2024--Ito-K-Yokoi-T-Hyodo-K-Mori-H--Fe-16K. Ito, T. Yokoi, K. Hyodo, and H. Mori (2024), "Machine learning interatomic potential with DFT accuracy for general grain boundaries in α-Fe",
npj Computational Materials,
10(1), 255. DOI:
10.1038/s41524-024-01451-y.
2024--Ito-K-Yokoi-T-Hyodo-K-Mori-H--Fe-18K. Ito, T. Yokoi, K. Hyodo, and H. Mori (2024), "Machine learning interatomic potential with DFT accuracy for general grain boundaries in α-Fe",
npj Computational Materials,
10(1), 255. DOI:
10.1038/s41524-024-01451-y.
2024--Ito-K-Yokoi-T-Hyodo-K-Mori-H--Fe-20K. Ito, T. Yokoi, K. Hyodo, and H. Mori (2024), "Machine learning interatomic potential with DFT accuracy for general grain boundaries in α-Fe",
npj Computational Materials,
10(1), 255. DOI:
10.1038/s41524-024-01451-y.
2024--Ito-K-Yokoi-T-Hyodo-K-Mori-H--Fe-22K. Ito, T. Yokoi, K. Hyodo, and H. Mori (2024), "Machine learning interatomic potential with DFT accuracy for general grain boundaries in α-Fe",
npj Computational Materials,
10(1), 255. DOI:
10.1038/s41524-024-01451-y.
K. Ito, T. Yokoi, K. Hyodo, and H. Mori (2024), "Grain Size Effects on the Deformation of α-Fe Nanopolycrystals: Massively Large-Scale Molecular Dynamics Simulations Using Machine Learning Interatomic Potential", . DOI:
10.2139/ssrn.5029355.
2023--Jana-R-Caro-M-A--FeR. Jana, and M.A. Caro (2023), "Searching for iron nanoparticles with a general-purpose Gaussian approximation potential",
Physical Review B,
107(24), . DOI:
10.1103/physrevb.107.245421.
2022--Sun-Y-Zhang-F-Mendelev-M-I-et-al--FeY. Sun, F. Zhang, M.I. Mendelev, R.M. Wentzcovitch, and K.-M. Ho (2022), "Two-step nucleation of the Earth's inner core",
Proceedings of the National Academy of Sciences,
119(2), e2113059119. DOI:
10.1073/pnas.2113059119.
2021--Starikov-S-Smirnova-D-Pradhan-T-et-al--FeS. Starikov, D. Smirnova, T. Pradhan, Y. Lysogorskiy, H. Chapman, M. Mrovec, and R. Drautz (2021), "Angular-dependent interatomic potential for large-scale atomistic simulation of iron: Development and comprehensive comparison with existing interatomic models",
Physical Review Materials,
5(6), 063607. DOI:
10.1103/physrevmaterials.5.063607.
2020--Byggmastar-J-Granberg-F--FeJ. Byggmästar, and F. Granberg (2020), "Dynamical stability of radiation-induced C15 clusters in iron",
Journal of Nuclear Materials,
528, 151893. DOI:
10.1016/j.jnucmat.2019.151893.
2020--Mori-H-Ozaki-T--FeH. Mori, and T. Ozaki (2020), "Neural network atomic potential to investigate the dislocation dynamics in bcc iron",
Physical Review Materials,
4(4), 040601. DOI:
10.1103/physrevmaterials.4.040601.
2018--Etesami-S-A-Asadi-E--FeS.A. Etesami, and E. Asadi (2018), "Molecular dynamics for near melting temperatures simulations of metals using modified embedded-atom method",
Journal of Physics and Chemistry of Solids,
112, 61-72. DOI:
10.1016/j.jpcs.2017.09.001.
2015--Asadi-E-Asle-Zaeem-M-Nouranian-S-Baskes-M-I--FeE. Asadi, M. Asle Zaeem, S. Nouranian, and M.I. Baskes (2015), "Quantitative modeling of the equilibration of two-phase solid-liquid Fe by atomistic simulations on diffusive time scales",
Physical Review B,
91(2), 024105. DOI:
10.1103/physrevb.91.024105.
2015--Elliott-R-S-Akerson-A--FeR.S. Elliott, and A. Akerson (2015), "Efficient "universal" shifted Lennard-Jones model for all KIM API supported species".
2012--Proville-L-Rodney-D-Marinica-M-C--FeL. Proville, D. Rodney, and M.-C. Marinica (2012), "Quantum effect on thermally activated glide of dislocations",
Nature Materials,
11(10), 845-849. DOI:
10.1038/nmat3401.
2011--Chiesa-S-Derlet-P-M-Dudarev-S-L-Swygenhoven-H-V--Fe-33S. Chiesa, P.M. Derlet, S.L. Dudarev, and H.V. Swygenhoven (2011), "Optimization of the magnetic potential for α-Fe",
Journal of Physics: Condensed Matter,
23(20), 206001. DOI:
10.1088/0953-8984/23/20/206001.
2010--Malerba-L-Marinica-M-C-Anento-N-et-al--FeL. Malerba, M.C. Marinica, N. Anento, C. Björkas, H. Nguyen, C. Domain, F. Djurabekova, P. Olsson, K. Nordlund, A. Serra, D. Terentyev, F. Willaime, and C.S. Becquart (2010), "Comparison of empirical interatomic potentials for iron applied to radiation damage studies",
Journal of Nuclear Materials,
406(1), 19-38. DOI:
10.1016/j.jnucmat.2010.05.017.
M.-C. Marinica, F. Willaime, and J.-P. Crocombette (2012), "Irradiation-Induced Formation of Nanocrystallites with C15 Laves Phase Structure in bcc Iron",
Physical Review Letters,
108(2), 025501. DOI:
10.1103/physrevlett.108.025501.
2009--Olsson-P-A-T--FeP.A.T. Olsson (2009), "Semi-empirical atomistic study of point defect properties in BCC transition metals",
Computational Materials Science,
47(1), 135-145. DOI:
10.1016/j.commatsci.2009.06.025.
2008--Morris-J-R-Aga-R-S-Levashov-V-Egami-T--FeJ.R. Morris, R.S. Aga, V. Levashov, and T. Egami (2008), "Many-body effects in bcc metals: An embedded atom model extension of the modified Johnson pair potential for iron",
Physical Review B,
77(17), 174201. DOI:
10.1103/physrevb.77.174201.
2007--Muller-M-Erhart-P-Albe-K--FeM. Müller, P. Erhart, and K. Albe (2007), "Analytic bond-order potential for bcc and fcc iron—comparison with established embedded-atom method potentials",
Journal of Physics: Condensed Matter,
19(32), 326220. DOI:
10.1088/0953-8984/19/32/326220.
2006--Chamati-H-Papanicolaou-N-I-Mishin-Y-Papaconstantopoulos-D-A--FeH. Chamati, N.I. Papanicolaou, Y. Mishin, and D.A. Papaconstantopoulos (2006), "Embedded-atom potential for Fe and its application to self-diffusion on Fe(100)",
Surface Science,
600(9), 1793-1803. DOI:
10.1016/j.susc.2006.02.010.
2005--Dudarev-S-L-Derlet-P-M--FeS.L. Dudarev, and P.M. Derlet (2005), "A 'magnetic' interatomic potential for molecular dynamics simulations",
Journal of Physics: Condensed Matter,
17(44), 7097-7118. DOI:
10.1088/0953-8984/17/44/003.
2004--Zhou-X-W-Johnson-R-A-Wadley-H-N-G--FeX.W. Zhou, R.A. Johnson, and H.N.G. Wadley (2004), "Misfit-energy-increasing dislocations in vapor-deposited CoFe/NiFe multilayers",
Physical Review B,
69(14), 144113. DOI:
10.1103/physrevb.69.144113.
2003--Mendelev-M-I-Han-S-Srolovitz-D-J-et-al--Fe-2M.I. Mendelev, S. Han, D.J. Srolovitz, G.J. Ackland, D.Y. Sun, and M. Asta (2003), "Development of new interatomic potentials appropriate for crystalline and liquid iron",
Philosophical Magazine,
83(35), 3977-3994. DOI:
10.1080/14786430310001613264.
2003--Mendelev-M-I-Han-S-Srolovitz-D-J-et-al--Fe-5M.I. Mendelev, S. Han, D.J. Srolovitz, G.J. Ackland, D.Y. Sun, and M. Asta (2003), "Development of new interatomic potentials appropriate for crystalline and liquid iron",
Philosophical Magazine,
83(35), 3977-3994. DOI:
10.1080/14786430310001613264.
2001--Lee-B-J-Baskes-M-I-Kim-H-Cho-Y-K--FeB.-J. Lee, M.I. Baskes, H. Kim, and Y.K. Cho (2001), "Second nearest-neighbor modified embedded atom method potentials for bcc transition metals",
Physical Review B,
64(18), 184102. DOI:
10.1103/physrevb.64.184102.
1998--Meyer-R-Entel-P--FeR. Meyer, and P. Entel (1998), "Martensite-austenite transition and phonon dispersion curves of Fe
1-xNi
x studied by molecular-dynamics simulations",
Physical Review B,
57(9), 5140-5147. DOI:
10.1103/physrevb.57.5140.
1997--Ackland-G-J-Bacon-D-J-Calder-A-F-Harry-T--FeG.J. Ackland, D.J. Bacon, A.F. Calder, and T. Harry (1997), "Computer simulation of point defect properties in dilute Fe-Cu alloy using a many-body interatomic potential",
Philosophical Magazine A,
75(3), 713-732. DOI:
10.1080/01418619708207198.
1959--Girifalco-L-A-Weizer-V-G--FeL.A. Girifalco, and V.G. Weizer (1959), "Application of the Morse Potential Function to Cubic Metals",
Physical Review,
114(3), 687-690. DOI:
10.1103/physrev.114.687.