× Notice! This site is currently being redesigned. Please let us know any feedback on the new design or if you find something incorrect/not working.

Ag

2006--Williams-P-L-Mishin-Y-Hamilton-J-C--Ag
P.L. Williams, Y. Mishin, and J.C. Hamilton (2006), "An embedded-atom potential for the Cu-Ag system", Modelling and Simulation in Materials Science and Engineering, 14(5), 817-833. DOI: 10.1088/0965-0393/14/5/002.

2004--Zhou-X-W-Johnson-R-A-Wadley-H-N-G--Ag
X.W. Zhou, R.A. Johnson, and H.N.G. Wadley (2004), "Misfit-energy-increasing dislocations in vapor-deposited CoFe/NiFe multilayers", Physical Review B, 69(14), 144113. DOI: 10.1103/physrevb.69.144113.

1989--Adams-J-B-Foiles-S-M-Wolfer-W-G--Ag
J.B. Adams, S.M. Foiles, and W.G. Wolfer (1989), "Self-diffusion and impurity diffusion of fcc metals using the five-frequency model and the Embedded Atom Method", Journal of Materials Research, 4(1), 102-112. DOI: 10.1557/jmr.1989.0102.

1987--Ackland-G-J-Tichy-G-Vitek-V-Finnis-M-W--Ag
G.J. Ackland, G. Tichy, V. Vitek, and M.W. Finnis (1987), "Simple N-body potentials for the noble metals and nickel", Philosophical Magazine A, 56(6), 735-756. DOI: 10.1080/01418618708204485.

1986--Foiles-S-M-Baskes-M-I-Daw-M-S--Ag
S.M. Foiles, M.I. Baskes, and M.S. Daw (1986), "Embedded-atom-method functions for the fcc metals Cu, Ag, Au, Ni, Pd, Pt, and their alloys", Physical Review B, 33(12), 7983-7991. DOI: 10.1103/physrevb.33.7983.

2004--Zhou-X-W-Johnson-R-A-Wadley-H-N-G--Cu-Ag-Au
X.W. Zhou, R.A. Johnson, and H.N.G. Wadley (2004), "Misfit-energy-increasing dislocations in vapor-deposited CoFe/NiFe multilayers", Physical Review B, 69(14), 144113. DOI: 10.1103/physrevb.69.144113.

1989--Adams-J-B-Foiles-S-M-Wolfer-W-G--Ag-Au-Cu-Ni-Pd-Pt
J.B. Adams, S.M. Foiles, and W.G. Wolfer (1989), "Self-diffusion and impurity diffusion of fcc metals using the five-frequency model and the Embedded Atom Method", Journal of Materials Research, 4(01), 102-112. DOI: 10.1557/jmr.1989.0102.

1986--Foiles-S-M-Baskes-M-I-Daw-M-S--Ag-Au-Cu-Ni-Pd-Pt
S.M. Foiles, M.I. Baskes, and M.S. Daw (1986), "Embedded-atom-method functions for the fcc metals Cu, Ag, Au, Ni, Pd, Pt, and their alloys", Physical Review B, 33(12), 7983-7991. DOI: 10.1103/physrevb.33.7983.

2009--Wu-H-H-Trinkle-D-R--Cu-Ag
H.H. Wu, and D.R. Trinkle (2009), "Cu/Ag EAM potential optimized for heteroepitaxial diffusion from ab initio data", Computational Materials Science, 47(2), 577-583. DOI: 10.1016/j.commatsci.2009.09.026.

2006--Williams-P-L-Mishin-Y-Hamilton-J-C--Cu-Ag
P.L. Williams, Y. Mishin, and J.C. Hamilton (2006), "An embedded-atom potential for the Cu-Ag system", Modelling and Simulation in Materials Science and Engineering, 14(5), 817-833. DOI: 10.1088/0965-0393/14/5/002.

2013--Hale-L-M-Wong-B-M-Zimmerman-J-A-Zhou-X-W--Pd-Ag-H-Hybrid
L.M. Hale, B.M. Wong, J.A. Zimmerman, and X.W. Zhou (2013), "Atomistic potentials for palladium-silver hydrides", Modelling and Simulation in Materials Science and Engineering, 21(4), 45005. DOI: 10.1088/0965-0393/21/4/045005.

2013--Hale-L-M-Wong-B-M-Zimmerman-J-A-Zhou-X-W--Pd-Ag-H-Morse
L.M. Hale, B.M. Wong, J.A. Zimmerman, and X.W. Zhou (2013), "Atomistic potentials for palladium-silver hydrides", Modelling and Simulation in Materials Science and Engineering, 21(4), 45005. DOI: 10.1088/0965-0393/21/4/045005.

2018--Pan-Z-Borovikov-V-Mendelev-M-I-Sansoz-F--Ag-Ni
Z. Pan, V. Borovikov, M.I. Mendelev, and F. Sansoz (2018), "Development of a semi-empirical potential for simulation of Ni solute segregation into grain boundaries in Ag", Modelling and Simulation in Materials Science and Engineering, 26(7), 075004. DOI: 10.1088/1361-651x/aadea3.

2013--Gao-H-Otero-de-la-Roza-A-Aouadi-S-M-et-al--AgTaO3
H. Gao, A. Otero-de-la-Roza, S.M. Aouadi, E.R. Johnson, and A. Martini (2013), "An empirical model for silver tantalate", Modelling and Simulation in Materials Science and Engineering, 21(5), 55002. DOI: 10.1088/0965-0393/21/5/055002.

Al

2017--Botu-V-Batra-R-Chapman-J-Ramprasad-R--Al
V. Botu, R. Batra, J. Chapman, and R. Ramprasad (2017), "Machine Learning Force Fields: Construction, Validation, and Outlook", The Journal of Physical Chemistry C, 121(1), 511-522. DOI: 10.1021/acs.jpcc.6b10908.

2015--Botu-V-Ramprasad-R--Al
V. Botu, and R. Ramprasad (2015), "Learning scheme to predict atomic forces and accelerate materials simulations", Physical Review B, 92(9), . DOI: 10.1103/physrevb.92.094306.

2015--Pascuet-M-I-Fernandez-J-R--Al
M.I. Pascuet, and J.R. Fernández (2015), "Atomic interaction of the MEAM type for the study of intermetallics in the Al-U alloy", Journal of Nuclear Materials, 467, 229-239. DOI: 10.1016/j.jnucmat.2015.09.030.

2009--Winey-J-M-Kubota-A-Gupta-Y-M--Al
J.M. Winey, A. Kubota, and Y.M. Gupta (2009), "A thermodynamic approach to determine accurate potentials for molecular dynamics simulations: thermoelastic response of aluminum", Modelling and Simulation in Materials Science and Engineering, 17(5), 55004. DOI: 10.1088/0965-0393/17/5/055004.
J.M. Winey, A. Kubota, and Y.M. Gupta (2010), "Thermodynamic approach to determine accurate potentials for molecular dynamics simulations: thermoelastic response of aluminum", Modelling and Simulation in Materials Science and Engineering, 18(2), 29801. DOI: 10.1088/0965-0393/18/2/029801.

2009--Zhakhovskii-V-V-Inogamov-N-A-Petrov-Y-V-et-al--Al
V.V. Zhakhovskii, N.A. Inogamov, Y.V. Petrov, S.I. Ashitkov, and K. Nishihara (2009), "Molecular dynamics simulation of femtosecond ablation and spallation with different interatomic potentials", Applied Surface Science, 255(24), 9592-9596. DOI: 10.1016/j.apsusc.2009.04.082.

2008--Mendelev-M-I-Kramer-M-J-Becker-C-A-Asta-M--Al
M.I. Mendelev, M.J. Kramer, C.A. Becker, and M. Asta (2008), "Analysis of semi-empirical interatomic potentials appropriate for simulation of crystalline and liquid Al and Cu", Philosophical Magazine, 88(12), 1723-1750. DOI: 10.1080/14786430802206482.

2004--Liu-X-Y-Ercolessi-F-Adams-J-B--Al
X.-Y. Liu, F. Ercolessi, and J.B. Adams (2004), "Aluminium interatomic potential from density functional theory calculations with improved stacking fault energy", Modelling and Simulation in Materials Science and Engineering, 12(4), 665-670. DOI: 10.1088/0965-0393/12/4/007.

2004--Zhou-X-W-Johnson-R-A-Wadley-H-N-G--Al
X.W. Zhou, R.A. Johnson, and H.N.G. Wadley (2004), "Misfit-energy-increasing dislocations in vapor-deposited CoFe/NiFe multilayers", Physical Review B, 69(14), 144113. DOI: 10.1103/physrevb.69.144113.

2003--Zope-R-R-Mishin-Y--Al
R.R. Zope, and Y. Mishin (2003), "Interatomic potentials for atomistic simulations of the Ti-Al system", Physical Review B, 68(2), 24102. DOI: 10.1103/physrevb.68.024102.

2000--Sturgeon-J-B-Laird-B-B--Al
J.B. Sturgeon, and B.B. Laird (2000), "Adjusting the melting point of a model system via Gibbs-Duhem integration: Application to a model of aluminum", Physical Review B, 62(22), 14720-14727. DOI: 10.1103/physrevb.62.14720.

1999--Mishin-Y-Farkas-D-Mehl-M-J-Papaconstantopoulos-D-A--Al
Y. Mishin, D. Farkas, M.J. Mehl, and D.A. Papaconstantopoulos (1999), "Interatomic potentials for monoatomic metals from experimental data and ab initio calculations", Physical Review B, 59(5), 3393-3407. DOI: 10.1103/physrevb.59.3393.

1987--Jacobsen-K-W-Norskov-J-K-Puska-M-J--Al
K.W. Jacobsen, J.K. Norskov, and M.J. Puska (1987), "Interatomic interactions in the effective-medium theory", Physical Review B, 35(14), 7423-7442. DOI: 10.1103/physrevb.35.7423.

2015--Purja-Pun-G-P-Yamakov-V-Mishin-Y--Al-Co
G.P. Purja Pun, V. Yamakov, and Y. Mishin (2015), "Interatomic potential for the ternary Ni–Al–Co system and application to atomistic modeling of the B2–L10 martensitic transformation", Modelling and Simulation in Materials Science and Engineering, 23(6), 65006. DOI: 10.1088/0965-0393/23/6/065006.

2015--Purja-Pun-G-P-Yamakov-V-Mishin-Y--Ni-Al-Co
G.P. Purja Pun, V. Yamakov, and Y. Mishin (2015), "Interatomic potential for the ternary Ni–Al–Co system and application to atomistic modeling of the B2–L10 martensitic transformation", Modelling and Simulation in Materials Science and Engineering, 23(6), 65006. DOI: 10.1088/0965-0393/23/6/065006.

2011--Apostol-F-Mishin-Y--Al-Cu
F. Apostol, and Y. Mishin (2011), "Interatomic potential for the Al-Cu system", Physical Review B, 83(5), 54116. DOI: 10.1103/physrevb.83.054116.

1999--Liu-X-Y-Liu-C-L-Borucki-L-J--Al-Cu
X.-Y. Liu, C.-L. Liu, and L.J. Borucki (1999), "A new investigation of copper's role in enhancing Al-Cu interconnect electromigration resistance from an atomistic view", Acta Materialia, 47(11), 3227-3231. DOI: 10.1016/s1359-6454(99)00186-x.

2012--Jelinek-B-Groh-S-Horstemeyer-M-F-et-al--Al-Si-Mg-Cu-Fe
B. Jelinek, S. Groh, M.F. Horstemeyer, J. Houze, S.G. Kim, G.J. Wagner, A. Moitra, and M.I. Baskes (2012), "Modified embedded atom method potential for Al, Si, Mg, Cu, and Fe alloys", Physical Review B, 85(24), 245102. DOI: 10.1103/physrevb.85.245102.

2018--Zhou-X-W-Ward-D-K-Foster-M-E--Al-Cu-H
X.W. Zhou, D.K. Ward, and M.E. Foster (2018), "A bond-order potential for the Al–Cu–H ternary system", New Journal of Chemistry, 42(7), 5215-5228. DOI: 10.1039/c8nj00513c.

2005--Mendelev-M-I-Srolovitz-D-J-Ackland-G-J-Han-S--Al-Fe
M.I. Mendelev, D.J. Srolovitz, G.J. Ackland, and S. Han (2005), "Effect of Fe Segregation on the Migration of a Non-Symmetric Σ5 Tilt Grain Boundary in Al", Journal of Materials Research, 20(1), 208-218. DOI: 10.1557/jmr.2005.0024.

2010--Apostol-F-Mishin-Y--Al-H
F. Apostol, and Y. Mishin (2010), "Angular-dependent interatomic potential for the aluminum-hydrogen system", Physical Review B, 82(14), 144115. DOI: 10.1103/physrevb.82.144115.

1995--Angelo-J-E-Moody-N-R-Baskes-M-I--Ni-Al-H
J.E. Angelo, N.R. Moody, and M.I. Baskes (1995), "Trapping of hydrogen to lattice defects in nickel", Modelling and Simulation in Materials Science and Engineering, 3(3), 289-307. DOI: 10.1088/0965-0393/3/3/001.

2009--Mendelev-M-I-Asta-M-Rahman-M-J-Hoyt-J-J--Al-Mg
M.I. Mendelev, M. Asta, M.J. Rahman, and J.J. Hoyt (2009), "Development of interatomic potentials appropriate for simulation of solid-liquid interface properties in Al-Mg alloys", Philosophical Magazine, 89(34-36), 3269-3285. DOI: 10.1080/14786430903260727.

1998--Liu-X-Y-Adams-J-B--Al-Mg
X.-Y. Liu, and J.B. Adams (1998), "Grain-boundary segregation in Al-10%Mg alloys at hot working temperatures", Acta Materialia, 46(10), 3467-3476. DOI: 10.1016/s1359-6454(98)00038-x.

1997--Liu-X-Y-Ohotnicky-P-P-Adams-J-B-et-al--Al-Mg
X.-Y. Liu, P.P. Ohotnicky, J.B. Adams, C. Lane Rohrer, and R.W. Hyland (1997), "Anisotropic surface segregation in Al-Mg alloys", Surface Science, 373(2-3), 357-370. DOI: 10.1016/s0039-6028(96)01154-5.

2018--Dickel-D-E-Baskes-M-I-Aslam-I-Barrett-C-D--Mg-Al-Zn
D.E. Dickel, M.I. Baskes, I. Aslam, and C.D. Barrett (2018), "New interatomic potential for Mg-Al-Zn alloys with specific application to dilute Mg-based alloys", Modelling and Simulation in Materials Science and Engineering, 26(4), 45010. DOI: 10.1088/1361-651x/aabaad.

2012--Schopf-D-Brommer-P-Frigan-B-Trebin-H-R--Al-Mn-Pd
D. Schopf, P. Brommer, B. Frigan, and H.-R. Trebin (2012), "Embedded atom method potentials for Al-Pd-Mn phases", Physical Review B, 85(5), 54201. DOI: 10.1103/physrevb.85.054201.

1996--Farkas-D-Jones-C--Nb-Ti-Al
D. Farkas, and C. Jones (1996), "Interatomic potentials for ternary Nb - Ti - Al alloys", Modelling and Simulation in Materials Science and Engineering, 4(1), 23-32. DOI: 10.1088/0965-0393/4/1/004.

2009--Purja-Pun-G-P-Mishin-Y--Ni-Al
G.P. Purja Pun, and Y. Mishin (2009), "Development of an interatomic potential for the Ni-Al system", Philosophical Magazine, 89(34-36), 3245-3267. DOI: 10.1080/14786430903258184.

2004--Mishin-Y--Ni-Al
Y. Mishin (2004), "Atomistic modeling of the γ and γ'-phases of the Ni-Al system", Acta Materialia, 52(6), 1451-1467. DOI: 10.1016/j.actamat.2003.11.026.

2002--Mishin-Y-Mehl-M-J-Papaconstantopoulos-D-A--Ni-Al
Y. Mishin, M.J. Mehl, and D.A. Papaconstantopoulos (2002), "Embedded-atom potential for B2-NiAl", Physical Review B, 65(22), 224114. DOI: 10.1103/physrevb.65.224114.

2000--Landa-A-Wynblatt-P-Siegel-D-J-et-al--Al-Pb
A. Landa, P. Wynblatt, D.J. Siegel, J.B. Adams, O.N. Mryasov, and X.-Y. Liu (2000), "Development of glue-type potentials for the Al-Pb system: phase diagram calculation", Acta Materialia, 48(8), 1753-1761. DOI: 10.1016/s1359-6454(00)00002-1.

2015--Mendelev-M-I-Zhang-F-Ye-Z-et-al--Al-Sm
M.I. Mendelev, F. Zhang, Z. Ye, Y. Sun, M.C. Nguyen, S.R. Wilson, C.Z. Wang, and K.M. Ho (2015), "Development of interatomic potentials appropriate for simulation of devitrification of Al90Sm10alloy", Modelling and Simulation in Materials Science and Engineering, 23(4), 45013. DOI: 10.1088/0965-0393/23/4/045013.

2003--Zope-R-R-Mishin-Y--Ti-Al
R.R. Zope, and Y. Mishin (2003), "Interatomic potentials for atomistic simulations of the Ti-Al system", Physical Review B, 68(2), 24102. DOI: 10.1103/physrevb.68.024102.

2015--Pascuet-M-I-Fernandez-J-R--Al-U
M.I. Pascuet, and J.R. Fernández (2015), "Atomic interaction of the MEAM type for the study of intermetallics in the Al-U alloy", Journal of Nuclear Materials, 467, 229-239. DOI: 10.1016/j.jnucmat.2015.09.030.

Au

2017--Purja-Pun-G-P--Au
G.P. Purja Pun (2017), "to be published".

2012--Norman-G-E-Starikov-S-V-Stegailov-V-V--Au
G.E. Norman, S.V. Starikov, and V.V. Stegailov (2012), "Atomistic simulation of laser ablation of gold: Effect of pressure relaxation", Journal of Experimental and Theoretical Physics, 114(5), 792-800. DOI: 10.1134/s1063776112040115.
S.V. Starikov, A.Y. Faenov, T.A. Pikuz, I.Y. Skobelev, V.E. Fortov, S. Tamotsu, M. Ishino, M. Tanaka, N. Hasegawa, M. Nishikino, T. Kaihori, T. Imazono, M. Kando, and T. Kawachi (2014), "Soft picosecond X-ray laser nanomodification of gold and aluminum surfaces", Applied Physics B, 116(4), 1005-1016. DOI: 10.1007/s00340-014-5789-y.

2010--Olsson-P-A-T--Au
P.A.T. Olsson (2010), "Transverse resonant properties of strained gold nanowires", Journal of Applied Physics, 108(3), 34318. DOI: 10.1063/1.3460127.

2009--Zhakhovskii-V-V-Inogamov-N-A-Petrov-Y-V-et-al--Au
V.V. Zhakhovskii, N.A. Inogamov, Y.V. Petrov, S.I. Ashitkov, and K. Nishihara (2009), "Molecular dynamics simulation of femtosecond ablation and spallation with different interatomic potentials", Applied Surface Science, 255(24), 9592-9596. DOI: 10.1016/j.apsusc.2009.04.082.

2005--Grochola-G-Russo-S-P-Snook-I-K--Au
G. Grochola, S.P. Russo, and I.K. Snook (2005), "On fitting a gold embedded atom method potential using the force matching method", The Journal of Chemical Physics, 123(20), 204719. DOI: 10.1063/1.2124667.

2004--Zhou-X-W-Johnson-R-A-Wadley-H-N-G--Au
X.W. Zhou, R.A. Johnson, and H.N.G. Wadley (2004), "Misfit-energy-increasing dislocations in vapor-deposited CoFe/NiFe multilayers", Physical Review B, 69(14), 144113. DOI: 10.1103/physrevb.69.144113.

1989--Adams-J-B-Foiles-S-M-Wolfer-W-G--Au
J.B. Adams, S.M. Foiles, and W.G. Wolfer (1989), "Self-diffusion and impurity diffusion of fcc metals using the five-frequency model and the Embedded Atom Method", Journal of Materials Research, 4(1), 102-112. DOI: 10.1557/jmr.1989.0102.

1987--Ackland-G-J-Tichy-G-Vitek-V-Finnis-M-W--Au
G.J. Ackland, G. Tichy, V. Vitek, and M.W. Finnis (1987), "Simple N-body potentials for the noble metals and nickel", Philosophical Magazine A, 56(6), 735-756. DOI: 10.1080/01418618708204485.

1986--Foiles-S-M-Baskes-M-I-Daw-M-S--Au
S.M. Foiles, M.I. Baskes, and M.S. Daw (1986), "Embedded-atom-method functions for the fcc metals Cu, Ag, Au, Ni, Pd, Pt, and their alloys", Physical Review B, 33(12), 7983-7991. DOI: 10.1103/physrevb.33.7983.

2017--OBrien-C-J-Barr-C-M-Price-P-M-et-al--Pt-Au
C.J. O'Brien, C.M. Barr, P.M. Price, K. Hattar, and S.M. Foiles (2017), "Grain boundary phase transformations in PtAu and relevance to thermal stabilization of bulk nanocrystalline metals", Journal of Materials Science, 53(4), 2911-2927. DOI: 10.1007/s10853-017-1706-1.

2018--Starikov-S-V-Lopanitsyna-N-Y-Smirnova-D-E-Makarov-S-V--Si-Au
S.V. Starikov, N.Y. Lopanitsyna, D.E. Smirnova, and S.V. Makarov (2018), "Atomistic simulation of Si-Au melt crystallization with novel interatomic potential", Computational Materials Science, 142, 303-311. DOI: 10.1016/j.commatsci.2017.09.054.

Be

2013--Agrawal-A-Mishra-R-Ward-L-et-al--Be
A. Agrawal, R. Mishra, L. Ward, K.M. Flores, and W. Windl (2013), "An embedded atom method potential of beryllium", Modelling and Simulation in Materials Science and Engineering, 21(8), 85001. DOI: 10.1088/0965-0393/21/8/085001.

2018--Byggmastar-J-Hodille-E-A-Ferro-Y-Nordlund-K--Be-O
J. Byggmästar, E.A. Hodille, Y. Ferro, and K. Nordlund (2018), "Analytical bond order potential for simulations of BeO 1D and 2D nanostructures and plasma-surface interactions", Journal of Physics: Condensed Matter, 30(13), 135001. DOI: 10.1088/1361-648x/aaafb3.

2014--Liyanage-L-S-I-Kim-S-G-Houze-J-et-al--Fe-C
L.S.I. Liyanage, S.-G. Kim, J. Houze, S. Kim, M.A. Tschopp, M.I. Baskes, and M.F. Horstemeyer (2014), "Structural, elastic, and thermal properties of cementite (Fe3C) calculated using a modified embedded atom method", Physical Review B, 89(9), 94102. DOI: 10.1103/physrevb.89.094102.

2013--Henriksson-K-O-E-Bjorkas-C-Nordlund-K--Fe-C
K.O.E. Henriksson, C. Björkas, and K. Nordlund (2013), "Atomistic simulations of stainless steels: a many-body potential for the Fe-Cr-C system", Journal of Physics: Condensed Matter, 25(44), 445401. DOI: 10.1088/0953-8984/25/44/445401.

2008--Hepburn-D-J-Ackland-G-J--Fe-C
D.J. Hepburn, and G.J. Ackland (2008), "Metallic-covalent interatomic potential for carbon in iron", Physical Review B, 78(16), 165115. DOI: 10.1103/physrevb.78.165115.

2009--Kim-H-K-Jung-W-S-Lee-B-J--Fe-Ti-C
H.-K. Kim, W.-S. Jung, and B.-J. Lee (2009), "Modified embedded-atom method interatomic potentials for the Fe-Ti-C and Fe-Ti-N ternary systems", Acta Materialia, 57(11), 3140-3147. DOI: 10.1016/j.actamat.2009.03.019.

2008--Chenoweth-K-van-Duin-A-C-T-Goddard-W-A--C-H-O
K. Chenoweth, A.C.T. van Duin, and W.A. Goddard (2008), "ReaxFF Reactive Force Field for Molecular Dynamics Simulations of Hydrocarbon Oxidation", The Journal of Physical Chemistry A, 112(5), 1040-1053. DOI: 10.1021/jp709896w.

CH

2014--Nouranian-S-Tschopp-M-A-Gwaltney-S-R-et-al--CH
S. Nouranian, M.A. Tschopp, S.R. Gwaltney, M.I. Baskes, and M.F. Horstemeyer (2014), "An interatomic potential for saturated hydrocarbons based on the modified embedded-atom method", Physical Chemistry Chemical Physics, 16(13), 6233-6249. DOI: 10.1039/c4cp00027g.

2013--Zhou-X-W-Ward-D-K-Martin-J-E-et-al--Zn-Cd-Hg-S-Se-Te
X.W. Zhou, D.K. Ward, J.E. Martin, F.B. van Swol, J.L. Cruz-Campa, and D. Zubia (2013), "Stillinger-Weber potential for the II-VI elements Zn-Cd-Hg-S-Se-Te", Physical Review B, 88(8), 85309. DOI: 10.1103/physrevb.88.085309.

2015--Broqvist-P-Kullgren-J-Wolf-M-J-et-al--Ce-O
P. Broqvist, J. Kullgren, M.J. Wolf, A.C.T. van Duin, and K. Hermansson (2015), "ReaxFF Force-Field for Ceria Bulk, Surfaces, and Nanoparticles", The Journal of Physical Chemistry C, 119(24), 13598-13609. DOI: 10.1021/acs.jpcc.5b01597.

Co

2012--Purja-Pun-G-P-Mishin-Y--Co
G.P. Purja Pun, and Y. Mishin (2012), "Embedded-atom potential for hcp and fcc cobalt", Physical Review B, 86(13), 134116. DOI: 10.1103/physrevb.86.134116.

2004--Zhou-X-W-Johnson-R-A-Wadley-H-N-G--Co
X.W. Zhou, R.A. Johnson, and H.N.G. Wadley (2004), "Misfit-energy-increasing dislocations in vapor-deposited CoFe/NiFe multilayers", Physical Review B, 69(14), 144113. DOI: 10.1103/physrevb.69.144113.

2015--Purja-Pun-G-P-Yamakov-V-Mishin-Y--Ni-Co
G.P. Purja Pun, V. Yamakov, and Y. Mishin (2015), "Interatomic potential for the ternary Ni–Al–Co system and application to atomistic modeling of the B2–L10 martensitic transformation", Modelling and Simulation in Materials Science and Engineering, 23(6), 65006. DOI: 10.1088/0965-0393/23/6/065006.

2015--Eich-S-M-Beinke-D-Schmitz-G--Fe-Cr
S.M. Eich, D. Beinke, and G. Schmitz (2015), "Embedded-atom potential for an accurate thermodynamic description of the iron-chromium system", Computational Materials Science, 104, 185-192. DOI: 10.1016/j.commatsci.2015.03.047.

2011--Bonny-G-Pasianot-R-C-Terentyev-D-Malerba-L--Fe-Cr
G. Bonny, R.C. Pasianot, D. Terentyev, and L. Malerba (2011), "Iron chromium potential to model high-chromium ferritic alloys", Philosophical Magazine, 91(12), 1724-1746. DOI: 10.1080/14786435.2010.545780.

2013--Bonny-G-Castin-N-Terentyev-D--Fe-Ni-Cr
G. Bonny, N. Castin, and D. Terentyev (2013), "Interatomic potential for studying ageing under irradiation in stainless steels: the FeNiCr model alloy", Modelling and Simulation in Materials Science and Engineering, 21(8), 85004. DOI: 10.1088/0965-0393/21/8/085004.

2011--Bonny-G-Terentyev-D-Pasianot-R-C-et-al--Fe-Ni-Cr
G. Bonny, D. Terentyev, R.C. Pasianot, S. Poncé, and A. Bakaev (2011), "Interatomic potential to study plasticity in stainless steels: the FeNiCr model alloy", Modelling and Simulation in Materials Science and Engineering, 19(8), 85008. DOI: 10.1088/0965-0393/19/8/085008.

2013--Bonny-G-Castin-N-Bullens-J-et-al--Fe-Cr-W
G. Bonny, N. Castin, J. Bullens, A. Bakaev, T.C.P. Klaver, and D. Terentyev (2013), "On the mobility of vacancy clusters in reduced activation steels: an atomistic study in the Fe-Cr-W model alloy", Journal of Physics: Condensed Matter, 25(31), 315401. DOI: 10.1088/0953-8984/25/31/315401.

Cs

2016--Nichol-A-Ackland-G-J--Cs
A. Nichol, and G.J. Ackland (2016), "Property trends in simple metals: An empirical potential approach", Physical Review B, 93(18), 184101. DOI: 10.1103/physrevb.93.184101.

Cu

2018--Etesami-S-A-Asadi-E--Cu
S.A. Etesami, and E. Asadi (2018), "Molecular dynamics for near melting temperatures simulations of metals using modified embedded-atom method", Journal of Physics and Chemistry of Solids, 112, 61-72. DOI: 10.1016/j.jpcs.2017.09.001.

2015--Asadi-E-Zaeem-M-A-Nouranian-S-Baskes-M-I--Cu
E. Asadi, M.A. Zaeem, S. Nouranian, and M.I. Baskes (2015), "Two-phase solid-liquid coexistence of Ni, Cu, and Al by molecular dynamics simulations using the modified embedded-atom method", Acta Materialia, 86, 169-181. DOI: 10.1016/j.actamat.2014.12.010.

2013--Mendelev-M-I-King-A-H--Cu
M.I. Mendelev, and A.H. King (2013), "The interactions of self-interstitials with twin boundaries", Philosophical Magazine, 93(10-12), 1268-1278. DOI: 10.1080/14786435.2012.747012.

2008--Mendelev-M-I-Kramer-M-J-Becker-C-A-Asta-M--Cu
M.I. Mendelev, M.J. Kramer, C.A. Becker, and M. Asta (2008), "Analysis of semi-empirical interatomic potentials appropriate for simulation of crystalline and liquid Al and Cu", Philosophical Magazine, 88(12), 1723-1750. DOI: 10.1080/14786430802206482.

2004--Zhou-X-W-Johnson-R-A-Wadley-H-N-G--Cu
X.W. Zhou, R.A. Johnson, and H.N.G. Wadley (2004), "Misfit-energy-increasing dislocations in vapor-deposited CoFe/NiFe multilayers", Physical Review B, 69(14), 144113. DOI: 10.1103/physrevb.69.144113.

2001--Mishin-Y-Mehl-M-J-Papaconstantopoulos-D-A-et-al--Cu-1
Y. Mishin, M.J. Mehl, D.A. Papaconstantopoulos, A.F. Voter, and J.D. Kress (2001), "Structural stability and lattice defects in copper: Ab initio, tight-binding, and embedded-atom calculations", Physical Review B, 63(22), 224106. DOI: 10.1103/physrevb.63.224106.

2001--Mishin-Y-Mehl-M-J-Papaconstantopoulos-D-A-et-al--Cu-2
Y. Mishin, M.J. Mehl, D.A. Papaconstantopoulos, A.F. Voter, and J.D. Kress (2001), "Structural stability and lattice defects in copper: Ab initio, tight-binding, and embedded-atom calculations", Physical Review B, 63(22), 224106. DOI: 10.1103/physrevb.63.224106.

1990--Ackland-G-J-Vitek-V--Cu
G.J. Ackland, and V. Vitek (1990), "Many-body potentials and atomic-scale relaxations in noble-metal alloys", Physical Review B, 41(15), 10324-10333. DOI: 10.1103/physrevb.41.10324.

1989--Adams-J-B-Foiles-S-M-Wolfer-W-G--Cu
J.B. Adams, S.M. Foiles, and W.G. Wolfer (1989), "Self-diffusion and impurity diffusion of fcc metals using the five-frequency model and the Embedded Atom Method", Journal of Materials Research, 4(1), 102-112. DOI: 10.1557/jmr.1989.0102.

1987--Ackland-G-J-Tichy-G-Vitek-V-Finnis-M-W--Cu
G.J. Ackland, G. Tichy, V. Vitek, and M.W. Finnis (1987), "Simple N-body potentials for the noble metals and nickel", Philosophical Magazine A, 56(6), 735-756. DOI: 10.1080/01418618708204485.

1986--Foiles-S-M-Baskes-M-I-Daw-M-S--Cu
S.M. Foiles, M.I. Baskes, and M.S. Daw (1986), "Embedded-atom-method functions for the fcc metals Cu, Ag, Au, Ni, Pd, Pt, and their alloys", Physical Review B, 33(12), 7983-7991. DOI: 10.1103/physrevb.33.7983.

2009--Bonny-G-Pasianot-R-C-Castin-N-Malerba-L--Fe-Cu-Ni
G. Bonny, R.C. Pasianot, N. Castin, and L. Malerba (2009), "Ternary Fe-Cu-Ni many-body potential to model reactor pressure vessel steels: First validation by simulated thermal annealing", Philosophical Magazine, 89(34-36), 3531-3546. DOI: 10.1080/14786430903299824.

2013--Onat-B-Durukanoglu-S--Cu-Ni
B. Onat, and S. Durukanoğlu (2013), "An optimized interatomic potential for Cu–Ni alloys with the embedded-atom method", Journal of Physics: Condensed Matter, 26(3), 35404. DOI: 10.1088/0953-8984/26/3/035404.

1985--Foiles-S-M--Ni-Cu
S.M. Foiles (1985), "Calculation of the surface segregation of Ni-Cu alloys with the use of the embedded-atom method", Physical Review B, 32(12), 7685-7693. DOI: 10.1103/physrevb.32.7685.

2003--Hoyt-J-J-Garvin-J-W-Webb-E-B-Asta-M--Cu-Pb
J.J. Hoyt, J.W. Garvin, E.B. Webb, and M. Asta (2003), "An embedded atom method interatomic potential for the Cu-Pb system", Modelling and Simulation in Materials Science and Engineering, 11(3), 287-299. DOI: 10.1088/0965-0393/11/3/302.

2015--Purja-Pun-G-P-Darling-K-A-Kecskes-L-J-Mishin-Y--Cu-Ta
G.P. Purja Pun, K.A. Darling, L.J. Kecskes, and Y. Mishin (2015), "Angular-dependent interatomic potential for the Cu-Ta system and its application to structural stability of nano-crystalline alloys", Acta Materialia, 100, 377-391. DOI: 10.1016/j.actamat.2015.08.052.

2008--Hashibon-A-Lozovoi-A-Y-Mishin-Y-et-al--Cu-Ta
A. Hashibon, A.Y. Lozovoi, Y. Mishin, C. Elsässer, and P. Gumbsch (2008), "Interatomic potential for the Cu-Ta system and its application to surface wetting and dewetting", Physical Review B, 77(9), 94131. DOI: 10.1103/physrevb.77.094131.

2004--Zhou-X-W-Johnson-R-A-Wadley-H-N-G--Ta-Cu
X.W. Zhou, R.A. Johnson, and H.N.G. Wadley (2004), "Misfit-energy-increasing dislocations in vapor-deposited CoFe/NiFe multilayers", Physical Review B, 69(14), 144113. DOI: 10.1103/physrevb.69.144113.

2016--Borovikov-V-Mendelev-M-I-King-A-H--Cu-Zr
V. Borovikov, M.I. Mendelev, and A.H. King (2016), "Effects of stable and unstable stacking fault energy on dislocation nucleation in nano-crystalline metals", Modelling and Simulation in Materials Science and Engineering, 24(8), 85017. DOI: 10.1088/0965-0393/24/8/085017.

2009--Mendelev-M-I-Kramer-M-J-Ott-R-T-et-al--Cu-Zr
M.I. Mendelev, M.J. Kramer, R.T. Ott, D.J. Sordelet, D. Yagodin, and P. Popel (2009), "Development of suitable interatomic potentials for simulation of liquid and amorphous Cu-Zr alloys", Philosophical Magazine, 89(11), 967-987. DOI: 10.1080/14786430902832773.

2007--Mendelev-M-I-Sordelet-D-J-Kramer-M-J--Cu-Zr
M.I. Mendelev, D.J. Sordelet, and M.J. Kramer (2007), "Using atomistic computer simulations to analyze x-ray diffraction data from metallic glasses", Journal of Applied Physics, 102(4), 43501. DOI: 10.1063/1.2769157.

Fe

2018--Etesami-S-A-Asadi-E--Fe
S.A. Etesami, and E. Asadi (2018), "Molecular dynamics for near melting temperatures simulations of metals using modified embedded-atom method", Journal of Physics and Chemistry of Solids, 112, 61-72. DOI: 10.1016/j.jpcs.2017.09.001.

2015--Asadi-E-Zaeem-M-A-Nouranian-S-Baskes-M-I--Fe
E. Asadi, M.A. Zaeem, S. Nouranian, and M.I. Baskes (2015), "Quantitative modeling of the equilibration of two-phase solid-liquid Fe by atomistic simulations on diffusive time scales", Physical Review B, 91(2), 24105. DOI: 10.1103/physrevb.91.024105.

2012--Proville-L-Rodney-D-Marinica-M-C--Fe
L. Proville, D. Rodney, and M.-C. Marinica (2012), "Quantum effect on thermally activated glide of dislocations", Nature Materials, 11(10), 845-849. DOI: 10.1038/nmat3401.

2010--Malerba-L-Marinica-M-C-Anento-N-et-al--Fe
L. Malerba, M.C. Marinica, N. Anento, C. Björkas, H. Nguyen, C. Domain, F. Djurabekova, P. Olsson, K. Nordlund, A. Serra, D. Terentyev, F. Willaime, and C.S. Becquart (2010), "Comparison of empirical interatomic potentials for iron applied to radiation damage studies", Journal of Nuclear Materials, 406(1), 19-38. DOI: 10.1016/j.jnucmat.2010.05.017.
M.-C. Marinica, F. Willaime, and J.-P. Crocombette (2012), "Irradiation-Induced Formation of Nanocrystallites with C15 Laves Phase Structure in bcc Iron", Physical Review Letters, 108(2), 25501. DOI: 10.1103/physrevlett.108.025501.

2006--Chamati-H-Papanicolaou-N-I-Mishin-Y-Papaconstantopoulos-D-A--Fe
H. Chamati, N.I. Papanicolaou, Y. Mishin, and D.A. Papaconstantopoulos (2006), "Embedded-atom potential for Fe and its application to self-diffusion on Fe(100)", Surface Science, 600(9), 1793-1803. DOI: 10.1016/j.susc.2006.02.010.

2005--Dudarev-S-L-Derlet-P-M--Fe
S.L. Dudarev, and P.M. Derlet (2005), "A 'magnetic' interatomic potential for molecular dynamics simulations", Journal of Physics: Condensed Matter, 17(44), 7097-7118. DOI: 10.1088/0953-8984/17/44/003.

2004--Zhou-X-W-Johnson-R-A-Wadley-H-N-G--Fe
X.W. Zhou, R.A. Johnson, and H.N.G. Wadley (2004), "Misfit-energy-increasing dislocations in vapor-deposited CoFe/NiFe multilayers", Physical Review B, 69(14), 144113. DOI: 10.1103/physrevb.69.144113.

2003--Mendelev-M-I-Han-S-Srolovitz-D-J-et-al--Fe-2
M.I. Mendelev, S. Han, D.J. Srolovitz, G.J. Ackland, D.Y. Sun, and M. Asta (2003), "Development of new interatomic potentials appropriate for crystalline and liquid iron", Philosophical Magazine, 83(35), 3977-3994. DOI: 10.1080/14786430310001613264.

2003--Mendelev-M-I-Han-S-Srolovitz-D-J-et-al--Fe-5
M.I. Mendelev, S. Han, D.J. Srolovitz, G.J. Ackland, D.Y. Sun, and M. Asta (2003), "Development of new interatomic potentials appropriate for crystalline and liquid iron", Philosophical Magazine, 83(35), 3977-3994. DOI: 10.1080/14786430310001613264.

1997--Ackland-G-J-Bacon-D-J-Calder-A-F-Harry-T--Fe
G.J. Ackland, D.J. Bacon, A.F. Calder, and T. Harry (1997), "Computer simulation of point defect properties in dilute Fe-Cu alloy using a many-body interatomic potential", Philosophical Magazine A, 75(3), 713-732. DOI: 10.1080/01418619708207198.

2009--Bonny-G-Pasianot-R-C-Malerba-L--Fe-Ni
G. Bonny, R.C. Pasianot, and L. Malerba (2009), "Fe-Ni many-body potential for metallurgical applications", Modelling and Simulation in Materials Science and Engineering, 17(2), 25010. DOI: 10.1088/0965-0393/17/2/025010.

2005--Mishin-Y-Mehl-M-J-Papaconstantopoulos-D-A--Fe-Ni
Y. Mishin, M.J. Mehl, and D.A. Papaconstantopoulos (2005), "Phase stability in the Fe-Ni system: Investigation by first-principles calculations and atomistic simulations", Acta Materialia, 53(15), 4029-4041. DOI: 10.1016/j.actamat.2005.05.001.

2004--Ackland-G-J-Mendelev-M-I-Srolovitz-D-J-et-al--Fe-P
G.J. Ackland, M.I. Mendelev, D.J. Srolovitz, S. Han, and A.V. Barashev (2004), "Development of an interatomic potential for phosphorus impurities in α-iron", Journal of Physics: Condensed Matter, 16(27), S2629-S2642. DOI: 10.1088/0953-8984/16/27/003.

2007--Mendelev-M-I-Han-S-Son-W-et-al--V-Fe
M.I. Mendelev, S. Han, W.- Son, G.J. Ackland, and D.J. Srolovitz (2007), "Simulation of the interaction between Fe impurities and point defects in V", Physical Review B, 76(21), 214105. DOI: 10.1103/physrevb.76.214105.

2013--Bonny-G-Castin-N-Bullens-J-et-al--Fe-W
G. Bonny, N. Castin, J. Bullens, A. Bakaev, T.C.P. Klaver, and D. Terentyev (2013), "On the mobility of vacancy clusters in reduced activation steels: an atomistic study in the Fe-Cr-W model alloy", Journal of Physics: Condensed Matter, 25(31), 315401. DOI: 10.1088/0953-8984/25/31/315401.

2014--Bonny-G-Grigorev-P-Terentyev-D--W-H-He-1
G. Bonny, P. Grigorev, and D. Terentyev (2014), "On the binding of nanometric hydrogen-helium clusters in tungsten", Journal of Physics: Condensed Matter, 26(48), 485001. DOI: 10.1088/0953-8984/26/48/485001.

2014--Bonny-G-Grigorev-P-Terentyev-D--W-H-He-2
G. Bonny, P. Grigorev, and D. Terentyev (2014), "On the binding of nanometric hydrogen-helium clusters in tungsten", Journal of Physics: Condensed Matter, 26(48), 485001. DOI: 10.1088/0953-8984/26/48/485001.

2018--Smirnova-D-E-Starikov-S-V-Vlasova-A-M--Mg-H
D.E. Smirnova, S.V. Starikov, and A.M. Vlasova (2018), "New interatomic potential for simulation of pure magnesium and magnesium hydrides", Computational Materials Science, 154, 295-302. DOI: 10.1016/j.commatsci.2018.07.051.

2008--Zhou-X-W-Zimmerman-J-A-Wong-B-M-Hoyt-J-J--Pd-H
X.W. Zhou, J.A. Zimmerman, B.M. Wong, and J.J. Hoyt (2008), "An embedded-atom method interatomic potential for Pd-H alloys", Journal of Materials Research, 23(3), 704-718. DOI: 10.1557/jmr.2008.0090.

K

2016--Nichol-A-Ackland-G-J--K
A. Nichol, and G.J. Ackland (2016), "Property trends in simple metals: An empirical potential approach", Physical Review B, 93(18), 184101. DOI: 10.1103/physrevb.93.184101.

Li

2016--Nichol-A-Ackland-G-J--Li
A. Nichol, and G.J. Ackland (2016), "Property trends in simple metals: An empirical potential approach", Physical Review B, 93(18), 184101. DOI: 10.1103/physrevb.93.184101.

2015--Islam-M-M-Ostadhossein-A-Borodin-O-et-al--Li-S
M.M. Islam, A. Ostadhossein, O. Borodin, A. Todd Yeates, W.W. Tipton, R.G. Hennig, N. Kumar, and A.C.T. van Duin (2015), "ReaxFF molecular dynamics simulations on lithiated sulfur cathode materials", Physical Chemistry Chemical Physics, 17(5), 3383-3393. DOI: 10.1039/c4cp04532g.

MOx

2011--Tiwary-P-Walle-A-Jeon-B-Gronbech-Jensen-N--MOx
P. Tiwary, A. Walle, B. Jeon, and N. Grønbech-Jensen (2011), "Interatomic potentials for mixed oxide and advanced nuclear fuels", Physical Review B, 83(9), 94104. DOI: 10.1103/physrevb.83.094104.
P. Tiwary, A. van de Walle, and N. Grønbech-Jensen (2009), "Ab initio construction of interatomic potentials for uranium dioxide across all interatomic distances", Physical Review B, 80(17), 174302. DOI: 10.1103/physrevb.80.174302.

Mg

2016--Wilson-S-R-Mendelev-M-I--Mg
S.R. Wilson, and M.I. Mendelev (2016), "A unified relation for the solid-liquid interface free energy of pure FCC, BCC, and HCP metals", The Journal of Chemical Physics, 144(14), 144707. DOI: 10.1063/1.4946032.

2006--Sun-D-Y-Mendelev-M-I-Becker-C-A-et-al--Mg
D.Y. Sun, M.I. Mendelev, C.A. Becker, K. Kudin, T. Haxhimali, M. Asta, J.J. Hoyt, A. Karma, and D.J. Srolovitz (2006), "Crystal-melt interfacial free energies in hcp metals: A molecular dynamics study of Mg", Physical Review B, 73(2), 24116. DOI: 10.1103/physrevb.73.024116.

2004--Zhou-X-W-Johnson-R-A-Wadley-H-N-G--Mg
X.W. Zhou, R.A. Johnson, and H.N.G. Wadley (2004), "Misfit-energy-increasing dislocations in vapor-deposited CoFe/NiFe multilayers", Physical Review B, 69(14), 144113. DOI: 10.1103/physrevb.69.144113.

Mo

2012--Park-H-Fellinger-M-R-Lenosky-T-J-et-al--Mo
H. Park, M.R. Fellinger, T.J. Lenosky, W.W. Tipton, D.R. Trinkle, S.P. Rudin, C. Woodward, J.W. Wilkins, and R.G. Hennig (2012), "Ab initio based empirical potential used to study the mechanical properties of molybdenum", Physical Review B, 85(21), 214121. DOI: 10.1103/physrevb.85.214121.

2004--Zhou-X-W-Johnson-R-A-Wadley-H-N-G--Mo
X.W. Zhou, R.A. Johnson, and H.N.G. Wadley (2004), "Misfit-energy-increasing dislocations in vapor-deposited CoFe/NiFe multilayers", Physical Review B, 69(14), 144113. DOI: 10.1103/physrevb.69.144113.

2003--Han-S-Zepeda-Ruiz-L-A-Ackland-G-J-et-al--Mo
S. Han, L.A. Zepeda-Ruiz, G.J. Ackland, R. Car, and D.J. Srolovitz (2003), "Interatomic potential for vanadium suitable for radiation damage simulations", Journal of Applied Physics, 93(6), 3328-3335. DOI: 10.1063/1.1555275.

1987--Ackland-G-J-Thetford-R--Mo
G.J. Ackland, and R. Thetford (1987), "An improved N-body semi-empirical model for body-centred cubic transition metals", Philosophical Magazine A, 56(1), 15-30. DOI: 10.1080/01418618708204464.

2018--Starikov-S-V-Kolotova-L-N-Kuksin-A-Y-et-al--U-Mo
S.V. Starikov, L.N. Kolotova, A.Y. Kuksin, D.E. Smirnova, and V.I. Tseplyaev (2018), "Atomistic simulation of cubic and tetragonal phases of U-Mo alloy: Structure and thermodynamic properties", Journal of Nuclear Materials, 499, 451-463. DOI: 10.1016/j.jnucmat.2017.11.047.

2013--Smirnova-D-E-Kuksin-A-Y-Starikov-S-V-et-al--U-Mo-Xe
D.E. Smirnova, A.Y. Kuksin, S.V. Starikov, V.V. Stegailov, Z. Insepov, J. Rest, and A.M. Yacout (2013), "A ternary EAM interatomic potential for U-Mo alloys with xenon", Modelling and Simulation in Materials Science and Engineering, 21(3), 35011. DOI: 10.1088/0965-0393/21/3/035011.

N-U

2016--Tseplyaev-V-I-Starikov-S-V--U-N
V.I. Tseplyaev, and S.V. Starikov (2016), "The atomistic simulation of pressure-induced phase transition in uranium mononitride", Journal of Nuclear Materials, 480, 7-14. DOI: 10.1016/j.jnucmat.2016.07.048.

Na

2016--Nichol-A-Ackland-G-J--Na
A. Nichol, and G.J. Ackland (2016), "Property trends in simple metals: An empirical potential approach", Physical Review B, 93(18), 184101. DOI: 10.1103/physrevb.93.184101.

2015--Wilson-S-R-Gunawardana-K-G-S-H-Mendelev-M-I--Na
S.R. Wilson, K.G.S.H. Gunawardana, and M.I. Mendelev (2015), "Solid-liquid interface free energies of pure bcc metals and B2 phases", The Journal of Chemical Physics, 142(13), 134705. DOI: 10.1063/1.4916741.

Nb

2010--Fellinger-M-R-Park-H-Wilkins-J-W--Nb
M.R. Fellinger, H. Park, and J.W. Wilkins (2010), "Force-matched embedded-atom method potential for niobium", Physical Review B, 81(14), 144119. DOI: 10.1103/physrevb.81.144119.

2003--Han-S-Zepeda-Ruiz-L-A-Ackland-G-J-et-al--Nb
S. Han, L.A. Zepeda-Ruiz, G.J. Ackland, R. Car, and D.J. Srolovitz (2003), "Interatomic potential for vanadium suitable for radiation damage simulations", Journal of Applied Physics, 93(6), 3328-3335. DOI: 10.1063/1.1555275.

1987--Ackland-G-J-Thetford-R--Nb
G.J. Ackland, and R. Thetford (1987), "An improved N-body semi-empirical model for body-centred cubic transition metals", Philosophical Magazine A, 56(1), 15-30. DOI: 10.1080/01418618708204464.

2016--Zhang-Y-Ashcraft-R-Mendelev-M-I-et-al--Ni-Nb
Y. Zhang, R. Ashcraft, M.I. Mendelev, C.Z. Wang, and K.F. Kelton (2016), "Experimental and molecular dynamics simulation study of structure of liquid and amorphous Ni62Nb38 alloy", The Journal of Chemical Physics, 145(20), 204505. DOI: 10.1063/1.4968212.

2017--Smirnova-D-E-Starikov-S-V--Zr-Nb
D.E. Smirnova, and S.V. Starikov (2017), "An interatomic potential for simulation of Zr-Nb system", Computational Materials Science, 129, 259-272. DOI: 10.1016/j.commatsci.2016.12.016.

Ni

2018--Etesami-S-A-Asadi-E--Ni
S.A. Etesami, and E. Asadi (2018), "Molecular dynamics for near melting temperatures simulations of metals using modified embedded-atom method", Journal of Physics and Chemistry of Solids, 112, 61-72. DOI: 10.1016/j.jpcs.2017.09.001.

2015--Asadi-E-Zaeem-M-A-Nouranian-S-Baskes-M-I--Ni
E. Asadi, M.A. Zaeem, S. Nouranian, and M.I. Baskes (2015), "Two-phase solid-liquid coexistence of Ni, Cu, and Al by molecular dynamics simulations using the modified embedded-atom method", Acta Materialia, 86, 169-181. DOI: 10.1016/j.actamat.2014.12.010.

2012--Mendelev-M-I-Kramer-M-J-Hao-S-G-et-al--Ni
M.I. Mendelev, M.J. Kramer, S.G. Hao, K.M. Ho, and C.Z. Wang (2012), "Development of interatomic potentials appropriate for simulation of liquid and glass properties of NiZr2 alloy", Philosophical Magazine, 92(35), 4454-4469. DOI: 10.1080/14786435.2012.712220.

2004--Zhou-X-W-Johnson-R-A-Wadley-H-N-G--Ni
X.W. Zhou, R.A. Johnson, and H.N.G. Wadley (2004), "Misfit-energy-increasing dislocations in vapor-deposited CoFe/NiFe multilayers", Physical Review B, 69(14), 144113. DOI: 10.1103/physrevb.69.144113.

1999--Mishin-Y-Farkas-D-Mehl-M-J-Papaconstantopoulos-D-A--Ni
Y. Mishin, D. Farkas, M.J. Mehl, and D.A. Papaconstantopoulos (1999), "Interatomic potentials for monoatomic metals from experimental data and ab initio calculations", Physical Review B, 59(5), 3393-3407. DOI: 10.1103/physrevb.59.3393.

1989--Adams-J-B-Foiles-S-M-Wolfer-W-G--Ni
J.B. Adams, S.M. Foiles, and W.G. Wolfer (1989), "Self-diffusion and impurity diffusion of fcc metals using the five-frequency model and the Embedded Atom Method", Journal of Materials Research, 4(1), 102-112. DOI: 10.1557/jmr.1989.0102.

1987--Ackland-G-J-Tichy-G-Vitek-V-Finnis-M-W--Ni
G.J. Ackland, G. Tichy, V. Vitek, and M.W. Finnis (1987), "Simple N-body potentials for the noble metals and nickel", Philosophical Magazine A, 56(6), 735-756. DOI: 10.1080/01418618708204485.

1986--Foiles-S-M-Baskes-M-I-Daw-M-S--Ni
S.M. Foiles, M.I. Baskes, and M.S. Daw (1986), "Embedded-atom-method functions for the fcc metals Cu, Ag, Au, Ni, Pd, Pt, and their alloys", Physical Review B, 33(12), 7983-7991. DOI: 10.1103/physrevb.33.7983.

2015--Ko-W-S-Grabowski-B-Neugebauer-J--Ni-Ti
W.-S. Ko, B. Grabowski, and J. Neugebauer (2015), "Development and application of a Ni-Ti interatomic potential with high predictive accuracy of the martensitic phase transition", Physical Review B, 92(13), 134107. DOI: 10.1103/physrevb.92.134107.

2017--Maisel-S-B-Ko-W-S-Zhang-J-L-et-al--V-Ni-Ti
S.B. Maisel, W.-S. Ko, J.-L. Zhang, B. Grabowski, and J. Neugebauer (2017), "Thermomechanical response of NiTi shape-memory nanoprecipitates in TiV alloys", Physical Review Materials, 1(3), 33610. DOI: 10.1103/physrevmaterials.1.033610.

2015--Wilson-S-R-Mendelev-M-I--Ni-Zr
S.R. Wilson, and M.I. Mendelev (2015), "Anisotropy of the solid-liquid interface properties of the Ni-Zr B33 phase from molecular dynamics simulation", Philosophical Magazine, 95(2), 224-241. DOI: 10.1080/14786435.2014.995742.

2012--Mendelev-M-I-Kramer-M-J-Hao-S-G-et-al--Ni-Zr
M.I. Mendelev, M.J. Kramer, S.G. Hao, K.M. Ho, and C.Z. Wang (2012), "Development of interatomic potentials appropriate for simulation of liquid and glass properties of NiZr2 alloy", Philosophical Magazine, 92(35), 4454-4469. DOI: 10.1080/14786435.2012.712220.

2016--Zhang-P-Trinkle-D-R--Ti-O
P. Zhang, and D.R. Trinkle (2016), "A modified embedded atom method potential for interstitial oxygen in titanium", Computational Materials Science, 124, 204-210. DOI: 10.1016/j.commatsci.2016.07.039.

Pb

2004--Zhou-X-W-Johnson-R-A-Wadley-H-N-G--Pb
X.W. Zhou, R.A. Johnson, and H.N.G. Wadley (2004), "Misfit-energy-increasing dislocations in vapor-deposited CoFe/NiFe multilayers", Physical Review B, 69(14), 144113. DOI: 10.1103/physrevb.69.144113.

2018--Etesami-S-A-Baskes-M-I-Laradji-M-Asadi-E--Pb-Sn
S.A. Etesami, M.I. Baskes, M. Laradji, and E. Asadi (2018), "Thermodynamics of solid Sn and Pb-Sn liquid mixtures using molecular dynamics simulations", Acta Materialia, 161, 320-330. DOI: 10.1016/j.actamat.2018.09.036.

Pd

2004--Zhou-X-W-Johnson-R-A-Wadley-H-N-G--Pd
X.W. Zhou, R.A. Johnson, and H.N.G. Wadley (2004), "Misfit-energy-increasing dislocations in vapor-deposited CoFe/NiFe multilayers", Physical Review B, 69(14), 144113. DOI: 10.1103/physrevb.69.144113.

1989--Adams-J-B-Foiles-S-M-Wolfer-W-G--Pd
J.B. Adams, S.M. Foiles, and W.G. Wolfer (1989), "Self-diffusion and impurity diffusion of fcc metals using the five-frequency model and the Embedded Atom Method", Journal of Materials Research, 4(1), 102-112. DOI: 10.1557/jmr.1989.0102.

1986--Foiles-S-M-Baskes-M-I-Daw-M-S--Pd
S.M. Foiles, M.I. Baskes, and M.S. Daw (1986), "Embedded-atom-method functions for the fcc metals Cu, Ag, Au, Ni, Pd, Pt, and their alloys", Physical Review B, 33(12), 7983-7991. DOI: 10.1103/physrevb.33.7983.

Pt

2004--Zhou-X-W-Johnson-R-A-Wadley-H-N-G--Pt
X.W. Zhou, R.A. Johnson, and H.N.G. Wadley (2004), "Misfit-energy-increasing dislocations in vapor-deposited CoFe/NiFe multilayers", Physical Review B, 69(14), 144113. DOI: 10.1103/physrevb.69.144113.

1990--Ackland-G-J--Pt
G.J. Ackland (1990), "unpublished".

1989--Adams-J-B-Foiles-S-M-Wolfer-W-G--Pt
J.B. Adams, S.M. Foiles, and W.G. Wolfer (1989), "Self-diffusion and impurity diffusion of fcc metals using the five-frequency model and the Embedded Atom Method", Journal of Materials Research, 4(1), 102-112. DOI: 10.1557/jmr.1989.0102.

1986--Foiles-S-M-Baskes-M-I-Daw-M-S--Pt
S.M. Foiles, M.I. Baskes, and M.S. Daw (1986), "Embedded-atom-method functions for the fcc metals Cu, Ag, Au, Ni, Pd, Pt, and their alloys", Physical Review B, 33(12), 7983-7991. DOI: 10.1103/physrevb.33.7983.

Rb

2016--Nichol-A-Ackland-G-J--Rb
A. Nichol, and G.J. Ackland (2016), "Property trends in simple metals: An empirical potential approach", Physical Review B, 93(18), 184101. DOI: 10.1103/physrevb.93.184101.

2017--Bonny-G-Bakaev-A-Terentyev-D-Mastrikov-Y-A--W-Re
G. Bonny, A. Bakaev, D. Terentyev, and Y.A. Mastrikov (2017), "Interatomic potential to study plastic deformation in tungsten-rhenium alloys", Journal of Applied Physics, 121(16), 165107. DOI: 10.1063/1.4982361.

Ru

2008--Fortini-A-Mendelev-M-I-Buldyrev-S-Srolovitz-D--Ru
A. Fortini, M.I. Mendelev, S. Buldyrev, and D. Srolovitz (2008), "Asperity contacts at the nanoscale: Comparison of Ru and Au", Journal of Applied Physics, 104(7), 74320. DOI: 10.1063/1.2991301.

Si

1992--Baskes-M-I--Si
M.I. Baskes (1992), "Modified embedded-atom potentials for cubic materials and impurities", Physical Review B, 46(5), 2727-2742. DOI: 10.1103/physrevb.46.2727.

2017--Beeler-B-Baskes-M-Andersson-D-et-al--U-Si
B. Beeler, M. Baskes, D. Andersson, M.W.D. Cooper, and Y. Zhang (2017), "A modified Embedded-Atom Method interatomic potential for uranium-silicide", Journal of Nuclear Materials, 495, 267-276. DOI: 10.1016/j.jnucmat.2017.08.025.

2017--Wang-P-Xu-S-Liu-J-et-al--TWIP
P. Wang, S. Xu, J. Liu, X. Li, Y. Wei, H. Wang, H. Gao, and W. Yang (2017), "Atomistic simulation for deforming complex alloys with application toward TWIP steel and associated physical insights", Journal of the Mechanics and Physics of Solids, 98, 290-308. DOI: 10.1016/j.jmps.2016.09.008.

Ta

2013--Ravelo-R-Germann-T-C-Guerrero-O-et-al--Ta-1
R. Ravelo, T.C. Germann, O. Guerrero, Q. An, and B.L. Holian (2013), "Shock-induced plasticity in tantalum single crystals: Interatomic potentials and large-scale molecular-dynamics simulations", Physical Review B, 88(13), 134101. DOI: 10.1103/physrevb.88.134101.

2013--Ravelo-R-Germann-T-C-Guerrero-O-et-al--Ta-2
R. Ravelo, T.C. Germann, O. Guerrero, Q. An, and B.L. Holian (2013), "Shock-induced plasticity in tantalum single crystals: Interatomic potentials and large-scale molecular-dynamics simulations", Physical Review B, 88(13), 134101. DOI: 10.1103/physrevb.88.134101.

2004--Zhou-X-W-Johnson-R-A-Wadley-H-N-G--Ta
X.W. Zhou, R.A. Johnson, and H.N.G. Wadley (2004), "Misfit-energy-increasing dislocations in vapor-deposited CoFe/NiFe multilayers", Physical Review B, 69(14), 144113. DOI: 10.1103/physrevb.69.144113.

2003--Han-S-Zepeda-Ruiz-L-A-Ackland-G-J-et-al--Ta
S. Han, L.A. Zepeda-Ruiz, G.J. Ackland, R. Car, and D.J. Srolovitz (2003), "Interatomic potential for vanadium suitable for radiation damage simulations", Journal of Applied Physics, 93(6), 3328-3335. DOI: 10.1063/1.1555275.

2003--Li-Y-Siegel-D-J-Adams-J-B-Liu-X-Y--Ta
Y. Li, D.J. Siegel, J.B. Adams, and X.-Y. Liu (2003), "Embedded-atom-method tantalum potential developed by the force-matching method", Physical Review B, 67(12), 125101. DOI: 10.1103/physrevb.67.125101.

1987--Ackland-G-J-Thetford-R--Ta
G.J. Ackland, and R. Thetford (1987), "An improved N-body semi-empirical model for body-centred cubic transition metals", Philosophical Magazine A, 56(1), 15-30. DOI: 10.1080/01418618708204464.

Tb

2018--Mendelev-M-I-Zhang-F-Song-H-et-al--Tb
M.I. Mendelev, F. Zhang, H. Song, Y. Sun, C.Z. Wang, and K.M. Ho (2018), "Molecular dynamics simulation of the solid-liquid interface migration in terbium", The Journal of Chemical Physics, 148(21), 214705. DOI: 10.1063/1.5026922.

Ti

2016--Mendelev-M-I-Underwood-T-L-Ackland-G-J--Ti-1
M.I. Mendelev, T.L. Underwood, and G.J. Ackland (2016), "Development of an interatomic potential for the simulation of defects, plasticity, and phase transformations in titanium", The Journal of Chemical Physics, 145(15), 154102. DOI: 10.1063/1.4964654.

2016--Mendelev-M-I-Underwood-T-L-Ackland-G-J--Ti-2
M.I. Mendelev, T.L. Underwood, and G.J. Ackland (2016), "Development of an interatomic potential for the simulation of defects, plasticity, and phase transformations in titanium", The Journal of Chemical Physics, 145(15), 154102. DOI: 10.1063/1.4964654.

2016--Mendelev-M-I-Underwood-T-L-Ackland-G-J--Ti-3
M.I. Mendelev, T.L. Underwood, and G.J. Ackland (2016), "Development of an interatomic potential for the simulation of defects, plasticity, and phase transformations in titanium", The Journal of Chemical Physics, 145(15), 154102. DOI: 10.1063/1.4964654.

2016--Mendelev-M-I-Underwood-T-L-Ackland-G-J--Ti-Tdep
M.I. Mendelev, T.L. Underwood, and G.J. Ackland (2016), "Development of an interatomic potential for the simulation of defects, plasticity, and phase transformations in titanium", The Journal of Chemical Physics, 145(15), 154102. DOI: 10.1063/1.4964654.

2004--Zhou-X-W-Johnson-R-A-Wadley-H-N-G--Ti
X.W. Zhou, R.A. Johnson, and H.N.G. Wadley (2004), "Misfit-energy-increasing dislocations in vapor-deposited CoFe/NiFe multilayers", Physical Review B, 69(14), 144113. DOI: 10.1103/physrevb.69.144113.

1992--Ackland-G-J--Ti
G.J. Ackland (1992), "Theoretical study of titanium surfaces and defects with a new many-body potential", Philosophical Magazine A, 66(6), 917-932. DOI: 10.1080/01418619208247999.

U

2014--Fernandez-J-R-Pascuet-M-I--U
J.R. Fernández, and M.I. Pascuet (2014), "On the accurate description of uranium metallic phases: a MEAM interatomic potential approach", Modelling and Simulation in Materials Science and Engineering, 22(5), 55019. DOI: 10.1088/0965-0393/22/5/055019.

2011--Smirnova-D-E-Starikov-S-V-Stegailov-V-V--U
D.E. Smirnova, S.V. Starikov, and V.V. Stegailov (2011), "Interatomic potential for uranium in a wide range of pressures and temperatures", Journal of Physics: Condensed Matter, 24(1), 15702. DOI: 10.1088/0953-8984/24/1/015702.
D.E. Smirnova, S.V. Starikov, and V.V. Stegailov (2012), "Interatomic potential for uranium in a wide range of pressures and temperatures", Journal of Physics: Condensed Matter, 24(14), 149501. DOI: 10.1088/0953-8984/24/14/149501.

2015--Moore-A-P-Beeler-B-Deo-C-et-al--U-Zr
A.P. Moore, B. Beeler, C. Deo, M.I. Baskes, and M.A. Okuniewski (2015), "Atomistic modeling of high temperature uranium\textendashzirconium alloy structure and thermodynamics", Journal of Nuclear Materials, 467, 802-819. DOI: 10.1016/j.jnucmat.2015.10.016.

UO2

2014--Thompson-A-E-Meredig-B-Stan-M-Wolverton-C--UO2
A.E. Thompson, B. Meredig, M. Stan, and C. Wolverton (2014), "Interatomic potential for accurate phonons and defects in UO2", Journal of Nuclear Materials, 446(1-3), 155-162. DOI: 10.1016/j.jnucmat.2013.11.040.

2009--Tiwary-P-van-de-Walle-A-Gronbech-Jensen-N--UO2
P. Tiwary, A. van de Walle, and N. Grønbech-Jensen (2009), "Ab initio construction of interatomic potentials for uranium dioxide across all interatomic distances", Physical Review B, 80(17), 174302. DOI: 10.1103/physrevb.80.174302.

V

2003--Han-S-Zepeda-Ruiz-L-A-Ackland-G-J-et-al--V
S. Han, L.A. Zepeda-Ruiz, G.J. Ackland, R. Car, and D.J. Srolovitz (2003), "Interatomic potential for vanadium suitable for radiation damage simulations", Journal of Applied Physics, 93(6), 3328-3335. DOI: 10.1063/1.1555275.

1987--Ackland-G-J-Thetford-R--V
G.J. Ackland, and R. Thetford (1987), "An improved N-body semi-empirical model for body-centred cubic transition metals", Philosophical Magazine A, 56(1), 15-30. DOI: 10.1080/01418618708204464.

W

2013--Marinica-M-C-Ventelon-L-Gilbert-M-R-et-al--W-2
M.-C. Marinica, L. Ventelon, M.R. Gilbert, L. Proville, S.L. Dudarev, J. Marian, G. Bencteux, and F. Willaime (2013), "Interatomic potentials for modelling radiation defects and dislocations in tungsten", Journal of Physics: Condensed Matter, 25(39), 395502. DOI: 10.1088/0953-8984/25/39/395502.

2013--Marinica-M-C-Ventelon-L-Gilbert-M-R-et-al--W-3
M.-C. Marinica, L. Ventelon, M.R. Gilbert, L. Proville, S.L. Dudarev, J. Marian, G. Bencteux, and F. Willaime (2013), "Interatomic potentials for modelling radiation defects and dislocations in tungsten", Journal of Physics: Condensed Matter, 25(39), 395502. DOI: 10.1088/0953-8984/25/39/395502.

2013--Marinica-M-C-Ventelon-L-Gilbert-M-R-et-al--W-4
M.-C. Marinica, L. Ventelon, M.R. Gilbert, L. Proville, S.L. Dudarev, J. Marian, G. Bencteux, and F. Willaime (2013), "Interatomic potentials for modelling radiation defects and dislocations in tungsten", Journal of Physics: Condensed Matter, 25(39), 395502. DOI: 10.1088/0953-8984/25/39/395502.

2013--Wang-J-Zhou-Y-L-Li-M-Hou-Q--W
J. Wang, Y.L. Zhou, M. Li, and Q. Hou (2013), "A modified W-W interatomic potential based on ab initio calculations", Modelling and Simulation in Materials Science and Engineering, 22(1), 15004. DOI: 10.1088/0965-0393/22/1/015004.

2004--Zhou-X-W-Johnson-R-A-Wadley-H-N-G--W
X.W. Zhou, R.A. Johnson, and H.N.G. Wadley (2004), "Misfit-energy-increasing dislocations in vapor-deposited CoFe/NiFe multilayers", Physical Review B, 69(14), 144113. DOI: 10.1103/physrevb.69.144113.

2003--Han-S-Zepeda-Ruiz-L-A-Ackland-G-J-et-al--W
S. Han, L.A. Zepeda-Ruiz, G.J. Ackland, R. Car, and D.J. Srolovitz (2003), "Interatomic potential for vanadium suitable for radiation damage simulations", Journal of Applied Physics, 93(6), 3328-3335. DOI: 10.1063/1.1555275.

1987--Ackland-G-J-Thetford-R--W
G.J. Ackland, and R. Thetford (1987), "An improved N-body semi-empirical model for body-centred cubic transition metals", Philosophical Magazine A, 56(1), 15-30. DOI: 10.1080/01418618708204464.

Zr

2007--Mendelev-M-I-Ackland-G-J--Zr-1
M.I. Mendelev, and G.J. Ackland (2007), "Development of an interatomic potential for the simulation of phase transformations in zirconium", Philosophical Magazine Letters, 87(5), 349-359. DOI: 10.1080/09500830701191393.

2007--Mendelev-M-I-Ackland-G-J--Zr-2
M.I. Mendelev, and G.J. Ackland (2007), "Development of an interatomic potential for the simulation of phase transformations in zirconium", Philosophical Magazine Letters, 87(5), 349-359. DOI: 10.1080/09500830701191393.

2007--Mendelev-M-I-Ackland-G-J--Zr-3
M.I. Mendelev, and G.J. Ackland (2007), "Development of an interatomic potential for the simulation of phase transformations in zirconium", Philosophical Magazine Letters, 87(5), 349-359. DOI: 10.1080/09500830701191393.

2004--Zhou-X-W-Johnson-R-A-Wadley-H-N-G--Zr
X.W. Zhou, R.A. Johnson, and H.N.G. Wadley (2004), "Misfit-energy-increasing dislocations in vapor-deposited CoFe/NiFe multilayers", Physical Review B, 69(14), 144113. DOI: 10.1103/physrevb.69.144113.

1995--Ackland-G-J-Wooding-S-J-Bacon-D-J--Zr
G.J. Ackland, S.J. Wooding, and D.J. Bacon (1995), "Defect, surface and displacement-threshold properties of α-zirconium simulated with a many-body potential", Philosophical Magazine A, 71(3), 553-565. DOI: 10.1080/01418619508244468.

2015--Borovikov-V-Mendelev-M-I-King-A-H-LeSar-R--fictional-Cu
V. Borovikov, M.I. Mendelev, A.H. King, and R. LeSar (2015), "Effect of stacking fault energy on mechanism of plastic deformation in nanotwinned FCC metals", Modelling and Simulation in Materials Science and Engineering, 23(5), 55003. DOI: 10.1088/0965-0393/23/5/055003.

2015--Mendelev-M-I--fictional-Cu
M.I. Mendelev (2015), "to be published".

2015--Mendelev-M-I--fictional-Mg
M.I. Mendelev (2015), "to be published".

2015--Mendelev-M-I--fictional-W
M.I. Mendelev (2015), "to be published".

2015--Wilson-S-R-Gunawardana-K-G-S-H-Mendelev-M-I--fictional-Na
S.R. Wilson, K.G.S.H. Gunawardana, and M.I. Mendelev (2015), "Solid-liquid interface free energies of pure bcc metals and B2 phases", The Journal of Chemical Physics, 142(13), 134705. DOI: 10.1063/1.4916741.

2010--Mendelev-M-I-Rahman-M-J-Hoyt-J-J-Asta-M--fictional-Al
M.I. Mendelev, M.J. Rahman, J.J. Hoyt, and M. Asta (2010), "Molecular-dynamics study of solid-liquid interface migration in fcc metals", Modelling and Simulation in Materials Science and Engineering, 18(7), 74002. DOI: 10.1088/0965-0393/18/7/074002.

Date Created: October 5, 2010 | Last updated: October 05, 2018