× Updated! Potentials that share interactions are now listed as related models.

2004--Zhou-X-W-Johnson-R-A-Wadley-H-N-G--Cu-Ag-Au-Ni-Pd-Pt-Al-Pb-Fe-Mo-Ta-W-Mg-Co-Ti-Zr

Citation: X.W. Zhou, R.A. Johnson, and H.N.G. Wadley (2004), "Misfit-energy-increasing dislocations in vapor-deposited CoFe/NiFe multilayers", Physical Review B, 69(14), 144113. DOI: 10.1103/physrevb.69.144113.
Abstract: Recent molecular dynamics simulations of the growth of [Ni0.8Fe0.2/Au] multilayers have revealed the formation of misfit-strain-reducing dislocation structures very similar to those observed experimentally. Here we report similar simulations showing the formation of edge dislocations near the interfaces of vapor-deposited (111) [NiFe/CoFe/Cu] multilayers. Unlike misfit dislocations that accommodate lattice mismatch, the dislocation structures observed here increase the mismatch strain energy. Stop-action observations of the dynamically evolving atomic structures indicate that during deposition on the (111) surface of a fcc lattice, adatoms may occupy either fcc sites or hcp sites. This results in the random formation of fcc and hcp domains, with dislocations at the domain boundaries. These dislocations enable atoms to undergo a shift from fcc to hcp sites, or vice versa. These shifts lead to missing atoms, and therefore a later deposited layer can have missing planes compared to a previously deposited layer. This dislocation formation mechanism can create tensile stress in fcc films. The probability that such dislocations are formed was found to quickly diminish under energetic deposition conditions.

Notes: This is a combined potential that contains all 16 elements from the source reference. It is provided here due to various requests for more elemental combinations often for high entropy simulations. As a caution, note that all of the cross interactions are determined through a universal mixing function and that most elemental systems were not thoroughly explored and tested by the original authors meaning that most binary and higher-order systems may not be well optimized.

See Computed Properties
Notes: This file was generated by Ilia Nikiforov using the Zhou04_create_v2.f FORTRAN code which can be found on the associated elemental listings. The code was slightly modified to increase the tabulation points to 3000 to ensure good interpolations of the embedding energy function for all elements as W has a noticeably larger delta rho than the other elements. Also, the header was fixed to include all 16 element symbol tags.
File(s):

Implementation Information

This page displays computed properties for the 2004--Zhou-X-W--Cu-Ag-Au-Ni-Pd-Pt-Al-Pb-Fe-Mo-Ta-W-Mg-Co-Ti-Zr--LAMMPS--ipr1 implementation of the 2004--Zhou-X-W-Johnson-R-A-Wadley-H-N-G--Cu-Ag-Au-Ni-Pd-Pt-Al-Pb-Fe-Mo-Ta-W-Mg-Co-Ti-Zr potential. Computed values for other implementations can be seen by clicking on the links below:

Diatom Energy vs. Interatomic Spacing

Plots of the potential energy vs interatomic spacing, r, are shown below for all diatom sets associated with the interatomic potential. This calculation provides insights into the functional form of the potential's two-body interactions. A system consisting of only two atoms is created, and the potential energy is evaluated for the atoms separated by 0.02 Å <= r <= 6.0> Å in intervals of 0.02 Å. Two plots are shown: one for the "standard" interaction distance range, and one for small values of r. The small r plot is useful for determining whether the potential is suitable for radiation studies.

The calculation method used is available as the iprPy diatom_scan calculation method.

Clicking on the image of a plot will open an interactive version of it in a new tab. The underlying data for the plots can be downloaded by clicking on the links above each plot.

Notes and Disclaimers:

  • These values are meant to be guidelines for comparing potentials, not the absolute values for any potential's properties. Values listed here may change if the calculation methods are updated due to improvements/corrections. Variations in the values may occur for variations in calculation methods, simulation software and implementations of the interatomic potentials.
  • As this calculation only involves two atoms, it neglects any multi-body interactions that may be important in molecules, liquids and crystals.
  • NIST disclaimer

Version Information:

  • 2019-11-14. Maximum value range on the shortrange plots are now limited to "expected" levels as details are otherwise lost.
  • 2019-08-07. Plots added.

Download data

Click on plot to load interactive version

2004--Zhou-X-W--Cu-Ag-Au-Ni-Pd-Pt-Al-Pb-Fe-Mo-Ta-W-Mg-Co-Ti-Zr--LAMMPS--ipr1/diatom

Click on plot to load interactive version

2004--Zhou-X-W--Cu-Ag-Au-Ni-Pd-Pt-Al-Pb-Fe-Mo-Ta-W-Mg-Co-Ti-Zr--LAMMPS--ipr1/diatom_short

Cohesive Energy vs. Interatomic Spacing

Plots of potential energy vs interatomic spacing, r, are shown below for a number of crystal structures. The structures are generated based on the ideal atomic positions and b/a and c/a lattice parameter ratios for a given crystal prototype. The size of the system is then uniformly scaled, and the energy calculated without relaxing the system. To obtain these plots, values of r are evaluated every 0.02 Å up to 6 Å.

The calculation method used is available as the iprPy E_vs_r_scan calculation method.

Clicking on the image of a plot will open an interactive version of it in a new tab. The underlying data for the plots can be downloaded by clicking on the links above each plot.

Notes and Disclaimers:

  • These values are meant to be guidelines for comparing potentials, not the absolute values for any potential's properties. Values listed here may change if the calculation methods are updated due to improvements/corrections. Variations in the values may occur for variations in calculation methods, simulation software and implementations of the interatomic potentials.
  • The minima identified by this calculation do not guarantee that the associated crystal structures will be stable since no relaxation is performed.
  • NIST disclaimer

Version Information:

  • 2020-12-18. Descriptions, tables and plots updated to reflect that the energy values are the measuredper atom potential energy rather than cohesive energy as some potentials have non-zero isolated atom energies.
  • 2019-02-04. Values regenerated with even r spacings of 0.02 Å, and now include values less than 2 Å when possible. Updated calculation method and parameters enhance compatibility with more potential styles.
  • 2019-04-26. Results for hcp, double hcp, α-As and L10 prototypes regenerated from different unit cell representations. Only α-As results show noticable (>1e-5 eV) difference due to using a different coordinate for Wykoff site c position.
  • 2018-06-13. Values for MEAM potentials corrected. Dynamic versions of the plots moved to separate pages to improve page loading. Cosmetic changes to how data is shown and updates to the documentation.
  • 2017-01-11. Replaced png pictures with interactive Bokeh plots. Data regenerated with 200 values of r instead of 300.
  • 2016-09-28. Plots for binary structures added. Data and plots for elemental structures regenerated. Data values match the values of the previous version. Data table formatting slightly changed to increase precision and ensure spaces between large values. Composition added to plot title and structure names made longer.
  • 2016-04-07. Plots for elemental structures added.

Select a composition:

Download data

Click on plot to load interactive version

2004--Zhou-X-W--Cu-Ag-Au-Ni-Pd-Pt-Al-Pb-Fe-Mo-Ta-W-Mg-Co-Ti-Zr--LAMMPS--ipr1/EvsR.Ag