:
  • LAMMPS pair_style eam/alloy (2013--Onat-B--Cu-Ni--LAMMPS--ipr1)
    See Computed Properties
    Notes: This file was taken from the August 22, 2018 LAMMPS distribution.
    File(s): superseded


  • LAMMPS pair_style eam/alloy (2013--Onat-B--Cu-Ni--LAMMPS--ipr2)
    See Computed Properties
    Notes: This file was taken from openKIM model EAM_Dynamo_Onat_Durukanoglu_CuNi__MO_592013496703_004. It features more tabulation points and higher cutoffs for both rho and r.
    File(s):
  • See Computed Properties
    Notes: Listing found at https://openkim.org. This KIM potential is based on the same files as 2013--Onat-B--Cu-Ni--LAMMPS--ipr2.
    Link(s):
  • Citation: S.M. Foiles (1985), "Calculation of the surface segregation of Ni-Cu alloys with the use of the embedded-atom method", Physical Review B, 32(12), 7685-7693. DOI: 10.1103/physrevb.32.7685.
    Abstract: The surface composition of Ni-Cu alloys has been calculated as a function of atomic layer, crystal face, and bulk composition at a temperature of 800 K. The results show that the composition varies nonmonotonically near the surface with the surface layer strongly enriched in Cu while the near-surface layers are enriched in Ni. The calculations use the embedded-atom method [M. S. Daw and M. I. Baskes, Phys. Rev. B 29, 6443 (1984)] in conjunction with Monte Carlo computer simulations. The embedding functions and pair interactions needed to describe Ni-Cu alloys are developed and applied to the calculation of bulk energies, lattice constants, and short-range order. The heats of segregation are computed for the dilute limit, and the composition profile is obtained for the (100), (110), and (111) surfaces for a variety of bulk compositions. The results are found to be in accord with experimental data.

    Related Models:
  • See Computed Properties
    Notes: These files were obtained from the December 9, 2007 LAMMPS distribution. According to Stephen M. Foiles, they differ from the original formulations in the following ways: a) The fcc is upper case in one and lower case in the other. b) The comment in the LAMMPS distribution for Ni_smf7.eam incorrectly lists it as being for the NiPd alloys rather than NiCu alloys. The potential file has been updated with "NiCu" to reflect the second comment.
    File(s):
  • See Computed Properties
    Notes: Listing found at https://openkim.org. This KIM potential is based on the Cu file from 1985--Foiles-S-M--Ni-Cu--LAMMPS--ipr1.
    Link(s):
  • See Computed Properties
    Notes: Listing found at https://openkim.org. This KIM potential is based on the Ni file from 1985--Foiles-S-M--Ni-Cu--LAMMPS--ipr1.
    Link(s):
 
  • Citation: Y. Sun, M.I. Mendelev, F. Zhang, X. Liu, B. Da, C.-Z. Wang, R.M. Wentzcovitch, and K.-M. Ho (2024), "Unveiling the effect of Ni on the formation and structure of Earth’s inner core", Proceedings of the National Academy of Sciences, 121(4), e2316477121. DOI: 10.1073/pnas.2316477121.
    Abstract: Ni is the second most abundant element in the Earth’s core. Yet, its effects on the inner core’s structure and formation process are usually disregarded because of its electronic and size similarity with Fe. Using ab initio molecular dynamics simulations, we find that the bcc phase can spontaneously crystallize in liquid Ni at temperatures above Fe’s melting point at inner core pressures. The melting temperature of Ni is shown to be 700 to 800 K higher than that of Fe at 323 to 360 GPa. hcp, bcc, and liquid phase relations differ for Fe and Ni. Ni can be a bcc stabilizer for Fe at high temperatures and inner core pressures. A small amount of Ni can accelerate Fe’s crystallization at core pressures. These results suggest that Ni may substantially impact the structure and formation process of the solid inner core.

    Notes: The potential was employed in the TI calculations in the above reference. It can be used as an initial approximation for MD simulations under the Earth’s inner core conditions.

  • LAMMPS pair_style eam/fs (2024--Sun-Y--Fe-Ni--LAMMPS--ipr1)
    See Computed Properties
    Notes: This file was provided by Mikhail Mendelev on February 16, 2024.
    File(s):
  • Citation: Y. Mishin, M.J. Mehl, and D.A. Papaconstantopoulos (2005), "Phase stability in the Fe-Ni system: Investigation by first-principles calculations and atomistic simulations", Acta Materialia, 53(15), 4029-4041. DOI: 10.1016/j.actamat.2005.05.001.
    Abstract: First-principles calculations of the energy of various crystal structures of Fe, Ni and ordered Fe–Ni compounds with different stoichiometries have been performed by the linearized augmented plane wave (LAPW) method in the generalized gradient approximation. The most stable compounds are L12–Ni3Fe, L10–FeNi, C11f–Ni2Fe and C11f–Fe2Ni. The L12-Ni3Fe compound has the largest negative formation energy, which is consistent with the experimental Fe–Ni phase diagram. The L10–FeNi compound has also been observed experimentally in meteorite samples as a metastable phase. It is suggested here that the C11f compounds could also form in Fe–Ni alloys at low temperatures. A new semi-empirical interatomic potential has been developed for the Fe–Ni system by fitting to experimental data and the results of the LAPW calculations. Recognizing the significance of the covalent component of bonding in this system, the potential is based on the embedded-atom method (EAM) but additionally includes a bond-angle dependence. In comparison with the existing modified EAM method, our potential form is simpler, extends interactions to several (3–5) coordination shells and replaces the screening procedure by a smooth cutoff of the potential functions. The potential reproduces a variety of properties of Fe and Ni with a reasonable accuracy. It also reproduces all stability trends across the Fe–Ni system established by the LAPW calculations. The potential can be useful in atomistic simulations of the phases of the Fe–Ni system.

  • ADP tabulated functions (2005--Mishin-Y--Fe-Ni--table--ipr1)
    Notes: These files were provided by Yuri Mishin (George Mason University) and posted on 22 Dec. 2009. Prof. Mishin requested the following note be included: "The equation appearing in the Appendix on page 4040 contains a typing error: the sign before 1/3 in the last line must be negative." He provided the corrected equation for the angular-dependent force contributions in ADP_Forces.jpg or ADP_Forces.pdf.
    File(s):
    Fe F(ρ): F_Fe.plt
    Ni F(ρ): F_Ni.plt
    Fe ρ(r): fFe.plt
    Ni ρ(r): fNi.plt
    Fe φ(r): pFe.plt
    Ni φ(r): pNi.plt
    Fe-Ni φ(r): pFeNi.plt
    Fe u(r): dFe.plt
    Ni u(r): dNi.plt
    Fe-Ni u(r): dFeNi.plt
    Fe w(r): qFe.plt
    Ni w(r): qNi.plt
    Fe-Ni w(r): qFeNi.plt
    ADP_Forces.jpg
    ADP_Forces.pdf

 
  • Citation: A. Tehranchi, and W.A. Curtin (2017), "Atomistic study of hydrogen embrittlement of grain boundaries in nickel: I. Fracture", Journal of the Mechanics and Physics of Solids, 101, 150-165. DOI: 10.1016/j.jmps.2017.01.020.
    Abstract: Hydrogen ingress into a metal is a persistent source of embrittlement. Fracture surfaces are often intergranular, suggesting favorable cleave crack growth along grain boundaries (GBs) as one driver for embrittlement. Here, atomistic simulations are used to investigate the effects of segregated hydrogen on the behavior of cracks along various symmetric tilt grain boundaries in fcc Nickel. An atomistic potential for Ni–H is first recalibrated against new quantum level computations of the energy of H in specific sites within the NiΣ5(120)⟨100⟩ GB. The binding energy of H atoms to various atomic sites in the NiΣ3(111) (twin), NiΣ5(120)⟨100⟩, NiΣ99(557)⟨110⟩, and NiΣ9(221)⟨110⟩ GBs, and to various surfaces created by separating these GBs into two possible fracture surfaces, are computed and used to determine equilibrium H concentrations at bulk H concentrations typical of embrittlement in Ni. Mode I fracture behavior is then studied, examining the influence of H in altering the competition between dislocation emission (crack blunting; “ductile” behavior) and cleavage fracture (“brittle” behavior) for intergranular cracks. Simulation results are compared with theoretical predictions (Griffith theory for cleavage; Rice theory for emission) using the computed surface energies. The deformation behavior at the GBs is, however, generally complex and not as simple as cleavage or emission at a sharp crack tip, which is not unexpected due to the complexity of the GB structures. In cases predicted to emit dislocations from the crack tip, the presence of H atoms reduces the critical load for emission of the dislocations and no cleavage is found. In the cases predicted to cleave, the presence of H atoms reduces the cleavage stress intensity and makes cleavage easier, including NiΣ9(221)⟨110⟩ which emits dislocations in the absence of H. Aside from the one unusual NiΣ9(221)⟨110⟩ case, no tendency is found for H to cause a ductile-to-brittle transformation for cracks along GBs in Ni, either according to theory or simulation for initial equilibrium H segregation and with no, or limited, H diffusion near the newly-created fracture surfaces. The NiΣ3(111) twin boundary does not absorb H at all, suggesting that embrittlement is more difficult in materials with higher fraction of such twin boundaries, as found experimentally. Experimental observations of cleavage-like failure are thus presumably caused by mechanisms involving H diffusion or dynamic crack growth.

    Related Models:
  • See Computed Properties
    Notes: Listing found at https://openkim.org.
    Link(s):
 
 
 
  • Citation: X.-G. Li, C. Hu, C. Chen, Z. Deng, J. Luo, and S.P. Ong (2018), "Quantum-accurate spectral neighbor analysis potential models for Ni-Mo binary alloys and fcc metals", Physical Review B, 98(9), 094104. DOI: 10.1103/physrevb.98.094104.
    Abstract: In recent years, efficient interatomic potentials approaching the accuracy of density functional theory (DFT) calculations have been developed using rigorous atomic descriptors satisfying strict invariances, for example, for translation, rotation, permutation of homonuclear atoms, among others. In this paper, we generalize the spectral neighbor analysis potential (SNAP) model to bcc-fcc binary alloy systems. We demonstrate that machine-learned SNAP models can yield significant improvements even over the well-established high-performing embedded atom method (EAM) and modified EAM potentials for fcc Cu and Ni. We also report on the development of a SNAP model for the fcc Ni-bcc Mo binary system by machine learning a carefully constructed large computed data set of elemental and intermetallic compounds. We demonstrate that this binary Ni-Mo SNAP model can achieve excellent agreement with experiments in the prediction of a Ni-Mo phase diagram as well as near-DFT accuracy in the prediction of many key properties, such as elastic constants, formation energies, melting points, etc., across the entire binary composition range. In contrast, the existing Ni-Mo EAM has significant errors in the prediction of the phase diagram and completely fails in binary compounds. This paper provides a systematic model development process for multicomponent alloy systems, including an efficient procedure to optimize the hyperparameters in the model fitting, and paves the way for long-time large-scale simulations of such systems.

  • See Computed Properties
    Notes: Listing found at https://openkim.org.
    Link(s):
 
  • Citation: M.I. Mendelev (2022), "to be published".

    Notes: Mikhail Mendelev notes that "this is an improved version of 2016--Zhang-Y-Ashcraft-R-Mendelev-M-I-et-al--Ni-Nb where the crystal phase formation energies were taken into account."

  • See Computed Properties
    Notes: This file was provided by Mikhail Mendelev on Feb 11, 2021 and posted with his permission.
    File(s):
  • Citation: Y. Zhang, R. Ashcraft, M.I. Mendelev, C.Z. Wang, and K.F. Kelton (2016), "Experimental and molecular dynamics simulation study of structure of liquid and amorphous Ni62Nb38 alloy", The Journal of Chemical Physics, 145(20), 204505. DOI: 10.1063/1.4968212.
    Abstract: The state-of-the-art experimental and atomistic simulation techniques were utilized to study the structure of the liquid and amorphous Ni62Nb38 alloy. First, the ab initio molecular dynamics (AIMD) simulation was performed at rather high temperature where the time limitations of the AIMD do not prevent to reach the equilibrium liquid structure. A semi-empirical potential of the Finnis-Sinclair (FS) type was developed to almost exactly reproduce the AIMD partial pair correlation functions (PPCFs) in a classical molecular dynamics simulation. This simulation also showed that the FS potential well reproduces the bond angle distributions. The FS potential was then employed to elongate the AIMD PPCFs and determine the total structure factor (TSF) which was found to be in excellent agreement with X-ray TSF obtained within the present study demonstrating the reliability of the AIMD for the simulation of the structure of the liquid Ni–Nb alloys as well as the reliability of the developed FS potential. The glass structure obtained with the developed potential was also found to be in excellent agreement with the X-ray data. The analysis of the structure revealed that a network of the icosahedra clusters centered on Ni atoms is forming during cooling the liquid alloy down to Tg and the Nb Z14, Z15, and Z16 clusters are attached to this network. This network is the main feature of the Ni62Nb38 alloy and further investigations of the properties of this alloy should be based on study of the behavior of this network.

    Related Models:
  • LAMMPS pair_style eam/fs (2016--Zhang-Y--Ni-Nb--LAMMPS--ipr1)
    See Computed Properties
    Notes: This file was sent by M.I. Mendelev (Ames Laboratory) on 13 December 2016 and posted with his permission. Update 19 July 2021: The contact email in the file's header has been changed.
    File(s):
  • See Computed Properties
    Notes: Listing found at https://openkim.org. This KIM potential is based on the files from 2016--Zhang-Y--Ni-Nb--LAMMPS--ipr1.
    Link(s):
 
  • Citation: G. Plummer, J.P. Tavenner, M.I. Mendelev, Z. Wu, and J.W. Lawson (2024), "to be published".

    Notes: This potential was developed to simulate the solidification of the Ni rich Ni-O alloys, oxidation of Ni and the interaction between dislocation and NiO precipitates in fcc Ni.

  • LAMMPS pair_style hybrid/overlay eam/fs coul/ctip (2024--Plummer-G--Ni-O--LAMMPS--ipr1)
    See Computed Properties
    Notes: These files were provided by Mikhail Mendelev on October 22, 2024. Update: coul/ctip is available in LAMMPS starting with the 19Nov2024 release.
    File(s):
    eam/fs parameters: v5_10_NiO_T=0.eam.fs
    coul/ctip parameters: v5_10_NiO_T=0.ctip

 
  • Citation: Y. Xu, G. Wang, P. Qian, and Y. Su (2022), "Element segregation and thermal stability of Ni–Pd nanoparticles", Journal of Materials Science, . DOI: 10.1007/s10853-022-07118-7.
    Abstract: A new high-precision angular-dependent potential of the Ni-Pd system was obtained by fitting the experimental data and first-principles calculations. Then, the element segregation characteristics and thermal stability of Ni-Pd bimetallic nanoparticles were investigated by Monte Carlo method and molecular dynamics method. The results show that the chemical ordering pattern of PdxNi1-x nanoparticle is the result of the competition of surface energy, strain energy, bond energy and interface energy. When a small amount of Pd atoms are substitutionally doped into the Ni nanoparticle, all the Pd atoms will be segregated on the surface and dispersed. The synergistic effect of Ni atoms and Pd atoms in the surface will improve the catalytic activity and carbon deposition resistance of PdxNi1-x nanoparticle catalyst in methane dry reforming reaction. Increasing the doping amount of Pd atoms will gradually reduce the melting point of PdxNi1-x nanoparticle, thereby reducing its sintering resistance.

  • LAMMPS pair_style adp (2022--Xu-Y--Ni-Pd--LAMMPS--ipr1)
    See Computed Properties
    Notes: This file was provided by Gang Wang on April 4, 2022.
    File(s):
 
 
  • Citation: Y. Xu, G. Wang, P. Qian, and Y. Su (2022), "Element segregation and thermal stability of Ni–Rh nanoparticles", Journal of Solid State Chemistry, 311, 123096. DOI: 10.1016/j.jssc.2022.123096.
    Abstract: A new angular-dependent potential (ADP) of Ni-Rh system was obtained by fitting the experimental data and first principle data, and the effectiveness of the potential was tested. Then, the element segregation characteristics and thermal stability of Ni-Rh nanoparticles were studied by Monte Carlo and molecular dynamics. The results show that the chemical ordering pattern of Ni1-xRhx nanoparticles is the result of the competition of surface energy, strain energy, interface energy and bond energy. With the increase of x, Rh atoms are preferentially segregated to the surface and dispersed. The concentration of Rh atoms in the surface decreases with the increase of size or temperature. With the increase of x, the melting point of Ni1-xRhx nanoparticle first gradually increased, reached the highest near x = 0.1, then gradually decreased, reached the lowest near x = 0.5, and then gradually increased. The above results theoretically explain the reason why doping a small amount of Rh can improve the coking-resistance and sintering-resistance ability of Ni catalyst.

  • LAMMPS pair_style adp (2022--Xu-Y--Ni-Rh--LAMMPS--ipr1)
    See Computed Properties
    Notes: This file was provided by Gang Wang on April 4, 2022.
    File(s):
 
  • Citation: M.I. Mendelev (2024), "to be published".

    Notes: This Ni-Ti potential is designed to simulate the solidification of the Ni50Ti50 alloy. It also reasonably well reproduces the thermodynamics of the austenite-martensite transformation.

  • See Computed Properties
    Notes: This file was provided by Mikhail Mendelev on April 5, 2024.
    File(s):
  • Citation: H. Tang, Y. Zhang, Q. Li, H. Xu, Y. Wang, Y. Wang, and J. Li (2022), "High accuracy neural network interatomic potential for NiTi shape memory alloy", Acta Materialia, 118217. DOI: 10.1016/j.actamat.2022.118217.
    Abstract: Nickel-titanium (NiTi) shape memory alloys (SMA) are widely used, however simulating the martensitic transformation of NiTi from first principles remains challenging. In this work, we developed a neural network interatomic potential (NNIP) for near-equiatomic Ni-Ti system through active-learning based acquisitions of density functional theory (DFT) training data, which achieves state-of-the-art accuracy. Phonon dispersion and potential-of-mean-force calculations of the temperature-dependent free energy have been carried out. This NNIP predicts temperature-induced, stress-induced, and deformation twinning-induced martensitic transformations from atomic simulations, in significant agreement with experiments. The NNIP can directly simulate the superelasticity of NiTi nanowires, providing a tool to guide their design.

    Notes: This is an alternate parameterization of the potential listed in the paper. The developers note that "although v2 appears better for more general scenarios according to our tests, there are still a few cases where v1 is more accurate". This potential was designed for equiatomic NiTi shape memory alloy and can be used for NiTi alloy with slight off-stoichiometry. The potential should not be used for pure Ni, pure Ti, or Ni-Ti alloy far from the equiatomic composition.

  • See Computed Properties
    Notes: These files were provided by Hao Tang on August 3, 2022. Detailed instructions on using this potential in MD simulations can be found at the link below. We suggest users compress the model (see the documentation) before using it for MD simulation, as this will make the calculation significantly faster with limited influence on accuracy.
    File(s): Link(s):
  • Citation: H. Tang, Y. Zhang, Q. Li, H. Xu, Y. Wang, Y. Wang, and J. Li (2022), "High accuracy neural network interatomic potential for NiTi shape memory alloy", Acta Materialia, 118217. DOI: 10.1016/j.actamat.2022.118217.
    Abstract: Nickel-titanium (NiTi) shape memory alloys (SMA) are widely used, however simulating the martensitic transformation of NiTi from first principles remains challenging. In this work, we developed a neural network interatomic potential (NNIP) for near-equiatomic Ni-Ti system through active-learning based acquisitions of density functional theory (DFT) training data, which achieves state-of-the-art accuracy. Phonon dispersion and potential-of-mean-force calculations of the temperature-dependent free energy have been carried out. This NNIP predicts temperature-induced, stress-induced, and deformation twinning-induced martensitic transformations from atomic simulations, in significant agreement with experiments. The NNIP can directly simulate the superelasticity of NiTi nanowires, providing a tool to guide their design.

    Notes: This is the parameterization of the potential as used by the associated publication. This potential was designed for equiatomic NiTi shape memory alloy and can be used for NiTi alloy with slight off-stoichiometry. The potential should not be used for pure Ni, pure Ti, or Ni-Ti alloy far from the equiatomic composition.

  • See Computed Properties
    Notes: These files were provided by Hao Tang on August 3, 2022. Detailed instructions on using this potential in MD simulations can be found at the link below. We suggest users compress the model (see the documentation) before using it for MD simulation, as this will make the calculation significantly faster with limited influence on accuracy.
    File(s): Link(s):
  • Citation: S. Kavousi, B.R. Novak, M.I. Baskes, M. Asle Zaeem, and D. Moldovan (2019), "Modified embedded-atom method potential for high-temperature crystal-melt properties of Ti–Ni alloys and its application to phase field simulation of solidification", Modelling and Simulation in Materials Science and Engineering, 28(1), 015006. DOI: 10.1088/1361-651x/ab580c.
    Abstract: We developed new interatomic potentials, based on the second nearest-neighbor modified embedded-atom method (2NN-MEAM) formalism, for Ti, Ni, and the binary Ti–Ni system. These potentials were fit to melting points, latent heats, the binary phase diagrams for the Ti rich and Ni rich regions, and the liquid phase enthalpy of mixing for binary alloys, therefore they are particularly suited for calculations of crystal-melt (CM) interface thermodynamic and transport properties. The accuracy of the potentials for pure Ti and pure Ni were tested against both 0 K and high temperature properties by comparing various properties obtained from experiments or density functional theory calculations including structural properties, elastic constants, point-defect properties, surface energies, temperatures and enthalpies of phase transformations, and diffusivity and viscosity in the liquid phase. The fitted binary potential for Ti–Ni was also tested against various non-fitted properties at 0 K and high temperatures including lattice parameters, formation energies of different intermetallic compounds, and the temperature dependence of liquid density at various concentrations. The CM interfacial free energies obtained from simulations, based on the newly developed Ti–Ni potential, show that the bcc alloys tend to have smaller anisotropy compared with fcc alloys which is consistent with the finding from the previous studies comparing single component bcc and fcc materials. Moreover, the interfacial free energy and its anisotropy for Ti-2 atom% Ni were also used to parameterize a 2D phase field (PF) model utilized in solidification simulations. The PF simulation predictions of microstructure development during solidification are in good agreement with a geometric model for dendrite primary arm spacing.

    Related Models:
  • See Computed Properties
    Notes: This file was sent by Sepideh Kavousi (Colorado School of Mines) on 10 Nov. 2020 and posted with her permission.
    File(s):
  • Citation: W.-S. Ko, B. Grabowski, and J. Neugebauer (2015), "Development and application of a Ni-Ti interatomic potential with high predictive accuracy of the martensitic phase transition", Physical Review B, 92(13), 134107. DOI: 10.1103/physrevb.92.134107.
    Abstract: Phase transitions in nickel-titanium shape-memory alloys are investigated by means of atomistic simulations. A second nearest-neighbor modified embedded-atom method interatomic potential for the binary nickel-titanium system is determined by improving the unary descriptions of pure nickel and pure titanium, especially regarding the physical properties at finite temperatures. The resulting potential reproduces accurately the hexagonal-close-packed to body-centered-cubic phase transition in Ti and the martensitic B2−B19′ transformation in equiatomic NiTi. Subsequent large-scale molecular-dynamics simulations validate that the developed potential can be successfully applied for studies on temperature- and stress-induced martensitic phase transitions related to core applications of shape-memory alloys. A simulation of the temperature-induced phase transition provides insights into the effect of sizes and constraints on the formation of nanotwinned martensite structures with multiple domains. A simulation of the stress-induced phase transition of a nanosized pillar indicates a full recovery of the initial structure after the loading and unloading processes, illustrating a superelastic behavior of the target system.

    Related Models:
  • LAMMPS pair_style meam (2015--Ko-W-S--Ni-Ti--LAMMPS--ipr2)
    See Computed Properties
    Notes: These files were sent by Won-Seok Ko (University of Ulsan, South Korea) on 24 July 2016 and posted with his permission.
    File(s):
 
  • Citation: S.B. Maisel, W.-S. Ko, J.-L. Zhang, B. Grabowski, and J. Neugebauer (2017), "Thermomechanical response of NiTi shape-memory nanoprecipitates in TiV alloys", Physical Review Materials, 1(3), 033610. DOI: 10.1103/physrevmaterials.1.033610.
    Abstract: We study the properties of NiTi shape-memory nanoparticles coherently embedded in TiV matrices using three-dimensional atomistic simulations based on the modified embedded-atom method. To this end, we develop and present a suitable NiTiV potential for our simulations. Employing this potential, we identify the conditions under which the martensitic phase transformation of such a nanoparticle is triggered—specifically, how these conditions can be tuned by modifying the size of the particle, the composition of the surrounding matrix, or the temperature and strain state of the system. Using these insights, we establish how the transformation temperature of such particles can be influenced and discuss the practical implications in the context of shape-memory strengthened alloys.

    Related Models:
  • See Computed Properties
    Notes: These files were sent by Won-Seok Ko (School of Materials Science and Engineering, University of Ulsan) on 9 Feb. 2018 and posted with his permission.
    File(s):
 
 
 
Date Created: October 5, 2010 | Last updated: February 14, 2025