Ag

2006--Williams-P-L-Mishin-Y-Hamilton-J-C--Ag
P.L. Williams, Y. Mishin, and J.C. Hamilton (2006), "An embedded-atom potential for the Cu-Ag system", Modelling and Simulation in Materials Science and Engineering, 14(5), 817-833. DOI: 10.1088/0965-0393/14/5/002.
Abstract: A new embedded-atom method (EAM) potential has been constructed for Ag by fitting to experimental and first-principles data. The potential accurately reproduces the lattice parameter, cohesive energy, elastic constants, phonon frequencies, thermal expansion, lattice-defect energies, as well as energies of alternate structures of Ag. Combining this potential with an existing EAM potential for Cu, a binary potential set for the Cu–Ag system has been constructed by fitting the cross-interaction function to first-principles energies of imaginary Cu–Ag compounds. Although properties used in the fit refer to the 0 K temperature (except for thermal expansion factors of pure Cu and Ag) and do not include liquid configurations, the potentials demonstrate good transferability to high-temperature properties. In particular, the entire Cu–Ag phase diagram calculated with the new potentials in conjunction with Monte Carlo simulations is in satisfactory agreement with experiment. This agreement suggests that EAM potentials accurately fit to 0 K properties can be capable of correctly predicting simple phase diagrams. Possible applications of the new potential set are outlined.

EAM tabulated functions (2006--Williams-P-L--Ag--table--ipr1)
Notes: These files were provided by Yuri Mishin.
File(s):
Ag F(ρ): F_ag.plt
Ag ρ(r): fag.plt
Ag φ(r): pag.plt

LAMMPS pair_style eam/alloy (2006--Williams-P-L--Ag--LAMMPS--ipr1)
See Computed Properties
Notes: This conversion was produced by Chandler Becker on 4 February 2009 from the plt files listed above. This version is compatible with LAMMPS. Validation and usage information can be found in Ag06_releaseNotes_1.pdf. If you use this setfl file, please credit the website in addition to the original reference.
File(s):
See Computed Properties
Notes: Listing found at https://openkim.org. This KIM potential is based on the files from 2006--Williams-P-L--Ag--LAMMPS--ipr1.
Link(s):

2004--Zhou-X-W-Johnson-R-A-Wadley-H-N-G--Ag
X.W. Zhou, R.A. Johnson, and H.N.G. Wadley (2004), "Misfit-energy-increasing dislocations in vapor-deposited CoFe/NiFe multilayers", Physical Review B, 69(14), 144113. DOI: 10.1103/physrevb.69.144113.
Abstract: Recent molecular dynamics simulations of the growth of [Ni0.8Fe0.2/Au] multilayers have revealed the formation of misfit-strain-reducing dislocation structures very similar to those observed experimentally. Here we report similar simulations showing the formation of edge dislocations near the interfaces of vapor-deposited (111) [NiFe/CoFe/Cu] multilayers. Unlike misfit dislocations that accommodate lattice mismatch, the dislocation structures observed here increase the mismatch strain energy. Stop-action observations of the dynamically evolving atomic structures indicate that during deposition on the (111) surface of a fcc lattice, adatoms may occupy either fcc sites or hcp sites. This results in the random formation of fcc and hcp domains, with dislocations at the domain boundaries. These dislocations enable atoms to undergo a shift from fcc to hcp sites, or vice versa. These shifts lead to missing atoms, and therefore a later deposited layer can have missing planes compared to a previously deposited layer. This dislocation formation mechanism can create tensile stress in fcc films. The probability that such dislocations are formed was found to quickly diminish under energetic deposition conditions.

FORTRAN (2004--Zhou-X-W--Ag--FORTRAN--ipr1)
Notes: These are the original files sent by X.W. Zhou (Sandia National Laboratory) and posted with his permission. C.A. Becker (NIST) modified create.f to include the reference in the generated potential files and the EAM.input file for this composition. These files can be used to generate alloy potentials for Cu, Ag, Au, Ni, Pd, Pt, Al, Pb, Fe, Mo, Ta, W, Mg, Co, Ti, and Zr by editing EAM.input. However, as addressed in the reference, these potentials were not designed for use with metal compounds.
File(s): superseded


LAMMPS pair_style eam/alloy (2004--Zhou-X-W--Ag--LAMMPS--ipr1)
See Computed Properties
Notes: This file was generated by C.A. Becker (NIST) from create.f and posted with X.W. Zhou's (Sandia National Laboratory) permission.
File(s): superseded


FORTRAN (2004--Zhou-X-W--Ag--FORTRAN--ipr2)
Notes: The file Zhou04_create_v2.f is an updated version of create.f modified by L.M. Hale (NIST) following advice from X.W. Zhou (Sandia National Laboratory). This version removes spurious fluctuations in the tabulated functions of the original potential files caused by single/double precision floating point number conflicts.
File(s):
LAMMPS pair_style eam/alloy (2004--Zhou-X-W--Ag--LAMMPS--ipr2)
See Computed Properties
Notes: This file was generated by L.M. Hale from Zhou04_create_v2.f on 13 April 2018 and posted with X.W. Zhou's (Sandia National Laboratory) permission. This version corrects an issue with spurious fluctuations in the tabulated functions.
File(s):
See Computed Properties
Notes: Listing found at https://openkim.org. This KIM potential is based on the files from 2004--Zhou-X-W--Ag--LAMMPS--ipr1.
Link(s):
See Computed Properties
Notes: Listing found at https://openkim.org. This KIM potential is based on the files from 2004--Zhou-X-W--Ag--LAMMPS--ipr2.
Link(s):

1989--Adams-J-B-Foiles-S-M-Wolfer-W-G--Ag
J.B. Adams, S.M. Foiles, and W.G. Wolfer (1989), "Self-diffusion and impurity diffusion of fcc metals using the five-frequency model and the Embedded Atom Method", Journal of Materials Research, 4(1), 102-112. DOI: 10.1557/jmr.1989.0102.
Abstract: The activation energies for self-diffusion of transition metals (Au, Ag, Cu, Ni, Pd, Pt) have been calculated with the Embedded Atom Method (EAM); the results agree well with available experimental data for both mono-vacancy and di-vacancy mechanisms. The EAM was also used to calculate activation energies for vacancy migration near dilute impurities. These energies determine the atomic jump frequencies of the classic "five-frequency formula," which yields the diffusion rates of impurities by a mono-vacancy mechanism. These calculations were found to agree fairly well with experiment and with Neumann and Hirschwald's "Tm" model.

See Computed Properties
Notes: agu6.txt was obtained from http://enpub.fulton.asu.edu/cms/ potentials/main/main.htm and posted with the permission of J.B. Adams. The name of the file was retained, even though the header information lists the potential as 'universal 4.' This file is compatible with the "pair_style eam" format in LAMMPS (19Feb09 version).
File(s):
See Computed Properties
Notes: Listing found at https://openkim.org. This KIM potential is based on the files from 1989--Adams-J-B--Ag--LAMMPS--ipr1.
Link(s):

1987--Ackland-G-J-Tichy-G-Vitek-V-Finnis-M-W--Ag
G.J. Ackland, G. Tichy, V. Vitek, and M.W. Finnis (1987), "Simple N-body potentials for the noble metals and nickel", Philosophical Magazine A, 56(6), 735-756. DOI: 10.1080/01418618708204485.
Abstract: Using the approach of Finnis and Sinclair, N-body potentials for copper, silver, gold and nickel have been constructed. The total energy is regarded as consisting of a pair-potential part and a many body cohesive part. Both these parts are functions of the atomic separations only and are represented by cubic splines, fitted to various bulk properties. For the noble metals, the pair-potentials were fitted at short range to pressure-volume relationships calculated by Christensen and Heine so that interactions at separations smaller than that of the first-nearest neighbours can be treated in this scheme. Using these potentials, point defects, surfaces (including the surface reconstructions) and grain boundaries have been studied and satisfactory agreement with available experimental data has been found.

Moldy FS (1987--Ackland-G-J--Ag--MOLDY--ipr1)
Notes: The parameters in ag.moldy were obtained from http://homepages.ed.ac.uk/graeme/moldy/moldy.html and posted with the permission of G.J. Ackland.
File(s):
LAMMPS pair_style eam/fs (1987--Ackland-G-J--Ag--LAMMPS--ipr1)
See Computed Properties
Notes: This conversion was performed from G.J. Ackland's parameters by M.I. Mendelev. Conversion checks from M.I. Mendelev can be found in the conversion_check.pdf. These files were posted on 30 June 2009 with the permission of G.J. Ackland and M.I. Mendelev. These potentials are not designed for simulations of radiation damage. Update 19 July 2021: The contact email in the file's header has been changed.
File(s):
LAMMPS pair_style eam/fs (1987--Ackland-G-J--Ag--LAMMPS--ipr2)
See Computed Properties
Notes: A new conversion to LAMMPS performed by G.J. Ackland was submitted on 10 Oct. 2017. This version adds close-range repulsion for radiation studies.
File(s):
OpenKIM (MO_212700056563)
See Computed Properties
Notes: Listing found at https://openkim.org. This KIM potential is based on the files from 1987--Ackland-G-J--Ag--LAMMPS--ipr1.
Link(s):
OpenKIM (MO_055919219575)
See Computed Properties
Notes: Listing found at https://openkim.org. This KIM potential is based on the files from 1987--Ackland-G-J--Ag--LAMMPS--ipr2.
Link(s):

1986--Foiles-S-M-Baskes-M-I-Daw-M-S--Ag
S.M. Foiles, M.I. Baskes, and M.S. Daw (1986), "Embedded-atom-method functions for the fcc metals Cu, Ag, Au, Ni, Pd, Pt, and their alloys", Physical Review B, 33(12), 7983-7991. DOI: 10.1103/physrevb.33.7983.
Abstract: A consistent set of embedding functions and pair interactions for use with the embedded-atom method [M.S. Daw and M. I. Baskes, Phys. Rev. B 29, 6443 (1984)] have been determined empirically to describe the fcc metals Cu, Ag, Au, Ni, Pd, and Pt as well as alloys containing these metals. The functions are determined empirically by fitting to the sublimation energy, equilibrium lattice constant, elastic constants, and vacancy-formation energies of the pure metals and the heats of solution of the binary alloys. The validity of the functions is tested by computing a wide range of properties: the formation volume and migration energy of vacancies, the formation energy, formation volume, and migration energy of divacancies and self-interstitials, the surface energy and geometries of the low-index surfaces of the pure metals, and the segregation energy of substitutional impurities to (100) surfaces.

LAMMPS pair_style eam (1986--Foiles-S-M--Ag--LAMMPS--ipr1)
See Computed Properties
Notes: This file was taken from the August 22, 2018 LAMMPS distribution.
File(s):
Ag_u3.eam

OpenKIM (MO_626948998302)
See Computed Properties
Notes: Listing found at https://openkim.org. This KIM potential is based on the same files as 1986--Foiles-S-M--Ag--LAMMPS--ipr1.
Link(s):
KIM page EAM_Dynamo_FoilesBaskesDaw_1986Universal3_Ag__MO_626948998302_000


Ag-Au-Cu

2004--Zhou-X-W-Johnson-R-A-Wadley-H-N-G--Cu-Ag-Au
X.W. Zhou, R.A. Johnson, and H.N.G. Wadley (2004), "Misfit-energy-increasing dislocations in vapor-deposited CoFe/NiFe multilayers", Physical Review B, 69(14), 144113. DOI: 10.1103/physrevb.69.144113.
Abstract: Recent molecular dynamics simulations of the growth of [Ni0.8Fe0.2/Au] multilayers have revealed the formation of misfit-strain-reducing dislocation structures very similar to those observed experimentally. Here we report similar simulations showing the formation of edge dislocations near the interfaces of vapor-deposited (111) [NiFe/CoFe/Cu] multilayers. Unlike misfit dislocations that accommodate lattice mismatch, the dislocation structures observed here increase the mismatch strain energy. Stop-action observations of the dynamically evolving atomic structures indicate that during deposition on the (111) surface of a fcc lattice, adatoms may occupy either fcc sites or hcp sites. This results in the random formation of fcc and hcp domains, with dislocations at the domain boundaries. These dislocations enable atoms to undergo a shift from fcc to hcp sites, or vice versa. These shifts lead to missing atoms, and therefore a later deposited layer can have missing planes compared to a previously deposited layer. This dislocation formation mechanism can create tensile stress in fcc films. The probability that such dislocations are formed was found to quickly diminish under energetic deposition conditions.

FORTRAN (2004--Zhou-X-W--Cu-Ag-Au--FORTRAN--ipr1)
Notes: These are the original files sent by X.W. Zhou (Sandia National Laboratory) and posted with his permission. C.A. Becker (NIST) modified create.f to include the reference in the generated potential files and the EAM.input file for this composition. These files can be used to generate alloy potentials for Cu, Ag, Au, Ni, Pd, Pt, Al, Pb, Fe, Mo, Ta, W, Mg, Co, Ti, and Zr by editing EAM.input. However, as addressed in the reference, these potentials were not designed for use with metal compounds.
File(s): superseded


LAMMPS pair_style eam/alloy (2004--Zhou-X-W--Cu-Ag-Au--LAMMPS--ipr1)
See Computed Properties
Notes: This file was generated by C.A. Becker (NIST) from create.f and posted with X.W. Zhou's (Sandia National Laboratory) permission.
File(s): superseded


FORTRAN (2004--Zhou-X-W--Cu-Ag-Au--FORTRAN--ipr2)
Notes: The file Zhou04_create_v2.f is an updated version of create.f modified by L.M. Hale (NIST) following advice from X.W. Zhou (Sandia National Laboratory). This version removes spurious fluctuations in the tabulated functions of the original potential files caused by single/double precision floating point number conflicts.
File(s):
LAMMPS pair_style eam/alloy (2004--Zhou-X-W--Cu-Ag-Au--LAMMPS--ipr2)
See Computed Properties
Notes: This file was generated by L.M. Hale from Zhou04_create_v2.f on 13 April 2018 and posted with X.W. Zhou's (Sandia National Laboratory) permission. This version corrects an issue with spurious fluctuations in the tabulated functions.
File(s):
See Computed Properties
Notes: Listing found at https://openkim.org. This KIM potential is based on the files from 2004--Zhou-X-W--Cu-Ag-Au--LAMMPS--ipr2.
Link(s):

Ag-Au-Cu-Ni-Pd-Pt

1989--Adams-J-B-Foiles-S-M-Wolfer-W-G--Ag-Au-Cu-Ni-Pd-Pt
J.B. Adams, S.M. Foiles, and W.G. Wolfer (1989), "Self-diffusion and impurity diffusion of fcc metals using the five-frequency model and the Embedded Atom Method", Journal of Materials Research, 4(1), 102-112. DOI: 10.1557/jmr.1989.0102.
Abstract: The activation energies for self-diffusion of transition metals (Au, Ag, Cu, Ni, Pd, Pt) have been calculated with the Embedded Atom Method (EAM); the results agree well with available experimental data for both mono-vacancy and di-vacancy mechanisms. The EAM was also used to calculate activation energies for vacancy migration near dilute impurities. These energies determine the atomic jump frequencies of the classic "five-frequency formula," which yields the diffusion rates of impurities by a mono-vacancy mechanism. These calculations were found to agree fairly well with experiment and with Neumann and Hirschwald's "Tm" model.

Notes: Cross-element interactions were only considered for small (1-2%) impurity concentrations and use a generalized universal function.

See Computed Properties
Notes: These files were obtained from http://enpub.fulton.asu.edu/cms/ potentials/main/main.htm and posted with the permission of J.B. Adams. The name of the file was retained, even though the header information lists the potential as 'universal 4.' Except for the first comment line, "cuu6.txt" is identical to "Cu_u6.eam" in the August 22, 2018 LAMMPS distribution.
File(s):

1986--Foiles-S-M-Baskes-M-I-Daw-M-S--Ag-Au-Cu-Ni-Pd-Pt
S.M. Foiles, M.I. Baskes, and M.S. Daw (1986), "Embedded-atom-method functions for the fcc metals Cu, Ag, Au, Ni, Pd, Pt, and their alloys", Physical Review B, 33(12), 7983-7991. DOI: 10.1103/physrevb.33.7983.
Abstract: A consistent set of embedding functions and pair interactions for use with the embedded-atom method [M.S. Daw and M. I. Baskes, Phys. Rev. B 29, 6443 (1984)] have been determined empirically to describe the fcc metals Cu, Ag, Au, Ni, Pd, and Pt as well as alloys containing these metals. The functions are determined empirically by fitting to the sublimation energy, equilibrium lattice constant, elastic constants, and vacancy-formation energies of the pure metals and the heats of solution of the binary alloys. The validity of the functions is tested by computing a wide range of properties: the formation volume and migration energy of vacancies, the formation energy, formation volume, and migration energy of divacancies and self-interstitials, the surface energy and geometries of the low-index surfaces of the pure metals, and the segregation energy of substitutional impurities to (100) surfaces.

Notes: The cross-elemental interactions use a universal function designed to show trends across the metals and is not fitted for revealing compounds.

LAMMPS pair_style eam (1986--Foiles-S-M--Ag-Au-Cu-Ni-Pd-Pt--LAMMPS--ipr1)
See Computed Properties
Notes: These files were taken from the August 22, 2018 LAMMPS distribution.
File(s):

Ag-Cu

2009--Wu-H-H-Trinkle-D-R--Cu-Ag
H.H. Wu, and D.R. Trinkle (2009), "Cu/Ag EAM potential optimized for heteroepitaxial diffusion from ab initio data", Computational Materials Science, 47(2), 577-583. DOI: 10.1016/j.commatsci.2009.09.026.
Abstract: A binary embedded-atom method (EAM) potential is optimized for Cu on Ag(1 1 1) by fitting to ab initio data. The fitting database consists of DFT calculations of Cu monomers and dimers on Ag(1 1 1), specifically their relative energies, adatom heights, and dimer separations. We start from the Mishin Cu–Ag EAM potential and first modify the Cu–Ag pair potential to match the FCC/HCP site energy difference then include Cu–Cu pair potential optimization for the entire database. The potential generated from this optimization method gives better agreement to DFT calculations of Cu monomers, dimers, and trimers than previous EAMs as well as a SEAM optimized potential. In trimer calculations, the optimized potential produces the DFT relative energy between FCC and HCP trimers, though a different ground state is predicted. We use the optimized potential to calculate diffusion barriers for Cu monomers, dimers, and trimers. The predicted monomer barrier is the same as DFT, while experimental barriers for monomers and dimers are lower than predicted here. We attribute the difference with experiment to the overestimation of surface adsorption energies by DFT and a simple correction is presented. Our results show that this optimization method is suitable for other heteroepitaxial systems; and that the optimized Cu–Ag EAM can be applied in the study of larger Cu islands on Ag(1 1 1).

Notes: 7 May 2010 Update: Reference changed from 'in preparation' at the request of Henry Wu (Univ. of Illinois).

LAMMPS pair_style eam/alloy (2009--Wu-H-H--Cu-Ag--LAMMPS--ipr1)
See Computed Properties
Notes: This file was provided by Henry H. Wu and posted with his permission. He also supplied a new file where the first line of the header was updated to reflect the publication status.
File(s):
See Computed Properties
Notes: Listing found at https://openkim.org. This KIM potential is based on the files from 2009--Wu-H-H--Cu-Ag--LAMMPS--ipr1.
Link(s):

2006--Williams-P-L-Mishin-Y-Hamilton-J-C--Cu-Ag
P.L. Williams, Y. Mishin, and J.C. Hamilton (2006), "An embedded-atom potential for the Cu-Ag system", Modelling and Simulation in Materials Science and Engineering, 14(5), 817-833. DOI: 10.1088/0965-0393/14/5/002.
Abstract: A new embedded-atom method (EAM) potential has been constructed for Ag by fitting to experimental and first-principles data. The potential accurately reproduces the lattice parameter, cohesive energy, elastic constants, phonon frequencies, thermal expansion, lattice-defect energies, as well as energies of alternate structures of Ag. Combining this potential with an existing EAM potential for Cu, a binary potential set for the Cu–Ag system has been constructed by fitting the cross-interaction function to first-principles energies of imaginary Cu–Ag compounds. Although properties used in the fit refer to the 0 K temperature (except for thermal expansion factors of pure Cu and Ag) and do not include liquid configurations, the potentials demonstrate good transferability to high-temperature properties. In particular, the entire Cu–Ag phase diagram calculated with the new potentials in conjunction with Monte Carlo simulations is in satisfactory agreement with experiment. This agreement suggests that EAM potentials accurately fit to 0 K properties can be capable of correctly predicting simple phase diagrams. Possible applications of the new potential set are outlined.

EAM tabulated functions (2006--Williams-P-L--Cu-Ag--table--ipr1)
Notes: These files were provided by Yuri Mishin.
File(s):
Ag F(ρ): F_ag.plt
Cu F(ρ): F_cu.plt
Ag ρ(r): fag.plt
Cu ρ(r): fcu.plt
Ag φ(r): pag.plt
Cu φ(r): pcu.plt
Cu-Ag φ(r): pcuag.plt

LAMMPS pair_style eam/alloy (2006--Williams-P-L--Cu-Ag--LAMMPS--ipr1)
See Computed Properties
Notes: This conversion was produced by Chandler Becker on 4 February 2009 from the plt files listed above. This version is compatible with LAMMPS. Validation and usage information can be found in CuAg06_releaseNotes_1.pdf. If you use this setfl file, please credit the website in addition to the original reference.
File(s):
OpenKIM (MO_128703483589)
See Computed Properties
Notes: Listing found at https://openkim.org. This KIM potential is based on the files from 2006--Williams-P-L--Cu-Ag--LAMMPS--ipr1.
Link(s):

Ag-H-Pd

2013--Hale-L-M-Wong-B-M-Zimmerman-J-A-Zhou-X-W--Pd-Ag-H-Hybrid
L.M. Hale, B.M. Wong, J.A. Zimmerman, and X.W. Zhou (2013), "Atomistic potentials for palladium-silver hydrides", Modelling and Simulation in Materials Science and Engineering, 21(4), 045005. DOI: 10.1088/0965-0393/21/4/045005.
Abstract: New embedded-atom method potentials for the ternary palladium–silver–hydrogen system are developed by extending a previously developed palladium–hydrogen potential. The ternary potentials accurately capture the heat of mixing and structural properties associated with solid solution alloys of palladium–silver. Stable hydrides are produced with properties that smoothly transition across the compositions. Additions of silver to palladium are predicted to alter the properties of the hydrides by decreasing the miscibility gap and increasing the likelihood of hydrogen atoms occupying tetrahedral interstitial sites over octahedral interstitial sites.

Notes: This listing is for the potential with the hybrid-style Pd-Ag interaction as described in the article.

See Computed Properties
Notes: This file was supplied by Jonathan Zimmerman (Sandia National Laboratories) and posted with his approval on 9 April 2014. Dr. Zimmerman noted that this file is the version that used the Hybrid style for the Pd-Ag interaction. This file has also been modified to include the citation in the header information and include '.alloy' in the file name for clarity.
File(s):
See Computed Properties
Notes: Listing found at https://openkim.org. This KIM potential is based on the files from 2013--Hale-L-M--Pd-Ag-H-Hybrid--LAMMPS--ipr1.
Link(s):

2013--Hale-L-M-Wong-B-M-Zimmerman-J-A-Zhou-X-W--Pd-Ag-H-Morse
L.M. Hale, B.M. Wong, J.A. Zimmerman, and X.W. Zhou (2013), "Atomistic potentials for palladium-silver hydrides", Modelling and Simulation in Materials Science and Engineering, 21(4), 045005. DOI: 10.1088/0965-0393/21/4/045005.
Abstract: New embedded-atom method potentials for the ternary palladium–silver–hydrogen system are developed by extending a previously developed palladium–hydrogen potential. The ternary potentials accurately capture the heat of mixing and structural properties associated with solid solution alloys of palladium–silver. Stable hydrides are produced with properties that smoothly transition across the compositions. Additions of silver to palladium are predicted to alter the properties of the hydrides by decreasing the miscibility gap and increasing the likelihood of hydrogen atoms occupying tetrahedral interstitial sites over octahedral interstitial sites.

Notes: This listing is for the potential with the Morse-style Pd-Ag interaction as described in the article.

LAMMPS pair_style eam/alloy (2013--Hale-L-M--Pd-Ag-H-Morse--LAMMPS--ipr1)
See Computed Properties
Notes: This file was supplied by Jonathan Zimmerman (Sandia National Laboratories) and posted with his approval on 9 April 2014. Dr. Zimmerman noted that this file is the version that used the Hybrid style for the Pd-Ag interaction. This file has also been modified to include the citation in the header information and include '.alloy' in the file name for clarity.
File(s):
OpenKIM (MO_108983864770)
See Computed Properties
Notes: Listing found at https://openkim.org. This KIM potential is based on the files from 2013--Hale-L-M--Pd-Ag-H-Morse--LAMMPS--ipr1.
Link(s):

Ag-Ni

2018--Pan-Z-Borovikov-V-Mendelev-M-I-Sansoz-F--Ag-Ni
Z. Pan, V. Borovikov, M.I. Mendelev, and F. Sansoz (2018), "Development of a semi-empirical potential for simulation of Ni solute segregation into grain boundaries in Ag", Modelling and Simulation in Materials Science and Engineering, 26(7), 075004. DOI: 10.1088/1361-651x/aadea3.
Abstract: An Ag–Ni semi-empirical potential was developed to simulate the segregation of Ni solutes at Ag grain boundaries (GBs). The potential combines a new Ag potential fitted to correctly reproduce the stable and unstable stacking fault energies in this metal and the existing Ni potential from Mendelev et al (2012 Phil. Mag. 92 4454–69). The Ag–Ni cross potential functions were fitted to ab initio data on the liquid structure of the Ag80Ni20 alloy to properly incorporate the Ag–Ni interaction at small atomic separations, and to the Ni segregation energies at different sites within a high-energy Σ9 (221) symmetric tilt GB. By deploying this potential with hybrid Monte Carlo/molecular dynamics simulations, it was found that heterogeneous segregation and clustering of Ni atoms at GBs and twin boundary defects occur at low Ni concentrations, 1 and 2 at%. This behavior is profoundly different from the homogeneous interfacial dispersion generally observed for the Cu segregation in Ag. A GB transformation to amorphous intergranular films was found to prevail at higher Ni concentrations (10 at%). The developed potential opens new opportunities for studying the selective segregation behavior of Ni solutes in interface-hardened Ag metals and its effect on plasticity.

Notes: Update 2018-10-05: Reference information updated. Previously referred to as 2018--Mendelev-M-I--Ag-Ni.

LAMMPS pair_style eam/fs (2018--Pan-Z--Ag-Ni--LAMMPS--ipr1)
See Computed Properties
Notes: This file was sent by M.I. Mendelev (Ames Laboratory) on 3 June 2018 and posted with his permission. Update 19 July 2021: The contact email in the file's header has been changed.
File(s):

AgTaO3

2013--Gao-H-Otero-de-la-Roza-A-Aouadi-S-M-et-al--AgTaO3
H. Gao, A. Otero-de-la-Roza, S.M. Aouadi, E.R. Johnson, and A. Martini (2013), "An empirical model for silver tantalate", Modelling and Simulation in Materials Science and Engineering, 21(5), 055002. DOI: 10.1088/0965-0393/21/5/055002.
Abstract: A set of parameters for the modified embedded atom method (MEAM) potential was developed to describe the perovskite silver tantalate (AgTaO3). First, MEAM parameters for AgO and TaO were determined based on the structural and elastic properties of the materials in a B1 reference structure predicted by density-functional theory (DFT). Then, using the fitted binary parameters, additional potential parameters were adjusted to enable the empirical potential to reproduce DFT-predicted lattice structure, elastic constants, cohesive energy and equation of state for the ternary AgTaO3. Finally, thermal expansion was predicted by a molecular dynamics (MD) simulation using the newly developed potential and compared directly to experimental values. The agreement with known experimental data for AgTaO3 is satisfactory, and confirms that the new empirical model is a good starting point for further MD studies.

LAMMPS pair_style meam (2013--Gao-H--AgTaO3--LAMMPS--ipr2)
See Computed Properties
Notes: These files were sent by Dr. Ashlie Martini (Univ. California Merced) and approved for distribution on 6 Jul. 2013. The file AgTaO3_40atoms.dat contains atomic coordinates for the 40-atom cell described in the paper. A sample LAMMPS input script to calculate the cohesive energy of that configuration is in in.AgTaO3. This potential was tested on the following versions of LAMMPS: 5Mar12, 12Apr12, 19May12, 4Jul12, 28Oct12, 21Feb13, 5Jun13, 13Jun13, 17Jun13.
File(s):

Al

2017--Botu-V-Batra-R-Chapman-J-Ramprasad-R--Al
V. Botu, R. Batra, J. Chapman, and R. Ramprasad (2017), "Machine Learning Force Fields: Construction, Validation, and Outlook", The Journal of Physical Chemistry C, 121(1), 511-522. DOI: 10.1021/acs.jpcc.6b10908.
Abstract: Force fields developed with machine learning methods in tandem with quantum mechanics are beginning to find merit, given their (i) low cost, (ii) accuracy, and (iii) versatility. Recently, we proposed one such approach, wherein, the vectorial force on an atom is computed directly from its environment. Here, we discuss the multistep workflow required for their construction, which begins with generating diverse reference atomic environments and force data, choosing a numerical representation for the atomic environments, down selecting a representative training set, and lastly the learning method itself, for the case of Al. The constructed force field is then validated by simulating complex materials phenomena such as surface melting and stress–strain behavior, that truly go beyond the realm of ab initio methods, both in length and time scales. To make such force fields truly versatile an attempt to estimate the uncertainty in force predictions is put forth, allowing one to identify areas of poor performance and paving the way for their continual improvement.

Notes: This potential is an updated version of 2015--Botu-V-Ramprasad-R--Al. Note that the AGNI potentials are machine learning potentials designed to directly reproduce forces and therefore do not directly compute atomic energies.

LAMMPS pair_style agni (2017--Botu-V--Al--LAMMPS--ipr1)
See Computed Properties
Notes: This file was taken from the August 22, 2018 LAMMPS distribution.
File(s):

2015--Botu-V-Ramprasad-R--Al
V. Botu, and R. Ramprasad (2015), "Learning scheme to predict atomic forces and accelerate materials simulations", Physical Review B, 92(9), 094306. DOI: 10.1103/physrevb.92.094306.
Abstract: The behavior of an atom in a molecule, liquid, or solid is governed by the force it experiences. If the dependence of this vectorial force on the atomic chemical environment can be learned efficiently with high fidelity from benchmark reference results—using "big-data" techniques, i.e., without resorting to actual functional forms—then this capability can be harnessed to enormously speed up in silico materials simulations. The present contribution provides several examples of how such a force field for Al can be used to go far beyond the length-scale and time-scale regimes presently accessible using quantum-mechanical methods. It is argued that pathways are available to systematically and continuously improve the predictive capability of such a learned force field in an adaptive manner, and that this concept can be generalized to include multiple elements.

Notes: This potential is noted as being depreciated in favor of 2017--Botu-V-Batra-R-Chapman-J-Ramprasad-R--Al. Note that the AGNI potentials are machine learning potentials designed to directly reproduce forces and therefore do not directly compute atomic energies.

LAMMPS pair_style agni (2015--Botu-V--Al--LAMMPS--ipr1)
See Computed Properties
Notes: This file was taken from the August 22, 2018 LAMMPS distribution.
File(s): superseded



2015--Choudhary-K-Liang-T-Chernatynskiy-A-et-al--Al
K. Choudhary, T. Liang, A. Chernatynskiy, Z. Lu, A. Goyal, S.R. Phillpot, and S.B. Sinnott (2015), "Charge optimized many-body potential for aluminum", Journal of Physics: Condensed Matter, 27(1), 015003. DOI: 10.1088/0953-8984/27/1/015003.
Abstract: An interatomic potential for Al is developed within the third generation of the charge optimized many-body (COMB3) formalism. The database used for the parameterization of the potential consists of experimental data and the results of first-principles and quantum chemical calculations. The potential exhibits reasonable agreement with cohesive energy, lattice parameters, elastic constants, bulk and shear modulus, surface energies, stacking fault energies, point defect formation energies, and the phase order of metallic Al from experiments and density functional theory. In addition, the predicted phonon dispersion is in good agreement with the experimental data and first-principles calculations. Importantly for the prediction of the mechanical behavior, the unstable stacking fault energetics along the <1 2 -1> direction on the (1 1 1) plane are similar to those obtained from first-principles calculations. The polycrsytal when strained shows responses that are physical and the overall behavior is consistent with experimental observations.

LAMMPS pair_style comb3 (2015--Choudhary-K--Al--LAMMPS--ipr1)
See Computed Properties
Notes: This file was obtained from Jarvis-FF (https://www.ctcms.nist.gov/~knc6/periodic.html) on 9 Nov. 2018 and posted at Kamal Choudhary's (NIST) request.
File(s):
ffield.comb3.NiAlO


2015--Pascuet-M-I-Fernandez-J-R--Al
M.I. Pascuet, and J.R. Fernández (2015), "Atomic interaction of the MEAM type for the study of intermetallics in the Al-U alloy", Journal of Nuclear Materials, 467, 229-239. DOI: 10.1016/j.jnucmat.2015.09.030.
Abstract: Interaction for both pure Al and Al–U alloys of the MEAM type are developed. The obtained Al interatomic potential assures its compatibility with the details of the framework presently adopted. The Al–U interaction fits various properties of the Al2U, Al3U and Al4U intermetallics. The potential verifies the stability of the intermetallic structures in a temperature range compatible with that observed in the phase diagram, and also takes into account the greater stability of these structures relative to others that are competitive in energy. The intermetallics are characterized by calculating elastic and thermal properties and point defect parameters. Molecular dynamics simulations show a growth of the Al3U intermetallic in the Al/U interface in agreement with experimental evidence.

LAMMPS pair_style meam (2015--Pascuet-M-I--Al--LAMMPS--ipr1)
See Computed Properties
Notes: These files were sent by M.I. Pascuet (CONICET) on 4 May 2016 and posted with her permission.
File(s):
Al.meam
library-Al.meam


2009--Winey-J-M-Kubota-A-Gupta-Y-M--Al
J.M. Winey, A. Kubota, and Y.M. Gupta (2009), "A thermodynamic approach to determine accurate potentials for molecular dynamics simulations: thermoelastic response of aluminum", Modelling and Simulation in Materials Science and Engineering, 17(5), 055004. DOI: 10.1088/0965-0393/17/5/055004.
Abstract: An accurate description of the thermoelastic response of solids is central to classical simulations of compression- and deformation-induced condensed matter phenomena. To achieve the correct thermoelastic description in classical simulations, a new approach is presented for determining interatomic potentials. In this two-step approach, values of atomic volume and the second- and third-order elastic constants measured at room temperature are extrapolated to T = 0 K using classical thermo-mechanical relations that are thermodynamically consistent. Next, the interatomic potentials are fitted to these T = 0 K pseudo-values. This two-step approach avoids the low-temperature quantum regime, providing consistency with the assumptions of classical simulations and enabling the correct thermoelastic response to be recovered in simulations at room temperature and higher. As an example of our approach, an EAM potential was developed for aluminum, providing significantly better agreement with thermoelastic data compared with previous EAM potentials. The approach presented here is quite general and can be used for other potential types as well, the key restriction being the inapplicability of classical atomistic simulations when quantum effects are important.
J.M. Winey, A. Kubota, and Y.M. Gupta (2010), "Thermodynamic approach to determine accurate potentials for molecular dynamics simulations: thermoelastic response of aluminum", Modelling and Simulation in Materials Science and Engineering, 18(2), 029801. DOI: 10.1088/0965-0393/18/2/029801.

LAMMPS pair_style eam/alloy (2010--Winey-J-M--Al--LAMMPS--ipr1)
See Computed Properties
Notes: This file was sent by Jonathan Zimmerman (Sandia National Laboratory) and approved for distribution by Michael Winey (Washington State University). It was posted on 16 March 2011.
File(s):
Al_wkg_MSMSE_2009.set

OpenKIM (MO_149316865608)
See Computed Properties
Notes: Listing found at https://openkim.org. This KIM potential is based on the files from 2010--Winey-J-M--Al--LAMMPS--ipr1.
Link(s):
KIM page EAM_Dynamo_WineyKubotaGupta_2010_Al__MO_149316865608_005

J.M. Winey, A. Kubota, and Y.M. Gupta (2010), "Thermodynamic approach to determine accurate potentials for molecular dynamics simulations: thermoelastic response of aluminum", Modelling and Simulation in Materials Science and Engineering, 18(2), 029801. DOI: 10.1088/0965-0393/18/2/029801.

LAMMPS pair_style eam/alloy (2010--Winey-J-M--Al--LAMMPS--ipr1)
See Computed Properties
Notes: This file was sent by Jonathan Zimmerman (Sandia National Laboratory) and approved for distribution by Michael Winey (Washington State University). It was posted on 16 March 2011.
File(s):
Al_wkg_MSMSE_2009.set

OpenKIM (MO_149316865608)
See Computed Properties
Notes: Listing found at https://openkim.org. This KIM potential is based on the files from 2010--Winey-J-M--Al--LAMMPS--ipr1.
Link(s):
KIM page EAM_Dynamo_WineyKubotaGupta_2010_Al__MO_149316865608_005


2009--Zhakhovskii-V-V-Inogamov-N-A-Petrov-Y-V-et-al--Al
V.V. Zhakhovskii, N.A. Inogamov, Y.V. Petrov, S.I. Ashitkov, and K. Nishihara (2009), "Molecular dynamics simulation of femtosecond ablation and spallation with different interatomic potentials", Applied Surface Science, 255(24), 9592-9596. DOI: 10.1016/j.apsusc.2009.04.082.
Abstract: Fast heating of target material by femtosecond laser pulse (fsLP) with duration τL~40–100fs results in the formation of thermomechanically stressed state. Its unloading may cause frontal cavitation of subsurface layer at a depth of 50nm for Al and 100nm for Au. The compression wave propagating deep into material hits the rear-side of the target with the formation of rarefaction wave. The last may produce cracks and rear-side spallation. Results of MD simulations of ablation and spallation of Al and Au metals under action fsLP are presented. It is shown that the used EAM potentials (Mishin et al. and our new one) predict the different ablation and spallation thresholds on absorbed fluence in Al: ablation Fa=6065mJ/cm2 and spallation Fs=120190mJ/cm2, where numbers in brackets show the corresponding values for Mishin potential. The strain rate in spallation zone was 4.3×10^9 1/s at spallation threshold. Simulated spall strength of Al is 7.48.7GPa, that is noticeably less than 10.314GPa obtained from acoustic approximation with the use of velocity pullback on velocity profile of free rear surface. The ablation threshold Fa≈120mJ/cm2 and crater depth of 110nm are obtained in MD simulations of gold with the new EAM potential. They agree well with experiment.

Notes: Dr. Zhakhovsky noted that the potential was used in several works related to MD simulations of laser ablation and shock-wave loading, and that the potential was designed to reproduce the cold stress curves, the shock Hugoniot, and the melting point with good accuracy.

LAMMPS pair_style eam/alloy (2009--Zhakhovskii-V-V--Al--LAMMPS--ipr1)
See Computed Properties
Notes: These files were sent by V.V. Zhakhovsky (VNIIA) on 25 Feb. 2017 and posted with his permission. Update March 15, 2020: This version was identified to not be compatible with LAMMPS.
File(s): retracted


LAMMPS pair_style eam/alloy (2009--Zhakhovskii-V-V--Al--LAMMPS--ipr2)
See Computed Properties
Notes: This file was posted on 15 March 2020. It corrects the 4th line to be compatible with LAMMPS by removing the comment "3.36069 ! cohesive energy [eV] to check".
File(s):
Al-2009.eam.alloy

OpenKIM (MO_519613893196)
See Computed Properties
Notes: Listing found at https://openkim.org. This KIM potential is based on the files from 2009--Zhakhovskii-V-V--Al--LAMMPS--ipr1.
Link(s):
KIM page EAM_Dynamo_Zhakhovsky_2009_Al__MO_519613893196_000


2008--Mendelev-M-I-Kramer-M-J-Becker-C-A-Asta-M--Al
M.I. Mendelev, M.J. Kramer, C.A. Becker, and M. Asta (2008), "Analysis of semi-empirical interatomic potentials appropriate for simulation of crystalline and liquid Al and Cu", Philosophical Magazine, 88(12), 1723-1750. DOI: 10.1080/14786430802206482.
Abstract: We investigate the application of embedded atom method (EAM) interatomic potentials in the study of crystallization kinetics from deeply undercooled melts, focusing on the fcc metals Al and Cu. For this application, it is important that the EAM potential accurately reproduces melting properties and liquid structure, in addition to the crystalline properties most commonly fit in its development. To test the accuracy of previously published EAM potentials and to guide the development of new potential in this work, first-principles calculations have been performed and new experimental measurements of the Al and Cu liquid structure factors have been undertaken by X-ray diffraction. We demonstrate that the previously published EAM potentials predict a liquid structure that is too strongly ordered relative to measured diffraction data. We develop new EAM potentials for Al and Cu to improve the agreement with the first-principles and measured liquid diffraction data. Furthermore, we calculate liquid-phase diffusivities and find that this quantity correlates well with the liquid structure. Finally, we perform molecular dynamics simulations of crystal nucleation from the melt during quenching at constant cooling rate. We find that EAM potentials, which predict the same zero-temperature crystal properties but different liquid structures, can lead to quite different crystallization kinetics. More interestingly, we find that two potentials predicting very similar equilibrium solid and liquid properties can still produce very different crystallization kinetics under far-from-equilibrium conditions characteristic of the rapid quenching simulations employed here.

LAMMPS pair_style eam/fs (2008--Mendelev-M-I--Al--LAMMPS--ipr1)
See Computed Properties
Notes: This file was provided by Mikhail Mendelev. Besides comment lines, this file is identical to "Al_mm.eam.fs" in the August 22, 2018 LAMMPS distribution. Update 19 July 2021: The contact email in the file's header has been changed.
File(s):
Al1.eam.fs

OpenKIM (MO_106969701023)
See Computed Properties
Notes: Listing found at https://openkim.org. This KIM potential is based on the files from 2008--Mendelev-M-I--Al--LAMMPS--ipr1.
Link(s):
KIM page EAM_Dynamo_MendelevKramerBecker_2008_Al__MO_106969701023_005


2004--Liu-X-Y-Ercolessi-F-Adams-J-B--Al
X.-Y. Liu, F. Ercolessi, and J.B. Adams (2004), "Aluminium interatomic potential from density functional theory calculations with improved stacking fault energy", Modelling and Simulation in Materials Science and Engineering, 12(4), 665-670. DOI: 10.1088/0965-0393/12/4/007.
Abstract: A new Al potential with improved stacking fault energy is constructed using the force-matching method. The potential is fitted to an ab initio forces database and various experimental data. By using a slightly larger cut-off, we found that the new potential gives the relaxed stacking fault energy in the experimental range without changing the excellent thermal and surface properties of the original force-matching Al potential given by Ercolessi and Adams (1994 Europhys. Lett. 26 583).

EAM setfl (2004--Liu-X-Y--Al--table--ipr1)
Notes: NEWAl.txt was obtained from http://enpub.fulton.asu.edu/cms/potentials/main/main.htm and posted with the permission of J.B. Adams.
File(s):
NEWAl.txt

LAMMPS pair_style eam/alloy (2004--Liu-X-Y--Al--LAMMPS--ipr1)
See Computed Properties
Notes: Al-LEA.eam.alloy is a version of the same potential which has been formatted for use in LAMMPS ("D" was replaced by "e", "FCC" by "fcc", and "Al" was added on line 3).
File(s):
Al-LEA.eam.alloy

OpenKIM (MO_051157671505)
See Computed Properties
Notes: Listing found at https://openkim.org. This KIM potential is based on the files from 2004--Liu-X-Y--Al--LAMMPS--ipr1.
Link(s):
KIM page EAM_Dynamo_LiuErcolessiAdams_2004_Al__MO_051157671505_000


2004--Zhou-X-W-Johnson-R-A-Wadley-H-N-G--Al
X.W. Zhou, R.A. Johnson, and H.N.G. Wadley (2004), "Misfit-energy-increasing dislocations in vapor-deposited CoFe/NiFe multilayers", Physical Review B, 69(14), 144113. DOI: 10.1103/physrevb.69.144113.
Abstract: Recent molecular dynamics simulations of the growth of [Ni0.8Fe0.2/Au] multilayers have revealed the formation of misfit-strain-reducing dislocation structures very similar to those observed experimentally. Here we report similar simulations showing the formation of edge dislocations near the interfaces of vapor-deposited (111) [NiFe/CoFe/Cu] multilayers. Unlike misfit dislocations that accommodate lattice mismatch, the dislocation structures observed here increase the mismatch strain energy. Stop-action observations of the dynamically evolving atomic structures indicate that during deposition on the (111) surface of a fcc lattice, adatoms may occupy either fcc sites or hcp sites. This results in the random formation of fcc and hcp domains, with dislocations at the domain boundaries. These dislocations enable atoms to undergo a shift from fcc to hcp sites, or vice versa. These shifts lead to missing atoms, and therefore a later deposited layer can have missing planes compared to a previously deposited layer. This dislocation formation mechanism can create tensile stress in fcc films. The probability that such dislocations are formed was found to quickly diminish under energetic deposition conditions.

FORTRAN (2004--Zhou-X-W--Al--FORTRAN--ipr1)
Notes: These are the original files sent by X.W. Zhou (Sandia National Laboratory) and posted with his permission. C.A. Becker (NIST) modified create.f to include the reference in the generated potential files and the EAM.input file for this composition. These files can be used to generate alloy potentials for Cu, Ag, Au, Ni, Pd, Pt, Al, Pb, Fe, Mo, Ta, W, Mg, Co, Ti, and Zr by editing EAM.input. However, as addressed in the reference, these potentials were not designed for use with metal compounds.
File(s): superseded


LAMMPS pair_style eam/alloy (2004--Zhou-X-W--Al--LAMMPS--ipr1)
See Computed Properties
Notes: This file was generated by C.A. Becker (NIST) from create.f and posted with X.W. Zhou's (Sandia National Laboratory) permission.
File(s): superseded


FORTRAN (2004--Zhou-X-W--Al--FORTRAN--ipr2)
Notes: The file Zhou04_create_v2.f is an updated version of create.f modified by L.M. Hale (NIST) following advice from X.W. Zhou (Sandia National Laboratory). This version removes spurious fluctuations in the tabulated functions of the original potential files caused by single/double precision floating point number conflicts.
File(s):
README_v2
Zhou04_create_v2.f
EAM.input.Al
EAM_code

LAMMPS pair_style eam/alloy (2004--Zhou-X-W--Al--LAMMPS--ipr2)
See Computed Properties
Notes: This file was generated by L.M. Hale from Zhou04_create_v2.f on 13 April 2018 and posted with X.W. Zhou's (Sandia National Laboratory) permission. This version corrects an issue with spurious fluctuations in the tabulated functions.
File(s):
Al_Zhou04.eam.alloy

OpenKIM (MO_131650261510)
See Computed Properties
Notes: Listing found at https://openkim.org. This KIM potential is based on the files from 2004--Zhou-X-W--Al--LAMMPS--ipr1.
Link(s): superseded


OpenKIM (MO_060567868558)
See Computed Properties
Notes: Listing found at https://openkim.org. This KIM potential is based on the files from 2004--Zhou-X-W--Al--LAMMPS--ipr2.
Link(s):
KIM page EAM_Dynamo_ZhouJohnsonWadley_2004NISTretabulation_Al__MO_060567868558_000


2003--Zope-R-R-Mishin-Y--Al
R.R. Zope, and Y. Mishin (2003), "Interatomic potentials for atomistic simulations of the Ti-Al system", Physical Review B, 68(2), 024102. DOI: 10.1103/physrevb.68.024102.
Abstract: Semiempirical interatomic potentials have been developed for Al, α−Ti, and γ−TiAl within the embedded atom method (EAM) formalism by fitting to a large database of experimental as well as ab initio data. The ab initio calculations were performed by the linearized augmented plane wave (LAPW) method within the density functional theory to obtain the equations of state for a number of crystal structures of the Ti-Al system. Some of the calculated LAPW energies were used for fitting the potentials while others for examining their quality. The potentials correctly predict the equilibrium crystal structures of the phases and accurately reproduce their basic lattice properties. The potentials are applied to calculate the energies of point defects, surfaces, and planar faults in the equilibrium structures. Unlike earlier EAM potentials for the Ti-Al system, the proposed potentials provide a reasonable description of the lattice thermal expansion, demonstrating their usefulness for molecular-dynamics and Monte Carlo simulations at high temperatures. The energy along the tetragonal deformation path (Bain transformation) in γ−TiAl calculated with the EAM potential is in fairly good agreement with LAPW calculations. Equilibrium point defect concentrations in γ−TiAl are studied using the EAM potential. It is found that antisite defects strongly dominate over vacancies at all compositions around stoichiometry, indicating that γ−TiAl is an antisite disorder compound, in agreement with experimental data.

EAM tabulated functions (2003--Zope-R-R--Al--table--ipr1)
Notes: These files were provided by Yuri Mishin.
File(s):
F(ρ): F_al.plt
ρ(r): fal.plt
φ(r): pal.plt

LAMMPS pair_style eam/alloy (2003--Zope-R-R--Al--LAMMPS--ipr1)
See Computed Properties
Notes: This conversion was produced by Chandler Becker on 4 February 2009 from the plt files listed above. This version is compatible with LAMMPS. Validation and usage information can be found in Al03_releaseNotes_1.pdf. If you use this setfl file, please credit the website in addition to the original reference.
File(s):
Al03.eam.alloy
Al03_releaseNotes_1.pdf

OpenKIM (MO_664470114311)
See Computed Properties
Notes: Listing found at https://openkim.org. This KIM potential is based on the files from 2003--Zope-R-R--Al--LAMMPS--ipr1.
Link(s):
KIM page EAM_Dynamo_ZopeMishin_2003_Al__MO_664470114311_005


2000--Sturgeon-J-B-Laird-B-B--Al
J.B. Sturgeon, and B.B. Laird (2000), "Adjusting the melting point of a model system via Gibbs-Duhem integration: Application to a model of aluminum", Physical Review B, 62(22), 14720-14727. DOI: 10.1103/physrevb.62.14720.
Abstract: Model interaction potentials for real materials are generally optimized with respect to only those experimental properties that are easily evaluated as mechanical averages [e.g., elastic constants (at T=0 K), static lattice energies, and liquid structure]. For such potentials, agreement with experiment for the nonmechanical properties, such as the melting point, is not guaranteed and such values can deviate significantly from experiment. We present a method for reparametrizing any model interaction potential of a real material to adjust its melting temperature to a value that is closer to its experimental melting temperature. This is done without significantly affecting the mechanical properties for which the potential was modeled. This method is an application of Gibbs-Duhem integration [D. Kofke, Mol. Phys. 78, 1331 (1993)]. As a test we apply the method to an embedded atom model of aluminum [J. Mei and J.W. Davenport, Phys. Rev. B 46, 21 (1992)] for which the melting temperature for the thermodynamic limit is 826.4±1.3 K—somewhat below the experimental value of 933 K. After reparametrization, the melting temperature of the modified potential is found to be 931.5±1.5 K.

LAMMPS pair_style eam/fs (2000--Sturgeon-J-B--Al--LAMMPS--ipr1)
See Computed Properties
Notes: This file was implemented by Mikhail Mendelev and posted with the approval of Dr. Mendelev and Brian Laird. Update 19 July 2021: The contact email in the file's header has been changed.
File(s):
MDSL.eam.fs

OpenKIM (MO_120808805541)
See Computed Properties
Notes: Listing found at https://openkim.org. This KIM potential is based on the files from 2000--Sturgeon-J-B--Al--LAMMPS--ipr1.
Link(s):
KIM page EAM_Dynamo_SturgeonLaird_2000_Al__MO_120808805541_005


1999--Mishin-Y-Farkas-D-Mehl-M-J-Papaconstantopoulos-D-A--Al
Y. Mishin, D. Farkas, M.J. Mehl, and D.A. Papaconstantopoulos (1999), "Interatomic potentials for monoatomic metals from experimental data and ab initio calculations", Physical Review B, 59(5), 3393-3407. DOI: 10.1103/physrevb.59.3393.
Abstract: We demonstrate an approach to the development of many-body interatomic potentials for monoatomic metals with improved accuracy and reliability. The functional form of the potentials is that of the embedded-atom method, but the interesting features are as follows: (1) The database used for the development of a potential includes both experimental data and a large set of energies of different alternative crystalline structures of the material generated by ab initio calculations. We introduce a rescaling of interatomic distances in an attempt to improve the compatibility between experimental and ab initio data. (2) The optimum parametrization of the potential for the given database is obtained by alternating the fitting and testing steps. The testing step includes a comparison between the ab initio structural energies and those predicted by the potential. This strategy allows us to achieve the best accuracy of fitting within the intrinsic limitations of the potential model. Using this approach we develop reliable interatomic potentials for Al and Ni. The potentials accurately reproduce basic equilibrium properties of these metals, the elastic constants, the phonon-dispersion curves, the vacancy formation and migration energies, the stacking fault energies, and the surface energies. They also predict the right relative stability of different alternative structures with coordination numbers ranging from 12 to 4. The potentials are expected to be easily transferable to different local environments encountered in atomistic simulations of lattice defects.

EAM tabulated functions (1999--Mishin-Y--Al--table--ipr1)
Notes: These files were provided by Yuri Mishin.
File(s):
F(ρ): F_al.plt
ρ(r): fal.plt
φ(r): pal_m.plt

LAMMPS pair_style eam/alloy (1999--Mishin-Y--Al--LAMMPS--ipr1)
See Computed Properties
Notes: This conversion was produced by Chandler Becker on 30 December 2008 from the plt files listed above. This version is compatible with LAMMPS. Validation and usage information can be found in Al99_releaseNotes_1.pdf. If you use this setfl file, please credit the website in addition to the original reference.
File(s):
Al99.eam.alloy
Al99_releaseNotes_1.pdf

OpenKIM (MO_651801486679)
See Computed Properties
Notes: Listing found at https://openkim.org. This KIM potential is based on the files from 1999--Mishin-Y--Al--LAMMPS--ipr1.
Link(s):
KIM page EAM_Dynamo_MishinFarkasMehl_1999_Al__MO_651801486679_005


Al-Co

2015--Purja-Pun-G-P-Yamakov-V-Mishin-Y--Al-Co
G.P. Purja Pun, V. Yamakov, and Y. Mishin (2015), "Interatomic potential for the ternary Ni–Al–Co system and application to atomistic modeling of the B2–L10 martensitic transformation", Modelling and Simulation in Materials Science and Engineering, 23(6), 065006. DOI: 10.1088/0965-0393/23/6/065006.
Abstract: Ni–Al–Co is a promising system for ferromagnetic shape memory applications. This paper reports on the development of a ternary embedded-atom potential for this system by fitting to experimental and first-principles data. Reasonably good agreement is achieved for physical properties between values predicted by the potential and values known from experiment and/or first-principles calculations. The potential reproduces basic features of the martensitic phase transformation from the B2-ordered high-temperature phase to a tetragonal CuAu-ordered low-temperature phase. The compositional and temperature ranges of this transformation and the martensite microstructure predicted by the potential compare well with existing experimental data. These results indicate that the proposed potential can be used for simulations of the shape memory effect in the Ni–Al–Co system.

Notes: The reference information was updated on 26 Aug. 2015.

LAMMPS pair_style eam/alloy (2015--Purja-Pun-G-P--Al-Co--LAMMPS--ipr1)
See Computed Properties
Notes: This file was sent by Y. Mishin (George Mason Univ.) on 17 Sept. 2013 and was posted on 17 Jan. 2014. This version is compatible with LAMMPS. Validation and usage information can be found in Mishin-Al-Co-2013_lammps.pdf.
File(s): superseded


LAMMPS pair_style eam/alloy (2015--Purja-Pun-G-P--Al-Co--LAMMPS--ipr2)
See Computed Properties
Notes: This file was sent by G Purja Pun (George Mason Univ.) on 12 Oct. 2015 and was posted on 15 Dec. 2015. This version corrects an issue with the cutoff distance for Co interactions that was discovered during calculations of pressure dependent elastic constants.
File(s):
See Computed Properties
Notes: Listing found at https://openkim.org. This KIM potential is based on the files from 2015--Purja-Pun-G-P--Al-Co--LAMMPS--ipr2.
Link(s):

Al-Co-Ni

2015--Purja-Pun-G-P-Yamakov-V-Mishin-Y--Ni-Al-Co
G.P. Purja Pun, V. Yamakov, and Y. Mishin (2015), "Interatomic potential for the ternary Ni–Al–Co system and application to atomistic modeling of the B2–L10 martensitic transformation", Modelling and Simulation in Materials Science and Engineering, 23(6), 065006. DOI: 10.1088/0965-0393/23/6/065006.
Abstract: Ni–Al–Co is a promising system for ferromagnetic shape memory applications. This paper reports on the development of a ternary embedded-atom potential for this system by fitting to experimental and first-principles data. Reasonably good agreement is achieved for physical properties between values predicted by the potential and values known from experiment and/or first-principles calculations. The potential reproduces basic features of the martensitic phase transformation from the B2-ordered high-temperature phase to a tetragonal CuAu-ordered low-temperature phase. The compositional and temperature ranges of this transformation and the martensite microstructure predicted by the potential compare well with existing experimental data. These results indicate that the proposed potential can be used for simulations of the shape memory effect in the Ni–Al–Co system.

Notes: The reference information was updated on 26 Aug. 2015.

See Computed Properties
Notes: This file was sent by Y. Mishin (George Mason Univ.) on 17 Sept. 2013 and was posted on 17 Jan. 2014. This version is compatible with LAMMPS. Validation and usage information can be found in Mishin-Ni-Al-Co-2013_lammps.pdf.
File(s): superseded


See Computed Properties
Notes: This file was sent by G Purja Pun (George Mason Univ.) on 12 Oct. 2015 and was posted on 15 Dec. 2015. This version corrects an issue with the cutoff distance for Co interactions that was discovered during calculations of pressure dependent elastic constants.
File(s):
See Computed Properties
Notes: Listing found at https://openkim.org. This KIM potential is based on the files from 2015--Purja-Pun-G-P--Ni-Al-Co--LAMMPS--ipr2.
Link(s):

Al-Cu

2016--Zhou-X-W-Ward-D-K-Foster-M-E--Al-Cu
X.W. Zhou, D.K. Ward, and M.E. Foster (2016), "An analytical bond-order potential for the aluminum copper binary system", Journal of Alloys and Compounds, 680, 752-767. DOI: 10.1016/j.jallcom.2016.04.055.
Abstract: Al-rich Al1−xCux alloys are important structural materials in the aerospace industry due to their high strength to density ratio. They are also emerging materials for hydrogen containing structures due to their potentially high resistance to hydrogen embrittlement. To enable accurate simulations of the mechanical behavior of Al1−xCux alloys that can guide material improvement, we have developed a high-fidelity analytical bond-order potential (BOP) for the Al-Cu system (the code is publically available in molecular dynamics package LAMMPS). The formalism of the potential is derived from quantum mechanical theories, and the parameters are optimized in an iteration fashion. The iterations begin by fitting properties of a variety of elemental and compound configurations (with coordination varying from 1 to 12) including small clusters, bulk lattices, defects, and surfaces. Following the fitting process, crystalline growth of important equilibrium phases is checked through molecular dynamics simulations of vapor deposition. It is demonstrated that this Al-Cu bond-order potential has unique advantages relative to existing literature potentials in reproducing structural and property tends from experiments and quantum-mechanical calculations, and providing good descriptions of melting temperature, defect characteristics, and surface energies. Most importantly, this BOP is the only potential currently available capable of capturing the Al-rich end of the Al-Cu phase diagram. This capability is rigorously verified by the potential's ability to capture the crystalline growth of the ground-state structures for elemental Al and Cu, as well as, the θ and θ′ phases of the Al2Cu compound in vapor deposition simulations.

See Computed Properties
Notes: This file was taken from the August 22, 2018 LAMMPS distribution and listed as having been created by X.W. Zhou (Sandia) Update Jan 15, 2020: It was noticed that the original file hosted here was truncated and incomplete. The incomplete file will not work with LAMMPS versions after 7 Aug 2019. For earlier LAMMPS versions, both versions of the parameter file appear to behave identically.
File(s): superseded


See Computed Properties
Notes: This file was provided by Xiaowang Zhou (Sandia) on Dec 19, 2019. Unlike the eariler implementation above, this file is complete and should work with any version of LAMMPS that supports the bop pair style.
File(s):

2011--Apostol-F-Mishin-Y--Al-Cu
F. Apostol, and Y. Mishin (2011), "Interatomic potential for the Al-Cu system", Physical Review B, 83(5), 054116. DOI: 10.1103/physrevb.83.054116.
Abstract: An angular-dependent interatomic potential has been developed for the Al-Cu system based on existing embedded-atom method potentials for Al and Cu and fitting of the cross-interaction functions to experimental and first-principles data. The potential reproduces lattice parameters, formation energies, and elastic constants of the θ and θ′ phases of this system. It predicts the θ′ phase to be more stable than θ at 0 K but to become less stable at hight temperatures due to vibrational entropy. The temperate and entropy of this phase transformation are in good agreement with previous first-principles calculations [C. Wolverton and V. Ozoliņš, Phys. Rev. Lett. 86, 5518 (2001)]. The potential provides a reasonable description of the phase stability across the Al-Cu phase diagram, dilute heats of solution, and other thermodynamic properties. It has also been tested for generalized stacking fault energies in the presence of a copper layer embedded in Al. This configuration bears some resemblance to Guinier-Preston zones that strengthen Al-Cu alloys. The trends predicted by the potential for uniform shearing of this configuration are in agreement with results of first-principles density-functional calculations performed in this work. The potential is expected to be suitable for atomistic simulations of precipitation hardening of Al-Cu alloys.

Notes: Prof. Mishin requested the following be noted: There was a typing error in the original ADP paper (Y. Mishin, et al., Acta Mat. 53, 4029 (2005)). More information and a correction can be found in the FAQ.

ADP tabulated functions (2011--Apostol-F--Al-Cu--table--ipr1)
Notes: These files were provided by Yuri Mishin (George Mason University) and posted on 16 Mar. 2011.
File(s):
LAMMPS pair_style adp (2011--Apostol-F--Al-Cu--LAMMPS--ipr1)
See Computed Properties
Notes: This file was taken from the August 22, 2018 LAMMPS distribution and listed as having been created by CV Singh (Cornell). The tabulated functions and their numerical derivatives appear consistent between this file and the tables listed above.
File(s):

1999--Liu-X-Y-Liu-C-L-Borucki-L-J--Al-Cu
X.-Y. Liu, C.-L. Liu, and L.J. Borucki (1999), "A new investigation of copper's role in enhancing Al-Cu interconnect electromigration resistance from an atomistic view", Acta Materialia, 47(11), 3227-3231. DOI: 10.1016/s1359-6454(99)00186-x.
Abstract: An explanation of why Cu prolongs the electromigration lifetime of Al–Cu interconnects in comparison to Al is provided based on atomistic calculations. Copper preferentially segregates to the grain-boundary (GB) interstitial sites. The overall GB diffusivity is reduced with Cu segregation at GB sites. Calculation results predict that in Al(Cu) lines, Cu will diffuse first, with Al diffusion essentially suppressed because of a higher diffusion activation energy. The activation energy for Cu incubation diffusion is calculated to be 0.95 eV. The predictions are in excellent agreement with experiments.

EAM setfl (1999--Liu-X-Y--Al-Cu--table--ipr1)
Notes: al-cu-set.txt was obtained from http://enpub.fulton.asu.edu/cms/potentials/main/main.htm and posted with the permission of J.B. Adams.
File(s):
al-cu-set.txt

LAMMPS pair_style eam/alloy (1999--Liu-X-Y--Al-Cu--LAMMPS--ipr1)
See Computed Properties
Notes: To make the al-cu-set.txt file compatible with the eam/alloy style in LAMMPS, replace line 4 with "2 Al Cu" and the "D"s with "E"s in the numbers. This has been done in al-cu-set.eam.alloy.
File(s):
al-cu-set.eam.alloy

OpenKIM (MO_020851069572)
See Computed Properties
Notes: Listing found at https://openkim.org. This KIM potential is based on the files from 1999--Liu-X-Y--Al-Cu--LAMMPS--ipr1.
Link(s):
KIM page EAM_Dynamo_LiuLiuBorucki_1999_AlCu__MO_020851069572_000


Al-Cu-Fe-Mg-Si

2012--Jelinek-B-Groh-S-Horstemeyer-M-F-et-al--Al-Si-Mg-Cu-Fe
B. Jelinek, S. Groh, M.F. Horstemeyer, J. Houze, S.G. Kim, G.J. Wagner, A. Moitra, and M.I. Baskes (2012), "Modified embedded atom method potential for Al, Si, Mg, Cu, and Fe alloys", Physical Review B, 85(24), 245102. DOI: 10.1103/physrevb.85.245102.
Abstract: A set of modified embedded-atom method (MEAM) potentials for the interactions between Al, Si, Mg, Cu, and Fe was developed from a combination of each element's MEAM potential in order to study metal alloying. Previously published MEAM parameters of single elements have been improved for better agreement to the generalized stacking fault energy (GSFE) curves when compared with ab initio generated GSFE curves. The MEAM parameters for element pairs were constructed based on the structural and elastic properties of element pairs in the NaCl reference structure garnered from ab initio calculations, with adjustment to reproduce the ab initio heat of formation of the most stable binary compounds. The new MEAM potentials were validated by comparing the formation energies of defects, equilibrium volumes, elastic moduli, and heat of formation for several binary compounds with ab initio simulations and experiments. Single elements in their ground-state crystal structure were subjected to heating to test the potentials at elevated temperatures. An Al potential was modified to avoid formation of an unphysical solid structure at high temperatures. The thermal expansion coefficient of a compound with the composition of AA 6061 alloy was evaluated and compared with experimental values. MEAM potential tests performed in this work, utilizing the universal atomistic simulation environment (ASE), are distributed to facilitate reproducibility of the results.

See Computed Properties
Notes: This file was sent by Bohumir Jelinek (Mississippi State University) and posted on 3 July 2012. He noted, "This is a MEAM potential for Al, Si, Mg, Cu, Fe alloys. It works with LAMMPS, version 19 Jul 2011 or later, when compiled with MEAM support. Most of the MEAM potential results presented in the accompanying paper can be reproduced with Atomistic Simulation Environment (ASE) and testing routines are provided in ase-atomistic-potential-tests-rev60.tar.gz"
File(s):

Al-Cu-H

2018--Zhou-X-W-Ward-D-K-Foster-M-E--Al-Cu-H
X.W. Zhou, D.K. Ward, and M.E. Foster (2018), "A bond-order potential for the Al–Cu–H ternary system", New Journal of Chemistry, 42(7), 5215-5228. DOI: 10.1039/c8nj00513c.
Abstract: Al-Based Al–Cu alloys have a very high strength to density ratio, and are therefore important materials for transportation systems including vehicles and aircrafts. These alloys also appear to have a high resistance to hydrogen embrittlement, and as a result, are being explored for hydrogen related applications. To enable fundamental studies of mechanical behavior of Al–Cu alloys under hydrogen environments, we have developed an Al–Cu–H bond-order potential according to the formalism implemented in the molecular dynamics code LAMMPS. Our potential not only fits well to properties of a variety of elemental and compound configurations (with coordination varying from 1 to 12) including small clusters, bulk lattices, defects, and surfaces, but also passes stringent molecular dynamics simulation tests that sample chaotic configurations. Careful studies verified that this Al–Cu–H potential predicts structural property trends close to experimental results and quantum-mechanical calculations; in addition, it properly captures Al–Cu, Al–H, and Cu–H phase diagrams and enables simulations of H2 dissociation, chemisorption, and absorption on Al–Cu surfaces.

See Computed Properties
Notes: This file was sent by Dr. Xiaowang Zhou (Sandia National Laboratories) on September 9, 2018 and posted with his permission.
File(s):

Al-Fe

2005--Mendelev-M-I-Srolovitz-D-J-Ackland-G-J-Han-S--Al-Fe
M.I. Mendelev, D.J. Srolovitz, G.J. Ackland, and S. Han (2005), "Effect of Fe Segregation on the Migration of a Non-Symmetric Σ5 Tilt Grain Boundary in Al", Journal of Materials Research, 20(1), 208-218. DOI: 10.1557/jmr.2005.0024.
Abstract: We present an analysis, based upon atomistic simulation data, of the effect of Fe impurities on grain boundary migration in Al. The first step is the development of a new interatomic potential for Fe in Al. This potential provides an accurate description of Al–Fe liquid diffraction data and the bulk diffusivity of Fe in Al. We use this potential to determine the physical parameters in the Cahn–Lücke–Stüwe (CLS) model for the effect of impurities on grain boundary mobility. These include the heat of segregation of Fe to grain boundaries in Al and the diffusivity of Fe in Al. Using the simulation-parameterized CLS model, we predict the grain boundary mobility in Al in the presence of Fe as a function of temperature and Fe concentration. The order of magnitude and the trends in the mobility from the simulations are in agreement with existing experimental results.

See Computed Properties
Notes: This file was provided by Mikhail Mendelev. Except for the comment lines, this file is identical to "AlFe_mm.eam.fs" in the August 22, 2018 LAMMPS distribution. Update 19 July 2021: The contact email in the file's header has been changed.
File(s):
See Computed Properties
Notes: Listing found at https://openkim.org. This KIM potential is based on the files from 2005--Mendelev-M-I--Al-Fe--LAMMPS--ipr1.
Link(s):

Al-H

2010--Apostol-F-Mishin-Y--Al-H
F. Apostol, and Y. Mishin (2010), "Angular-dependent interatomic potential for the aluminum-hydrogen system", Physical Review B, 82(14), 144115. DOI: 10.1103/physrevb.82.144115.
Abstract: We report on the development of an angular-dependent interatomic potential for hydrogen and the aluminum-hydrogen system. The potential reproduces properties of diatomic hydrogen gas, accurate solution energies of hydrogen atoms in crystalline Al, the energetic preference of the tetrahedral interstitial site occupation over octahedral, the hydrogen diffusion barrier in Al, and a number of other properties. Some of the results predicted by the potential have been tested by molecular dynamics simulations. It is suggested that the new potential can be used in atomistic simulations of the effect of dissolved hydrogen on deformation and fracture of Al, a problem which is relevant to hydrogen-induced degradation of Al alloys.

Notes: Prof. Mishin requested the following be noted: There was a typing error in the original ADP paper (Y. Mishin, et al., Acta Mat. 53, 4029 (2005)). More information and a correction can be found in the FAQ.

ADP tabulated functions (2010--Apostol-F--Al-H--table--ipr1)
Notes: These files were provided by Yuri Mishin (George Mason University) and posted on 26 Oct. 2010.
File(s):
Al F(ρ): F_Al.plt
H F(ρ): F_H.plt
Al ρ(r): fAl.plt
H ρ(r): fH.plt
Al φ(r): pAl.plt
H φ(r): pH.plt
Al-H φ(r): pAlH.plt
Al u(r): dAl.plt
H u(r): dH.plt
Al-H u(r): dAlH.plt
Al w(r): qAl.plt
H w(r): qH.plt
Al-H w(r): qAlH.plt


Al-H-Ni

1995--Angelo-J-E-Moody-N-R-Baskes-M-I--Ni-Al-H
J.E. Angelo, N.R. Moody, and M.I. Baskes (1995), "Trapping of hydrogen to lattice defects in nickel", Modelling and Simulation in Materials Science and Engineering, 3(3), 289-307. DOI: 10.1088/0965-0393/3/3/001.
Abstract: This paper addresses the energy associated with the trapping of hydrogen to defects in a nickel lattice. Several dislocations and grain boundaries which occur in nickel are studied. The dislocations include an edge, a screw, and a Lomer dislocation in the locked configuration, i.e. a Lomer-Cottrell lock (LCL). For both the edge and screw dislocations, the maximum trap site energy is approximately 0.1 eV occurring in the region where the lattice is in tension approximately 3-4 angstroms from the dislocation core. For the Lomer-Cottrell lock, the maximum binding energy is 0.33 eV and is located at the core of the a/6(110) dislocation. Several low-index coincident site lattice grain boundaries are investigated, specifically the Sigma 3(112), Sigma 9(221) and Sigma 11(113) tilt boundaries. The boundaries all show a maximum binding energy of approximately 0.25 eV at the tilt boundary. Relaxation of the boundary structures produces an asymmetric atomic structure for both the Sigma 3 and Sigma 9 boundaries and a symmetric structure for the Sigma 11 tilt boundary. The results of this study can be compared to recent experimental studies showing that the activation energy for hydrogen-initiated failure is approximately 0.3-0.4 eV in the Fe-based superalloy IN903. From the results of this comparison it can be concluded that the embrittlement process is likely associated with the trapping of hydrogen to grain boundaries and Lomer-Cottrell locks.

Notes: M.I. Baskes provided the reference property calculations in NiAlH_properties.pdf and a list of papers using this potential. If others should be included, please send the citations.
    \n
  • N.R. Moody, J.E. Angelo, S.M. Foiles, and M.I. Baskes, "Atomistic Simulation of the Hydrogen-Induced Fracture Process in an Iron-Based Superalloy," Sandia National Laboratories Report Number SAND-95-8549C CONF-9510273-1 (1995).
  • \n
  • J.E. Angelo and M.I. Baskes, "Interfacial Studies Using the EAM and MEAM," Interface Sci. 4, 47-63 (1996).
  • \n
  • M.I. Baskes, J.E. Angelo, and N.R. Moody, "Atomistic calculations of hydrogen interactions with Ni3Al grain boundaries and Ni/Ni3Al interfaces," in A.W. Thompson and N.R. Moody, editors. Hydrogen effects in materials: proceedings of the fifth international conference on the effect of hydrogen on the behavior of materials, Moran, Wyoming, 1994. Warrendale, PA: The Minerals, Metals and Materials Society; 1996. p. 77-90.
  • \n
  • J.E. Angelo, N.R. Moody, and M.I. Baskes, "Modeling the segregation of hydrogen to lattice defects in nickel," in A.W. Thompson and N.R. Moody, editors. Hydrogen effects in materials: proceedings of the fifth international conference on the effect of hydrogen on the behavior of materials, Moran, Wyoming, 1994. Warrendale, PA: The Minerals, Metals and Materials Society; 1996. p. 161-170.
  • \n
  • M.F. Horstemeyer, M.I. Baskes, and S.J. Plimpton, "Length Scale and Time Scale Effects on the Plastic Flow of FCC Metals," Acta Mater. 49, 4363-4374 (2001).
  • \n
  • M.F. Horstemeyer, M.I. Baskes, A. Godfrey, and D.A. Hughes, "A large deformation atomistic study examining crystal orientation effects on the stress-strain relationship," International Journal of Plasticity 18, 203-229 (2002).
  • \n
  • S.G. Srinivasan, X.Z. Liao, M.I. Baskes, R.J. McCabe, Y.H. Zhao, and Y.T. Zhu, "Compact and dissociated dislocations in aluminum: Implications for deformation," Phys. Rev. Lett. 94, 125502 (2005).
  • \n
  • S.G. Srinivasan, M.I. Baskes, and G.J. Wagner, "Atomistic simulations of shock induced microstructural evolution and spallation in single crystal nickel," J. Appl. Phys. 101, 043504 (2007).
  • \n
  • Mei. Q. Chandler, M.F. Horstemeyer, M.I. Baskes, P.M. Gullett, G.J. Wagner, and B. Jelinek, "Hydrogen effects on nanovoid nucleation in face-centered cubic single-crystals," Acta Mat. 56, 95-104 (2008).
  • \n
  • Mei. Q. Chandler, M.F. Horstemeyer, M.I. Baskes, G.J. Wagner, P.M. Gullett, and B. Jelinek, "Hydrogen effects on nanovoid nucleation at nickel grain boundaries," Acta Mat. 56, 619-631 (2008).

LAMMPS pair_style eam/alloy (1995--Angelo-J-E--Ni-Al-H--LAMMPS--ipr1)
See Computed Properties
Notes: This file was obtained from the 7 July 2009 LAMMPS distribution and approved by M.I. Baskes.
File(s):
See Computed Properties
Notes: Listing found at https://openkim.org. This KIM potential is based on the files from 1995--Angelo-J-E-Moody-N-R-Baskes-M-I--Ni-Al-H.
Link(s):

Al-Mg

2009--Mendelev-M-I-Asta-M-Rahman-M-J-Hoyt-J-J--Al-Mg
M.I. Mendelev, M. Asta, M.J. Rahman, and J.J. Hoyt (2009), "Development of interatomic potentials appropriate for simulation of solid-liquid interface properties in Al-Mg alloys", Philosophical Magazine, 89(34-36), 3269-3285. DOI: 10.1080/14786430903260727.
Abstract: Different approaches are analyzed for construction of semi-empirical potentials for binary alloys, focusing specifically on the capability of these potentials to describe solid–liquid phase equilibria, as a pre-requisite to studies of solidification phenomena. Fitting ab initio compound data does not ensure correct reproduction of the dilute solid-solution formation energy, and explicit inclusion of this quantity in the potential development procedure does not guarantee that the potential will predict the correct solid–liquid phase diagram. Therefore, we conclude that fitting only to solid phase properties, as is done in most potential development procedures, generally is not sufficient to develop a semi-empirical potential suitable for the simulation of solidification. A method is proposed for the incorporation of data for liquid solution energies in the potential development procedure, and a new semi-empirical potential developed suitable for simulations of dilute alloys of Mg in Al. The potential correctly reproduces both zero-temperature solid properties and solidus and liquid lines on the Al-rich part of the Al–Mg phase diagram.

Notes: Update 2010-1-11: Reference information added.

See Computed Properties
Notes: This file was submitted by M.I. Mendelev and posted on 17 Jul. 2009. 11 Jan. 2010 Update: the first line of the header was updated to reflect the publication status. Update 19 July 2021: The contact email in the file's header has been changed.
File(s):
See Computed Properties
Notes: Listing found at https://openkim.org. This KIM potential is based on the files from 2009--Mendelev-M-I--Al-Mg--LAMMPS--ipr1.
Link(s):

1998--Liu-X-Y-Adams-J-B--Al-Mg
X.-Y. Liu, and J.B. Adams (1998), "Grain-boundary segregation in Al-10%Mg alloys at hot working temperatures", Acta Materialia, 46(10), 3467-3476. DOI: 10.1016/s1359-6454(98)00038-x.
Abstract: Monte-Carlo simulations are done to determine Mg enrichment at various grain-boundaries of Al–10%Mg alloys at hot working temperatures. The interatomic potentials used in the simulations are developed using the force-matching method. The Mg segregation levels at the grain-boundaries are found to vary from 20% to 40%. The segregation enrichment differences at different grain-boundary sites are explained in terms of atomic size and local hydrostatic stress. The segregation level varies strongly with [110] tilt boundaries from low to high angle while showing minimal variation with [100] twist boundaries. Segregation levels are found to have some correlation with grain-boundary energy. The effect on grain-boundary decohesion due to Mg segregation is found to be a modest (10--35%) reduction in fracture energy compared to the fracture energy in pure Al.

EAM setfl (1998--Liu-X-Y--Al-Mg--table--ipr1)
Notes: almg.liu is posted with the permission of J.B. Adams and X.-Y. Liu.
File(s):
LAMMPS pair_style eam/alloy (1998--Liu-X-Y--Al-Mg--LAMMPS--ipr1)
See Computed Properties
Notes: To make the almg.liu file compatible with the eam/alloy style in LAMMPS, replace line 4 with "2 Mg Al" and the "D"s with "E"s in the numbers. This has been done in almg.liu.eam.alloy.
File(s):
OpenKIM (MO_019873715786)
See Computed Properties
Notes: Listing found at https://openkim.org. This KIM potential is based on the files from 1998--Liu-X-Y--Al-Mg--LAMMPS--ipr1.
Link(s):

1997--Liu-X-Y-Ohotnicky-P-P-Adams-J-B-et-al--Al-Mg
X.-Y. Liu, P.P. Ohotnicky, J.B. Adams, C. Lane Rohrer, and R.W. Hyland (1997), "Anisotropic surface segregation in Al-Mg alloys", Surface Science, 373(2-3), 357-370. DOI: 10.1016/s0039-6028(96)01154-5.
Abstract: A set of embedded-atom method (EAM) potentials for Al-Mg alloys are developed using the "force matching" method. The potentials are fitted to both experimental data and a massive quantum mechanical database of atomic forces at finite temperatures. Using the potentials, Monte Carlo simulations are performed to study Mg segregation at different low-index surfaces of an Al alloy with 1–10 at% Mg. Surface enrichments of Mg of the order of 80% are found, and the segregation behavior is generally anisotropic. A set of discrete lattice-plane calculations, based on the nearest-neighbor broken-bond model corrected for strain energy, are shown to drastically reduce the anisotropy of surface segregation.

EAM setfl (1997--Liu-X-Y--Al-Mg--table--ipr1)
Notes: mg-al-set.txt was obtained from http://enpub.fulton.asu.edu/cms/potentials/main/main.htm and posted with the permission of J.B. Adams and X.-Y. Liu.
File(s):
mg-al-set.txt

LAMMPS pair_style eam/alloy (1997--Liu-X-Y--Al-Mg--LAMMPS--ipr1)
See Computed Properties
Notes: To make the mg-al-set.txt file compatible with the eam/alloy style in LAMMPS, replace line 4 with "2 Mg Al" and the "D"s with "E"s in the numbers. This has been done in mg-al-set.eam.alloy.
File(s):
mg-al-set.eam.alloy

OpenKIM (MO_559870613549)
See Computed Properties
Notes: Listing found at https://openkim.org. This KIM potential is based on the files from 1997--Liu-X-Y--Al-Mg--LAMMPS--ipr1.
Link(s):
KIM page EAM_Dynamo_LiuOhotnickyAdams_1997_AlMg__MO_559870613549_000


Al-Mg-Zn

2018--Dickel-D-E-Baskes-M-I-Aslam-I-Barrett-C-D--Mg-Al-Zn
D.E. Dickel, M.I. Baskes, I. Aslam, and C.D. Barrett (2018), "New interatomic potential for Mg-Al-Zn alloys with specific application to dilute Mg-based alloys", Modelling and Simulation in Materials Science and Engineering, 26(4), 045010. DOI: 10.1088/1361-651x/aabaad.
Abstract: Because of its very large c/a ratio, zinc has proven to be a difficult element to model using semi-empirical classical potentials. It has been shown, in particular, that for the modified embedded atom method (MEAM), a potential cannot simultaneously have an hcp ground state and c/a ratio greater than ideal. As an alloying element, however, useful zinc potentials can be generated by relaxing the condition that hcp be the lowest energy structure. In this paper, we present a MEAM zinc potential, which gives accurate material properties for the pure state, as well as a MEAM ternary potential for the Mg-Al-Zn system which will allow the atomistic modeling of a wide class of alloys containing zinc. The effects of zinc in simple Mg-Zn for this potential is demonstrated and these results verify the accuracy for the new potential in these systems.

See Computed Properties
Notes: These files were submitted by Doyl Dickel on May 17, 2018.
File(s):

Al-Mn-Pd

2012--Schopf-D-Brommer-P-Frigan-B-Trebin-H-R--Al-Mn-Pd
D. Schopf, P. Brommer, B. Frigan, and H.-R. Trebin (2012), "Embedded atom method potentials for Al-Pd-Mn phases", Physical Review B, 85(5), 054201. DOI: 10.1103/physrevb.85.054201.
Abstract: A novel embedded atom method (EAM) potential for the Ξ phases of Al-Pd-Mn has been determined with the force-matching method. Different combinations of analytic functions were tested for the pair and transfer part. The best results are obtained if one allows for oscillations on two different length scales. These potentials stabilize structure models of the Ξ phases and describe their energy with high accuracy. Simulations at temperatures up to 1200 K show very good agreement with ab initio results with respect to stability and dynamics of the system.

LAMMPS pair_style eam/alloy (2012--Schopf-D--Al-Mn-Pd--LAMMPS--ipr1)
See Computed Properties
Notes: This version is compatible with LAMMPS. UPDATE 11 June 2012: The version posted on 26 April 2012 had an extra line in the header and did not work with LAMMPS. This was brought to our attention by Daniel Schopf and the correct version has been posted. Original note: This file was provided by Daniel Schopf (Stuttgart University) and posted with his permission on 26 April 2012.
File(s):
IMD option EAM (2012--Schopf-D--Al-Mn-Pd--IMD--ipr1)
Notes: These files were provided by Daniel Schopf.
File(s):
See Computed Properties
Notes: Listing found at https://openkim.org. This KIM potential is based on the files from 2012--Schopf-D--Al-Mn-Pd--LAMMPS--ipr1.
Link(s):
See Computed Properties
Notes: Listing found at https://openkim.org. This KIM potential is based on the same files as 2012--Schopf-D--Al-Mn-Pd--IMD--ipr1.
Link(s):

Al-Nb-Ti

1996--Farkas-D-Jones-C--Nb-Ti-Al
D. Farkas, and C. Jones (1996), "Interatomic potentials for ternary Nb - Ti - Al alloys", Modelling and Simulation in Materials Science and Engineering, 4(1), 23-32. DOI: 10.1088/0965-0393/4/1/004.
Abstract: Interatomic potentials of the embedded-atom type were developed for the Nb - Al system via an empirical fitting to the properties of A15 Nb3Al. The cohesive energy and lattice parameters are fitted by the potentials, which also give good agreement with experimental values for the same properties in the D022 NbAl3 phase. A second interatomic potential was developed for the Nb - Ti system via a fitting to the lattice parameters and thermodynamic properties of the disordered BCC phase. The Al and Ti potentials used here are the same as those used in our previous work to derive Ti - Al potentials based on TiAl. This allows the use of the present potentials in conjunction with those previously derived interactions to study ternary Nb - Ti - Al alloys. The potentials were used to calculate the heats of solution of Al and Ti in Nb, and to simulate the Ti2NbAl orthorhombic phase.

LAMMPS pair_style eam/alloy (1996--Farkas-D--Nb-Ti-Al--LAMMPS--ipr1)
See Computed Properties
Notes: This file was generated and tested by Ganga Purja Pun and Yuri Mishin (George Mason Univ.) using the files below that were supplied by Diana Farkas (Virginia Tech.). Testing information is in Test_report_AlTiNb.pdf. These files were approved by Dr. Purja Pun and Profs. Farkas and Mishin and posted on 1 Jul 2014.
File(s):
EAM tabulated functions (1996--Farkas-D--Nb-Ti-Al--table--ipr1)
Notes: These files were provided by Diana Farkas and approved by her on 1 Jul 2014.
File(s):
See Computed Properties
Notes: Listing found at https://openkim.org. This KIM potential is based on the files from 1996--Farkas-D--Nb-Ti-Al--LAMMPS--ipr1.
Link(s):

Al-Ni

2015--Kumar-A-Chernatynskiy-A-Liang-T-et-al--Al-Ni
A. Kumar, A. Chernatynskiy, T. Liang, K. Choudhary, M.J. Noordhoek, Y.-T. Cheng, S.R. Phillpot, and S.B. Sinnott (2015), "Charge optimized many-body (COMB) potential for dynamical simulation of Ni-Al phases", Journal of Physics: Condensed Matter, 27(33), 336302. DOI: 10.1088/0953-8984/27/33/336302.
Abstract: An interatomic potential for the Ni–Al system is presented within the third-generation charge optimized many-body (COMB3) formalism. The potential has been optimized for Ni3Al, or the γ' phase in Ni-based superalloys. The formation energies predicted for other Ni–Al phases are in reasonable agreement with first-principles results. The potential further predicts good mechanical properties for Ni3Al, which includes the values of the complex stacking fault (CSF) and the anti-phase boundary (APB) energies for the (1 1 1) and (1 0 0) planes. It is also used to investigate dislocation propagation across the Ni3Al (1 1 0)–Ni (1 1 0) interface, and the results are consistent with simulation results reported in the literature. The potential is further used in combination with a recent COMB3 potential for Al2O3 to investigate the Ni3Al (1 1 1)–Al2O3 (0 0 0 1) interface, which has not been modeled previously at the classical atomistic level due to the lack of a reactive potential to describe both Ni3Al and Al2O3 as well as interactions between them. The calculated work of adhesion for this interface is predicted to be 1.85 J m−2, which is in agreement with available experimental data. The predicted interlayer distance is further consistent with the available first-principles results for Ni (1 1 1)–Al2O3 (0 0 0 1).

LAMMPS pair_style comb3 (2015--Kumar-A--Al-Ni--LAMMPS--ipr1)
See Computed Properties
Notes: This file was obtained from Jarvis-FF (https://www.ctcms.nist.gov/~knc6/periodic.html) on 9 Nov. 2018 and posted at Kamal Choudhary's (NIST) request.
File(s):

2009--Purja-Pun-G-P-Mishin-Y--Ni-Al
G.P. Purja Pun, and Y. Mishin (2009), "Development of an interatomic potential for the Ni-Al system", Philosophical Magazine, 89(34-36), 3245-3267. DOI: 10.1080/14786430903258184.
Abstract: We construct an interatomic potential for the Ni-Al system within the embedded-atom method formalism. The potential is based on previously developed accurate potentials for pure Ni and Al. The cross-interactions are fitted to experimental cohesive energy, lattice parameter and elastic constants of B2-NiAl, as well as to ab initio formation energies of several real or imaginary intermetallic compounds with different crystal structures and chemical compositions. The potential accurately reproduces a variety of physical properties of the NiAl and Ni3Al phases, and shows reasonable agreement with experimental and ab initio data for phase stability across the Ni-Al phase diagram. Most of the properties reproduced by the new potential were not involved in the fitting process, which demonstrates its excellent transferability. Advantages and certain weaknesses of the new potential in comparison with other existing potentials are discussed in detail. The potential is expected to be especially suitable for simulations of heterophase interfaces and mechanical behavior of Ni-Al alloys.

EAM tabulated functions (2009--Purja-Pun-G-P--Ni-Al--table--ipr1)
Notes: These files were provided by Yuri Mishin.
File(s):
Al F(ρ): F_Al.plt
Ni F(ρ): F_Ni.plt
Al ρ(r): fAl.plt
Ni ρ(r): fNi.plt
Al φ(r): pAl.plt
Ni φ(r): pNi.plt
Ni-Al φ(r): pNiAl.plt

LAMMPS pair_style eam/alloy (2009--Purja-Pun-G-P--Ni-Al--LAMMPS--ipr1)
See Computed Properties
Notes: This conversion was produced by Chandler Becker on 13 Aug. 2009 from the plt files listed above. This version is compatible with LAMMPS. Validation and usage information can be found in Mishin-Ni-Al-2009_releaseNotes_1.pdf. 15 Dec. 2009: Reference was updated from "in press."
File(s):
OpenKIM (MO_751354403791)
See Computed Properties
Notes: Listing found at https://openkim.org. This KIM potential is based on the files from 2009--Purja-Pun-G-P--Ni-Al--LAMMPS--ipr1.
Link(s):

2004--Mishin-Y--Ni-Al
Y. Mishin (2004), "Atomistic modeling of the γ and γ'-phases of the Ni-Al system", Acta Materialia, 52(6), 1451-1467. DOI: 10.1016/j.actamat.2003.11.026.
Abstract: A new embedded-atom potential has been developed for Ni3Al by fitting to experimental and first-principles data. The potential describes lattice properties of Ni3Al, point defects, planar faults, as well as the γ and γ′ fields on the Ni–Al phase diagram. The potential is applied to calculate the energies of coherent Ni/Ni3Al interphase boundaries with three different crystallographic orientations. Depending on the orientation, the interface energy varies between 12 and 46 mJ/m2. Coherent γ/γ′ interfaces existing at high temperatures are shown to be more diffuse and are likely to have a lower energy than Ni/Ni3Al interfaces.

EAM tabulated functions (2004--Mishin-Y--Ni-Al--table--ipr1)
Notes: These files were provided by Yuri Mishin. Update 2 Sept 2020: parameter files renamed to avoid naming conflict issue.
File(s):
Al F(ρ): F_al.plt
Ni F(ρ): F_ni.plt
Al ρ(r): fal.plt
Ni ρ(r): fni.plt
Al φ(r): pal.plt
Ni φ(r): pni.plt
Ni-Al φ(r): pnial.plt

LAMMPS pair_style eam/alloy (2004--Mishin-Y--Ni-Al--LAMMPS--ipr1)
See Computed Properties
Notes: This conversion was produced by Chandler Becker on 7 Jan 2009 from the plt files listed above. This version is compatible with LAMMPS. Validation and usage information can be found in NiAl04_releaseNotes_2.pdf. If you use this setfl file, please include the following citation (in addition to the Mishin reference): C.A. Becker, et al. (2011) Philos Mag 91(27) 3578-3597. UPDATE 14 Dec 2020: This version is noted as having non-zero energies for the isolated atoms. Because of this, the potential energies computed for bulk structures are correct, but they do not correspond to cohesive energies. An updated version is listed below.
File(s): superseded


OpenKIM (MO_101214310689)
See Computed Properties
Notes: Listing found at https://openkim.org. This KIM potential is based on the files from 2004--Mishin-Y--Ni-Al--LAMMPS--ipr1.
Link(s):
KIM page EAM_Dynamo_Mishin_2004_NiAl__MO_101214310689_005

LAMMPS pair_style eam/alloy (2004--Mishin-Y--Ni-Al--LAMMPS--ipr2)
See Computed Properties
Notes: This file was created by Lucas Hale and posted 12 Dec 2020 with the permission of Yuri Mishin. The tables in this file were obtained by using cubic spline interpolations of the plt files listed above. This version differs from the last LAMMPS version in that it explicitly sets F(rho=0) = 0 so that isolated atoms have an energy of 0.0. The two LAMMPS versions behave nearly identically except at very small r and at r near the cutoff. See "Version 2 notes.pdf" for a more detailed comparison of the two versions.
File(s):
NiAl_Mishin_2004.eam.alloy
Version 2 notes.pdf


2002--Mishin-Y-Mehl-M-J-Papaconstantopoulos-D-A--Ni-Al
Y. Mishin, M.J. Mehl, and D.A. Papaconstantopoulos (2002), "Embedded-atom potential for B2-NiAl", Physical Review B, 65(22), 224114. DOI: 10.1103/physrevb.65.224114.
Abstract: An embedded-atom potential has been constructed for the intermetallic compound B2−NiAl by fitting to both experimental properties and ab initio data. The ab initio data have been generated in the form of energy-volume relations for a number of alternative structures of NiAl and Ni3Al, as well as for Ni and Al. The potential accurately reproduces the basic lattice properties of B2−NiAl, planar faults, and point-defect characteristics. It also reproduces the energetics and stability of all other structures included in the fit. The potential is applied to calculate equilibrium point-defect concentrations in B2−NiAl as functions of temperature and composition near the stoichiometry. In contrast to previous calculations, the defect formation entropies arising from atomic vibrations are included in our calculation within the quasiharmonic approximation. Such entropies tend to increase the concentrations of thermal point defects in B2−NiAl at high temperatures, but the atomic disorder mechanism remains triple-defect type up to the melting point.

Notes: As described in the reference, this potential was highly optimized for the B2 phase of NiAl. For other phases (including the elements), it does not work nearly as well as other potentials. For additional information, see C.A. Becker, et al., Phil. Mag. 91, 3578 (2011).

EAM tabulated functions (2002--Mishin-Y--Ni-Al--table--ipr1)
Notes: These files were provided by Yuri Mishin.
File(s):
Notes: README.txt
Al F(ρ): F_al.plt
Ni F(ρ): F_ni.plt
Al ρ(r): fal.plt
Ni ρ(r): fni.plt
Al φ(r): pal.plt
Ni φ(r): pni.plt
Ni-Al φ(r): pnial.plt

LAMMPS pair_style eam/alloy (2002--Mishin-Y--Ni-Al--LAMMPS--ipr1)
See Computed Properties
Notes: This conversion was produced by Chandler Becker on 14 February 2009 from the plt files listed above. This version is compatible with LAMMPS. Validation and usage information can be found in NiAl02_releaseNotes_1.pdf. If you use this setfl file, please credit the website in addition to the original reference.
File(s):
NiAl02.eam.alloy
NiAl02_releaseNotes_1.pdf

OpenKIM (MO_109933561507)
See Computed Properties
Notes: Listing found at https://openkim.org. This KIM potential is based on the files from 2002--Mishin-Y--Ni-Al--LAMMPS--ipr1.
Link(s):
KIM page EAM_Dynamo_MishinMehlPapaconstantopoulos_2002_NiAl__MO_109933561507_005


Al-Ni-O

2015--Kumar-A-Chernatynskiy-A-Liang-T-et-al--Al-Ni-O
A. Kumar, A. Chernatynskiy, T. Liang, K. Choudhary, M.J. Noordhoek, Y.-T. Cheng, S.R. Phillpot, and S.B. Sinnott (2015), "Charge optimized many-body (COMB) potential for dynamical simulation of Ni-Al phases", Journal of Physics: Condensed Matter, 27(33), 336302. DOI: 10.1088/0953-8984/27/33/336302.
Abstract: An interatomic potential for the Ni–Al system is presented within the third-generation charge optimized many-body (COMB3) formalism. The potential has been optimized for Ni3Al, or the γ' phase in Ni-based superalloys. The formation energies predicted for other Ni–Al phases are in reasonable agreement with first-principles results. The potential further predicts good mechanical properties for Ni3Al, which includes the values of the complex stacking fault (CSF) and the anti-phase boundary (APB) energies for the (1 1 1) and (1 0 0) planes. It is also used to investigate dislocation propagation across the Ni3Al (1 1 0)–Ni (1 1 0) interface, and the results are consistent with simulation results reported in the literature. The potential is further used in combination with a recent COMB3 potential for Al2O3 to investigate the Ni3Al (1 1 1)–Al2O3 (0 0 0 1) interface, which has not been modeled previously at the classical atomistic level due to the lack of a reactive potential to describe both Ni3Al and Al2O3 as well as interactions between them. The calculated work of adhesion for this interface is predicted to be 1.85 J m−2, which is in agreement with available experimental data. The predicted interlayer distance is further consistent with the available first-principles results for Ni (1 1 1)–Al2O3 (0 0 0 1).

See Computed Properties
Notes: This file was obtained from Jarvis-FF (https://www.ctcms.nist.gov/~knc6/periodic.html) on 9 Nov. 2018 and posted at Kamal Choudhary's (NIST) request.
File(s):

Al-O

2015--Choudhary-K-Liang-T-Chernatynskiy-A-et-al--Al-O
K. Choudhary, T. Liang, A. Chernatynskiy, S.R. Phillpot, and S.B. Sinnott (2015), "Charge optimized many-body (COMB) potential for Al2O3 materials, interfaces, and nanostructures", Journal of Physics: Condensed Matter, 27(30), 305004. DOI: 10.1088/0953-8984/27/30/305004.
Abstract: This work presents the development and applications of a new empirical, variable chargepotential for Al2O3 systems within the charge optimized many-body (COMB) potential framework. The potential can describe the fundamental physical properties of Al2O3, including cohesive energy, elastic constants, defect formation energies, surface energies and phonon properties of α-Al2O3 comparable to that obtained from experiments and first-principles calculations. The potential is further employed in classical molecular dynamics (MD) simulations to validate and predict the properties of the Al (1 1 1)–Al2O3 (0 0 0 1) interface, tensile properties of Al nanowires, Al2O3 nanowires, Al2O3-covered Al nanowires, and defective Al2O3 nanowires. The results demonstrate that the potential is well-suited to model heterogeneous material systems involving Al and Al2O3. Most importantly, the parameters can be seamlessly coupled with COMB3 parameters for other materials to enable MD simulations of a wide range of heterogeneous material systems.

See Computed Properties
Notes: This file was obtained from Jarvis-FF (https://www.ctcms.nist.gov/~knc6/periodic.html) on 9 Nov. 2018 and posted at Kamal Choudhary's (NIST) request.
File(s):

Al-Pb

2000--Landa-A-Wynblatt-P-Siegel-D-J-et-al--Al-Pb
A. Landa, P. Wynblatt, D.J. Siegel, J.B. Adams, O.N. Mryasov, and X.-Y. Liu (2000), "Development of glue-type potentials for the Al-Pb system: phase diagram calculation", Acta Materialia, 48(8), 1753-1761. DOI: 10.1016/s1359-6454(00)00002-1.
Abstract: Empirical many-body potentials of the glue-type have been constructed for the Al–Pb system using the "force matching" method. The potentials are fitted to experimental data, physical quantities derived from ab initio linear muffin-tin orbitals calculations and a massive quantum mechanical database of atomic forces generated using ultrasoft pseudopotentials in conjunction with ab initio molecular statics simulations. Monte Carlo simulations using these potentials have been employed to compute an Al–Pb phase diagram which is in fair agreement with experimental data.
A. Landa, P. Wynblatt, D.J. Siegel, J.B. Adams, O.N. Mryasov, and X.-Y. Liu (2000), "Development of glue-type potentials for the Al–Pb system: phase diagram calculation", Acta Materialia, 48(13), 3621. DOI: 10.1016/s1359-6454(00)00158-0.

EAM setfl (2000--Landa-A--Al-Pb--table--ipr1)
Notes: alpb.set was sent by Alexander Landa (Lawrence Livermore National Laboratory) on 25 Mar. 2010 and posted with his permission and that of Don Siegel (University of Michigan).
File(s):
LAMMPS pair_style eam/alloy (2000--Landa-A--Al-Pb--LAMMPS--ipr1)
See Computed Properties
Notes: alpb-setfl.eam.alloy is a version of the same potential which has been formatted for use in LAMMPS ("D" was replaced by "E" and "Al Pb" was added on line 4). It successfully ran with the 20Feb10 version of LAMMPS.
File(s):
See Computed Properties
Notes: Listing found at https://openkim.org. This KIM potential is based on the files from 2000--Landa-A--Al-Pb--LAMMPS--ipr1.
Link(s):
A. Landa, P. Wynblatt, D.J. Siegel, J.B. Adams, O.N. Mryasov, and X.-Y. Liu (2000), "Development of glue-type potentials for the Al–Pb system: phase diagram calculation", Acta Materialia, 48(13), 3621. DOI: 10.1016/s1359-6454(00)00158-0.

EAM setfl (2000--Landa-A--Al-Pb--table--ipr1)
Notes: alpb.set was sent by Alexander Landa (Lawrence Livermore National Laboratory) on 25 Mar. 2010 and posted with his permission and that of Don Siegel (University of Michigan).
File(s):
LAMMPS pair_style eam/alloy (2000--Landa-A--Al-Pb--LAMMPS--ipr1)
See Computed Properties
Notes: alpb-setfl.eam.alloy is a version of the same potential which has been formatted for use in LAMMPS ("D" was replaced by "E" and "Al Pb" was added on line 4). It successfully ran with the 20Feb10 version of LAMMPS.
File(s):
OpenKIM (MO_699137396381)
See Computed Properties
Notes: Listing found at https://openkim.org. This KIM potential is based on the files from 2000--Landa-A--Al-Pb--LAMMPS--ipr1.
Link(s):

Al-Sm

2015--Mendelev-M-I-Zhang-F-Ye-Z-et-al--Al-Sm
M.I. Mendelev, F. Zhang, Z. Ye, Y. Sun, M.C. Nguyen, S.R. Wilson, C.Z. Wang, and K.M. Ho (2015), "Development of interatomic potentials appropriate for simulation of devitrification of Al90Sm10alloy", Modelling and Simulation in Materials Science and Engineering, 23(4), 045013. DOI: 10.1088/0965-0393/23/4/045013.
Abstract: A semi-empirical potential for the Al90Sm10 alloy is presented. The potential provides satisfactory reproduction of pure Al properties, the formation energies of a set of Al–Sm crystal phases with Sm content about 10%, and the structure of the liquid Al90Sm10 alloy. During molecular dynamics simulation in which the liquid alloy is cooled at a rate of 1010 K s−1, the developed potential produces a glass structure with lower ab initio energy than that produced by ab initio molecular dynamics (AIMD) itself using a typical AIMD cooling rate of 8*10^13 K s−1. Based on these facts the developed potential should be suitable for simulations of phase transformations in the Al90Sm10 alloy.

Notes: Mikhail Mendelev (Ames Laboratory) noted that the potential "was developed to simulate the solidification/devitrification in the Al90Sm10 alloy." The reference was updated on 13 June 2015.

See Computed Properties
Notes: This file was provided by Mikhail Mendelev (Ames Laboratory) and posted with his permission on 24 Oct. 2014. Update 19 July 2021: The contact email in the file's header has been changed.
File(s):
See Computed Properties
Notes: Listing found at https://openkim.org. This KIM potential is based on the files from 2015--Mendelev-M-I--Al-Sm--LAMMPS--ipr1.
Link(s):

Al-Ti

2003--Zope-R-R-Mishin-Y--Ti-Al
R.R. Zope, and Y. Mishin (2003), "Interatomic potentials for atomistic simulations of the Ti-Al system", Physical Review B, 68(2), 024102. DOI: 10.1103/physrevb.68.024102.
Abstract: Semiempirical interatomic potentials have been developed for Al, α−Ti, and γ−TiAl within the embedded atom method (EAM) formalism by fitting to a large database of experimental as well as ab initio data. The ab initio calculations were performed by the linearized augmented plane wave (LAPW) method within the density functional theory to obtain the equations of state for a number of crystal structures of the Ti-Al system. Some of the calculated LAPW energies were used for fitting the potentials while others for examining their quality. The potentials correctly predict the equilibrium crystal structures of the phases and accurately reproduce their basic lattice properties. The potentials are applied to calculate the energies of point defects, surfaces, and planar faults in the equilibrium structures. Unlike earlier EAM potentials for the Ti-Al system, the proposed potentials provide a reasonable description of the lattice thermal expansion, demonstrating their usefulness for molecular-dynamics and Monte Carlo simulations at high temperatures. The energy along the tetragonal deformation path (Bain transformation) in γ−TiAl calculated with the EAM potential is in fairly good agreement with LAPW calculations. Equilibrium point defect concentrations in γ−TiAl are studied using the EAM potential. It is found that antisite defects strongly dominate over vacancies at all compositions around stoichiometry, indicating that γ−TiAl is an antisite disorder compound, in agreement with experimental data.

EAM tabulated functions (2003--Zope-R-R--Ti-Al--table--ipr1)
Notes: These files were provided by Yuri Mishin.
File(s):
Al F(ρ): F_al.plt
Ti F(ρ): F_ti.plt
Al ρ(r): fal.plt
Ti ρ(r): fti.plt
Al φ(r): pal.plt
Ti φ(r): pti.plt
Ti-Al φ(r): ptial.plt

LAMMPS pair_style eam/alloy (2003--Zope-R-R--Ti-Al--LAMMPS--ipr1)
See Computed Properties
Notes: This conversion was produced by Chandler Becker on 26 Sept. 2009 from the plt files listed above. This version is compatible with LAMMPS. Validation and usage information can be found in Zope-Ti-Al-2003_releaseNotes_1.pdf.
File(s):
See Computed Properties
Notes: Listing found at https://openkim.org. This KIM potential is based on the files from 2003--Zope-R-R--Ti-Al--LAMMPS--ipr1.
Link(s):

Al-U

2015--Pascuet-M-I-Fernandez-J-R--Al-U
M.I. Pascuet, and J.R. Fernández (2015), "Atomic interaction of the MEAM type for the study of intermetallics in the Al-U alloy", Journal of Nuclear Materials, 467, 229-239. DOI: 10.1016/j.jnucmat.2015.09.030.
Abstract: Interaction for both pure Al and Al–U alloys of the MEAM type are developed. The obtained Al interatomic potential assures its compatibility with the details of the framework presently adopted. The Al–U interaction fits various properties of the Al2U, Al3U and Al4U intermetallics. The potential verifies the stability of the intermetallic structures in a temperature range compatible with that observed in the phase diagram, and also takes into account the greater stability of these structures relative to others that are competitive in energy. The intermetallics are characterized by calculating elastic and thermal properties and point defect parameters. Molecular dynamics simulations show a growth of the Al3U intermetallic in the Al/U interface in agreement with experimental evidence.

See Computed Properties
Notes: These files were sent by M.I. Pascuet (CONICET) on 22 Apr. 2016 and posted with her permission.
File(s):

As-Ga

2006--Murdick-D-A-Zhou-X-W-Wadley-H-N-G-et-al--Ga-As
D.A. Murdick, X.W. Zhou, H.N.G. Wadley, D. Nguyen-Manh, R. Drautz, and D.G. Pettifor (2006), "Analytic bond-order potential for the gallium arsenide system", Physical Review B, 73(4), 045206. DOI: 10.1103/physrevb.73.045206.
Abstract: An analytic, bond-order potential (BOP) is proposed and parametrized for the gallium arsenide system. The potential addresses primary (σ) and secondary (π) bonding and the valence-dependent character of heteroatomic bonding, and it can be combined with an electron counting potential to address the distribution of electrons on the GaAs surface. The potential was derived from a tight-binding description of covalent bonding by retaining the first two levels of an expanded Green’s function for the σ and π bond-order terms. Predictions using the potential were compared with independent estimates for the structures and binding energy of small clusters (dimers, trimers, and tetramers) and for various bulk lattices with coordinations varying from 4 to 12. The structure and energies of simple point defects and melting transitions were also investigated. The relative stabilities of the (001) surface reconstructions of GaAs were well predicted, especially under high-arsenic-overpressure conditions. The structural and binding energy trends of this GaAs BOP generally match experimental observations and ab initio calculations.

See Computed Properties
Notes: This file was taken from the August 22, 2018 LAMMPS distribution and listed as having been created by X.W. Zhou (Sandia)
File(s):

2002--Albe-K-Nordlund-K-Nord-J-Kuronen-A--Ga-As
K. Albe, K. Nordlund, J. Nord, and A. Kuronen (2002), "Modeling of compound semiconductors: Analytical bond-order potential for Ga, As, and GaAs", Physical Review B, 66(3), 035205. DOI: 10.1103/physrevb.66.035205.
Abstract: An analytical bond-order potential for GaAs is presented, that allows one to model a wide range of properties of GaAs compound structures, as well as the pure phases of gallium and arsenide, including nonequilibrium configurations. The functional form is based on the bond-order scheme as devised by Abell-Tersoff and Brenner, while a systematic fitting scheme starting from the Pauling relation is used for determining all adjustable parameters. Reference data were taken from experiments if available, or computed by self-consistent total-energy calculations within the local density-functional theory otherwise. For fitting the parameters, only structural data of the metallic phases of gallium and arsenide as well as those of different GaAs phases were used. A number of tests on point defect properties, surface properties, and melting behavior have been performed afterward in order to validate the accuracy and transferability of the potential model, but were not part of the fitting procedure. While point defect properties and surfaces with low As content are found to be in good agreement with literature data, the description of As-rich surface reconstructions is not satisfactory. In the case of molten GaAs we find support for a structural model based on experiment that indicates a polymerized arsenic phase in the melt.

LAMMPS pair_style tersoff (2002--Albe-K--Ga-As--LAMMPS--ipr1)
See Computed Properties
Notes: This file was created and verified by Lucas Hale. The parameter values are identical to the ones in the parameter file used by openKIM model MO_799020228312_001.
File(s):
OpenKIM (MO_799020228312)
See Computed Properties
Notes: Listing found at https://openkim.org. Does not include the modified repulsive potential for high-energy collison from the appendix.
Link(s):

Au

2017--Purja-Pun-G-P--Au
G.P. Purja Pun (2017), "to be published".

LAMMPS pair_style eam/alloy (2017--Purja-Pun-G-P--Au--LAMMPS--ipr1)
See Computed Properties
Notes: These files were sent by G.P. Purja Pun (George Mason) on 7 Sept. 2017 and posted with his permission.
File(s):
See Computed Properties
Notes: Listing found at https://openkim.org. This KIM potential is based on the files from 2017--Purja-Pun-G-P--Au--LAMMPS--ipr1.
Link(s):

2012--Norman-G-E-Starikov-S-V-Stegailov-V-V--Au
G.E. Norman, S.V. Starikov, and V.V. Stegailov (2012), "Atomistic simulation of laser ablation of gold: Effect of pressure relaxation", Journal of Experimental and Theoretical Physics, 114(5), 792-800. DOI: 10.1134/s1063776112040115.
Abstract: The process of ablation of a gold target by femto- and picosecond laser radiation pulses has been studied by numerical simulations using an atomistic model with allowance for the electron subsystem and the dependence of the ion-ion interaction potential on the electron temperature. Using this potential, it is possible to take into account the change in the physical properties of the ion subsystem as a result of heating of the electron subsystem. The results of simulations reveal a significant difference between the characteristics of metal ablation by laser pulses of various durations. For ablation with subpicosecond pulses, two mechanisms of metal fracture related to the evolution of electronic pressure in the system are established.
S.V. Starikov, A.Y. Faenov, T.A. Pikuz, I.Y. Skobelev, V.E. Fortov, S. Tamotsu, M. Ishino, M. Tanaka, N. Hasegawa, M. Nishikino, T. Kaihori, T. Imazono, M. Kando, and T. Kawachi (2014), "Soft picosecond X-ray laser nanomodification of gold and aluminum surfaces", Applied Physics B, 116(4), 1005-1016. DOI: 10.1007/s00340-014-5789-y.
Abstract: Experimental and theoretical investigations of aluminum (Al) and gold (Au) surface modification by soft X-ray laser pulse are presented. Well-polished samples of Al and Au are irradiated by ps-duration pulse with wavelength of 13.9 nm at the energy range of 24-72 nJ. Differences in the melting and the ablation processes for those materials are observed. It is shown that at low laser pulse energy, the nanoscale ripples on the surface may be induced by melting without following ablation. In that case, the nanoscale changes in the surface are caused by splash of molten metal under gradient of fluence. At higher laser pulse energy, the ablation process occurs and craters are formed on the surface. However, the melting determines the size of the modified surface at all ranges of the laser energies. For interpretation of experimental results, the atomistic simulations of melting and ablation processes in Al and Au are provided. The calculated threshold fluencies for melting and ablation are well consistent with measured ones.

LAMMPS pair_style eam/alloy (2012--Norman-G-E--Au--LAMMPS--ipr1)
See Computed Properties
Notes: These files were submitted by Sergey Starikov on July 23, 2018. This EAM-potential describes Au at various electronic temperatures (0.1 eV, 1.5 eV, 3.0 eV, 4.5 eV, 6.0 eV). It is implemented as a set of EAM-potentials for alloy where each component corresponds to some electron temperature. This version is compatible with LAMMPS. Validation and usage information can be found in Verification.pdf. It should be noted that the potential may be used at classical molecular dynamics simulation for study of room-temperature properties. In this case, only "Au" type of alloy is necessary.
File(s):
S.V. Starikov, A.Y. Faenov, T.A. Pikuz, I.Y. Skobelev, V.E. Fortov, S. Tamotsu, M. Ishino, M. Tanaka, N. Hasegawa, M. Nishikino, T. Kaihori, T. Imazono, M. Kando, and T. Kawachi (2014), "Soft picosecond X-ray laser nanomodification of gold and aluminum surfaces", Applied Physics B, 116(4), 1005-1016. DOI: 10.1007/s00340-014-5789-y.
Abstract: Experimental and theoretical investigations of aluminum (Al) and gold (Au) surface modification by soft X-ray laser pulse are presented. Well-polished samples of Al and Au are irradiated by ps-duration pulse with wavelength of 13.9 nm at the energy range of 24-72 nJ. Differences in the melting and the ablation processes for those materials are observed. It is shown that at low laser pulse energy, the nanoscale ripples on the surface may be induced by melting without following ablation. In that case, the nanoscale changes in the surface are caused by splash of molten metal under gradient of fluence. At higher laser pulse energy, the ablation process occurs and craters are formed on the surface. However, the melting determines the size of the modified surface at all ranges of the laser energies. For interpretation of experimental results, the atomistic simulations of melting and ablation processes in Al and Au are provided. The calculated threshold fluencies for melting and ablation are well consistent with measured ones.

LAMMPS pair_style eam/alloy (2012--Norman-G-E--Au--LAMMPS--ipr1)
See Computed Properties
Notes: These files were submitted by Sergey Starikov on July 23, 2018. This EAM-potential describes Au at various electronic temperatures (0.1 eV, 1.5 eV, 3.0 eV, 4.5 eV, 6.0 eV). It is implemented as a set of EAM-potentials for alloy where each component corresponds to some electron temperature. This version is compatible with LAMMPS. Validation and usage information can be found in Verification.pdf. It should be noted that the potential may be used at classical molecular dynamics simulation for study of room-temperature properties. In this case, only "Au" type of alloy is necessary.
File(s):
Au_5T.eam.alloy
Verification.pdf


2010--Olsson-P-A-T--Au
P.A.T. Olsson (2010), "Transverse resonant properties of strained gold nanowires", Journal of Applied Physics, 108(3), 034318. DOI: 10.1063/1.3460127.
Abstract: In this work, resonant and elastic properties of single crystal gold nanowires have been studied through classical molecular dynamics simulations. The considered nanowires have perfect square cross sections and are oriented with the [100] direction along the wire axis and with 100 side surfaces. Three different sizes were simulated; 4.08×4.08 nm2, 5.71×5.71 nm2, and 7.34×7.34 nm2 cross sectional dimensions, with the respective unrelaxed lengths 49.0 nm, 68.5 nm, and 88.1 nm and the simulations were performed at two different temperatures, 4.2 K and 300 K. Tensile simulations reveal, that the stiffness decreases with decreasing size, and that the size dependence for nanowires at 4.2 K can be accurately described using the concept of surface energy. Comparing results from the resonant simulations reveals that the fundamental eigenfrequency is in good agreement with predictions from Bernoulli–Euler continuum beam theory when the size dependence of the stiffness is taken into account. The eigenfrequencies of the first and second excited modes turn out to be low in comparison with analytical Bernoulli–Euler continuum calculations.

Notes: This potential has previously been used in a series of nanowire modeling projects by Dr. Olsson. Furthermore, he noted that the potential is not documented in the actual paper, it is rather available in the supplementary data accompanying the paper.

EAM tabulated functions (2010--Olsson-P-A-T--Au--table--ipr1)
Notes: These files were sent by Pär A. T. Olsson (Malmoe University, Sweden) on 5 July 2016 and posted with his permission.
File(s):
F(ρ): F_au.plt
ρ(r): rho_au.plt
φ(r): phi_au.plt

LAMMPS pair_style eam/alloy (2010--Olsson-P-A-T--Au--LAMMPS--ipr1)
See Computed Properties
Notes: These files were sent by Pär A. T. Olsson (Malmoe University, Sweden) on 5 July 2016 and posted with his permission.
File(s):
Au_Olsson_JAP2010.eam.alloy

OpenKIM (MO_228280943430)
See Computed Properties
Notes: Listing found at https://openkim.org. This KIM potential is based on the files from 2010--Olsson-P-A-T--Au--LAMMPS--ipr1.
Link(s):
KIM page EAM_Dynamo_Olsson_2010_Au__MO_228280943430_000


2009--Zhakhovskii-V-V-Inogamov-N-A-Petrov-Y-V-et-al--Au
V.V. Zhakhovskii, N.A. Inogamov, Y.V. Petrov, S.I. Ashitkov, and K. Nishihara (2009), "Molecular dynamics simulation of femtosecond ablation and spallation with different interatomic potentials", Applied Surface Science, 255(24), 9592-9596. DOI: 10.1016/j.apsusc.2009.04.082.
Abstract: Fast heating of target material by femtosecond laser pulse (fsLP) with duration τL~40–100fs results in the formation of thermomechanically stressed state. Its unloading may cause frontal cavitation of subsurface layer at a depth of 50nm for Al and 100nm for Au. The compression wave propagating deep into material hits the rear-side of the target with the formation of rarefaction wave. The last may produce cracks and rear-side spallation. Results of MD simulations of ablation and spallation of Al and Au metals under action fsLP are presented. It is shown that the used EAM potentials (Mishin et al. and our new one) predict the different ablation and spallation thresholds on absorbed fluence in Al: ablation Fa=6065mJ/cm2 and spallation Fs=120190mJ/cm2, where numbers in brackets show the corresponding values for Mishin potential. The strain rate in spallation zone was 4.3×10^9 1/s at spallation threshold. Simulated spall strength of Al is 7.48.7GPa, that is noticeably less than 10.314GPa obtained from acoustic approximation with the use of velocity pullback on velocity profile of free rear surface. The ablation threshold Fa≈120mJ/cm2 and crater depth of 110nm are obtained in MD simulations of gold with the new EAM potential. They agree well with experiment.

Notes: Dr. Zhakhovsky noted that the potential was used in several works related to MD simulations of laser ablation and shock-wave loading, and that the potential was designed to reproduce the cold stress curves, the shock Hugoniot, and the melting point with good accuracy.

LAMMPS pair_style eam/alloy (2009--Zhakhovskii-V-V--Au--LAMMPS--ipr1)
See Computed Properties
Notes: These files were sent by V.V. Zhakhovsky (VNIIA) on 25 Feb. 2017 and posted with his permission. Update March 15, 2020: This version was identified to not be compatible with LAMMPS.
File(s): retracted


LAMMPS pair_style eam/alloy (2009--Zhakhovskii-V-V--Au--LAMMPS--ipr2)
See Computed Properties
Notes: This file was posted on 15 March 2020. It corrects the 4th line to be compatible with LAMMPS by removing the comment "3.81 ! cohesive energy [eV] to check".
File(s):
Au-2009.eam.alloy

OpenKIM (MO_173248269481)
See Computed Properties
Notes: Listing found at https://openkim.org. This KIM potential is based on the files from 2009--Zhakhovskii-V-V--Au--LAMMPS--ipr1.
Link(s):
KIM page EAM_Dynamo_Zhakhovsky_2009_Au__MO_173248269481_000


2005--Grochola-G-Russo-S-P-Snook-I-K--Au
G. Grochola, S.P. Russo, and I.K. Snook (2005), "On fitting a gold embedded atom method potential using the force matching method", The Journal of Chemical Physics, 123(20), 204719. DOI: 10.1063/1.2124667.
Abstract: We fit a new gold embedded atom method (EAM) potential using an improved force matching methodology which included fitting to high-temperature solid lattice constants and liquid densities. The new potential shows a good overall improvement in agreement to the experimental lattice constants, elastic constants, stacking fault energy, radial distribution function, and fcc/hcp/bcc lattice energy differences over previous potentials by Foiles, Baskes, and Daw (FBD) [Phys. Rev. B 33, 7983 (1986)] Johnson [Phys. Rev. B 37, 3924 (1988)], and the glue model potential by Ercolessi et al. [Philos. Mag. A 50, 213 (1988)]. Surface energy was improved slightly as compared to potentials by FBD and Johnson but as a result vacancy formation energy is slightly inferior as compared to the same potentials. The results obtained here for gold suggest for other metal species that further overall improvements in potentials may still be possible within the EAM framework with an improved fitting methodology. On the other hand, we also explore the limitations of the EAM framework by attempting a brute force fit to all properties exactly which was found to be unsuccessful. The main conflict in such a brute force fit was between the surface energy and the liquid lattice constant where both could not be fitted identically. By intentionally using a very large number of spline sections for the pair potential, electron-density function, and embedding energy function, we eliminated a lack of functional freedom as a possible cause of this conflict and hence can conclude that it must result from a fundamental limitation in the EAM framework.

EAM tabulated functions (2005--Grochola-G--Au--table--ipr1)
Notes: These files were approved by G. Grochola.
File(s):
F(ρ): Au-Grochola-JCP05-F.table
ρ(r): Au-Grochola-JCP05-rou.table
φ(r): Au-Grochola-JCP05-Phi.table

LAMMPS pair_style eam/alloy (2005--Grochola-G--Au--LAMMPS--ipr1)
See Computed Properties
Notes: This file was generated by C.A. Becker from the files above that were approved by G. Grochola (RMIT University) and posted with his permission on 21 Feb. 2011. This version is compatible with LAMMPS. Validation and usage information can be found in Au-Grochola-JCP05-conversion-notes_v2.pdf. If you use this eam.alloy file, please credit the website in addition to the original reference.
File(s):
Au-Grochola-JCP05.eam.alloy
Au-Grochola-JCP05-conversion-notes_v2.pdf

OpenKIM (MO_557267801129)
See Computed Properties
Notes: Listing found at https://openkim.org. This KIM potential is based on the files from 2005--Grochola-G--Au--LAMMPS--ipr1.
Link(s):
KIM page EAM_Dynamo_GrocholaRusso_2005_Au__MO_557267801129_000


2004--Zhou-X-W-Johnson-R-A-Wadley-H-N-G--Au
X.W. Zhou, R.A. Johnson, and H.N.G. Wadley (2004), "Misfit-energy-increasing dislocations in vapor-deposited CoFe/NiFe multilayers", Physical Review B, 69(14), 144113. DOI: 10.1103/physrevb.69.144113.
Abstract: Recent molecular dynamics simulations of the growth of [Ni0.8Fe0.2/Au] multilayers have revealed the formation of misfit-strain-reducing dislocation structures very similar to those observed experimentally. Here we report similar simulations showing the formation of edge dislocations near the interfaces of vapor-deposited (111) [NiFe/CoFe/Cu] multilayers. Unlike misfit dislocations that accommodate lattice mismatch, the dislocation structures observed here increase the mismatch strain energy. Stop-action observations of the dynamically evolving atomic structures indicate that during deposition on the (111) surface of a fcc lattice, adatoms may occupy either fcc sites or hcp sites. This results in the random formation of fcc and hcp domains, with dislocations at the domain boundaries. These dislocations enable atoms to undergo a shift from fcc to hcp sites, or vice versa. These shifts lead to missing atoms, and therefore a later deposited layer can have missing planes compared to a previously deposited layer. This dislocation formation mechanism can create tensile stress in fcc films. The probability that such dislocations are formed was found to quickly diminish under energetic deposition conditions.

FORTRAN (2004--Zhou-X-W--Au--FORTRAN--ipr1)
Notes: These are the original files sent by X.W. Zhou (Sandia National Laboratory) and posted with his permission. C.A. Becker (NIST) modified create.f to include the reference in the generated potential files and the EAM.input file for this composition. These files can be used to generate alloy potentials for Cu, Ag, Au, Ni, Pd, Pt, Al, Pb, Fe, Mo, Ta, W, Mg, Co, Ti, and Zr by editing EAM.input. However, as addressed in the reference, these potentials were not designed for use with metal compounds.
File(s): superseded


LAMMPS pair_style eam/alloy (2004--Zhou-X-W--Au--LAMMPS--ipr1)
See Computed Properties
Notes: This file was generated by C.A. Becker (NIST) from create.f and posted with X.W. Zhou's (Sandia National Laboratory) permission.
File(s): superseded


FORTRAN (2004--Zhou-X-W--Au--FORTRAN--ipr2)
Notes: The file Zhou04_create_v2.f is an updated version of create.f modified by L.M. Hale (NIST) following advice from X.W. Zhou (Sandia National Laboratory). This version removes spurious fluctuations in the tabulated functions of the original potential files caused by single/double precision floating point number conflicts.
File(s):
README_v2
Zhou04_create_v2.f
EAM.input.Au
EAM_code

LAMMPS pair_style eam/alloy (2004--Zhou-X-W--Au--LAMMPS--ipr2)
See Computed Properties
Notes: This file was generated by L.M. Hale from Zhou04_create_v2.f on 13 April 2018 and posted with X.W. Zhou's (Sandia National Laboratory) permission. This version corrects an issue with spurious fluctuations in the tabulated functions.
File(s):
Au_Zhou04.eam.alloy

OpenKIM (MO_468407568810)
See Computed Properties
Notes: Listing found at https://openkim.org. This KIM potential is based on the files from 2004--Zhou-X-W--Au--LAMMPS--ipr1.
Link(s):
KIM page EAM_Dynamo_ZhouJohnsonWadley_2004_Au__MO_468407568810_005

OpenKIM (MO_684444719999)
See Computed Properties
Notes: Listing found at https://openkim.org. This KIM potential is based on the files from 2004--Zhou-X-W--Au--LAMMPS--ipr2.
Link(s):
KIM page EAM_Dynamo_ZhouJohnsonWadley_2004NISTretabulation_Au__MO_684444719999_000


1989--Adams-J-B-Foiles-S-M-Wolfer-W-G--Au
J.B. Adams, S.M. Foiles, and W.G. Wolfer (1989), "Self-diffusion and impurity diffusion of fcc metals using the five-frequency model and the Embedded Atom Method", Journal of Materials Research, 4(1), 102-112. DOI: 10.1557/jmr.1989.0102.
Abstract: The activation energies for self-diffusion of transition metals (Au, Ag, Cu, Ni, Pd, Pt) have been calculated with the Embedded Atom Method (EAM); the results agree well with available experimental data for both mono-vacancy and di-vacancy mechanisms. The EAM was also used to calculate activation energies for vacancy migration near dilute impurities. These energies determine the atomic jump frequencies of the classic "five-frequency formula," which yields the diffusion rates of impurities by a mono-vacancy mechanism. These calculations were found to agree fairly well with experiment and with Neumann and Hirschwald's "Tm" model.

LAMMPS pair_style eam (1989--Adams-J-B--Au--LAMMPS--ipr1)
See Computed Properties
Notes: auu6.txt was obtained from http://enpub.fulton.asu.edu/cms/ potentials/main/main.htm and posted with the permission of J.B. Adams. The name of the file was retained, even though the header information lists the potential as 'universal 4.' This file is compatible with the "pair_style eam" format in LAMMPS (19Feb09 version).
File(s):
auu6.txt

OpenKIM (MO_087738844640)
See Computed Properties
Notes: Listing found at https://openkim.org. This KIM potential is based on the same files as 1989--Adams-J-B--Au--LAMMPS--ipr1.
Link(s):
KIM page EAM_Dynamo_AdamsFoilesWolfer_1989_Au__MO_087738844640_000


1987--Ackland-G-J-Tichy-G-Vitek-V-Finnis-M-W--Au
G.J. Ackland, G. Tichy, V. Vitek, and M.W. Finnis (1987), "Simple N-body potentials for the noble metals and nickel", Philosophical Magazine A, 56(6), 735-756. DOI: 10.1080/01418618708204485.
Abstract: Using the approach of Finnis and Sinclair, N-body potentials for copper, silver, gold and nickel have been constructed. The total energy is regarded as consisting of a pair-potential part and a many body cohesive part. Both these parts are functions of the atomic separations only and are represented by cubic splines, fitted to various bulk properties. For the noble metals, the pair-potentials were fitted at short range to pressure-volume relationships calculated by Christensen and Heine so that interactions at separations smaller than that of the first-nearest neighbours can be treated in this scheme. Using these potentials, point defects, surfaces (including the surface reconstructions) and grain boundaries have been studied and satisfactory agreement with available experimental data has been found.

Moldy FS (1987--Ackland-G-J--Au--MOLDY--ipr1)
Notes: The parameters in au.moldy were obtained from http://homepages.ed.ac.uk/graeme/moldy/moldy.html and posted with the permission of G.J. Ackland.
File(s):
au.moldy

LAMMPS pair_style eam/fs (1987--Ackland-G-J--Au--LAMMPS--ipr1)
See Computed Properties
Notes: This conversion was performed from G.J. Ackland's parameters by M.I. Mendelev. Conversion checks from M.I. Mendelev can be found in the conversion_check.pdf. These files were posted on 30 June 2009 with the permission of G.J. Ackland and M.I. Mendelev. These potentials are not designed for simulations of radiation damage. Update 19 July 2021: The contact email in the file's header has been changed.
File(s):
Au.eam.fs
conversion_check.pdf

LAMMPS pair_style eam/fs (1987--Ackland-G-J--Au--LAMMPS--ipr2)
See Computed Properties
Notes: A new conversion to LAMMPS performed by G.J. Ackland was submitted on 10 Oct. 2017. This version adds close-range repulsion for radiation studies.
File(s):
Au_v2.eam.fs

OpenKIM (MO_104891429740)
See Computed Properties
Notes: Listing found at https://openkim.org. This KIM potential is based on the files from 1987--Ackland-G-J--Au--LAMMPS--ipr1.
Link(s):
KIM page EAM_Dynamo_AcklandTichyVitek_1987_Au__MO_104891429740_005

OpenKIM (MO_754413982908)
See Computed Properties
Notes: Listing found at https://openkim.org. This KIM potential is based on the files from 1987--Ackland-G-J--Au--LAMMPS--ipr2.
Link(s):
KIM page EAM_Dynamo_Ackland_1987_Au__MO_754413982908_000


1986--Foiles-S-M-Baskes-M-I-Daw-M-S--Au
S.M. Foiles, M.I. Baskes, and M.S. Daw (1986), "Embedded-atom-method functions for the fcc metals Cu, Ag, Au, Ni, Pd, Pt, and their alloys", Physical Review B, 33(12), 7983-7991. DOI: 10.1103/physrevb.33.7983.
Abstract: A consistent set of embedding functions and pair interactions for use with the embedded-atom method [M.S. Daw and M. I. Baskes, Phys. Rev. B 29, 6443 (1984)] have been determined empirically to describe the fcc metals Cu, Ag, Au, Ni, Pd, and Pt as well as alloys containing these metals. The functions are determined empirically by fitting to the sublimation energy, equilibrium lattice constant, elastic constants, and vacancy-formation energies of the pure metals and the heats of solution of the binary alloys. The validity of the functions is tested by computing a wide range of properties: the formation volume and migration energy of vacancies, the formation energy, formation volume, and migration energy of divacancies and self-interstitials, the surface energy and geometries of the low-index surfaces of the pure metals, and the segregation energy of substitutional impurities to (100) surfaces.

LAMMPS pair_style eam (1986--Foiles-S-M--Au--LAMMPS--ipr1)
See Computed Properties
Notes: This file was taken from the August 22, 2018 LAMMPS distribution.
File(s):
Au_u3.eam

OpenKIM (MO_559016907324)
See Computed Properties
Notes: Listing found at https://openkim.org. This KIM potential is based on the same files as 1986--Foiles-S-M--Au--LAMMPS--ipr1.
Link(s):
KIM page EAM_Dynamo_FoilesBaskesDaw_1986Universal3_Au__MO_559016907324_000


Au-Pt

2017--OBrien-C-J-Barr-C-M-Price-P-M-et-al--Pt-Au
C.J. O'Brien, C.M. Barr, P.M. Price, K. Hattar, and S.M. Foiles (2017), "Grain boundary phase transformations in PtAu and relevance to thermal stabilization of bulk nanocrystalline metals", Journal of Materials Science, 53(4), 2911-2927. DOI: 10.1007/s10853-017-1706-1.
Abstract: There has recently been a great deal of interest in employing immiscible solutes to stabilize nanocrystalline microstructures. Existing modeling efforts largely rely on mesoscale Monte Carlo approaches that employ a simplified model of the microstructure and result in highly homogeneous segregation to grain boundaries. However, there is ample evidence from experimental and modeling studies that demonstrates segregation to grain boundaries is highly non-uniform and sensitive to boundary character. This work employs a realistic nanocrystalline microstructure with experimentally relevant global solute concentrations to illustrate inhomogeneous boundary segregation. Experiments quantifying segregation in thin films are reported that corroborate the prediction that grain boundary segregation is highly inhomogeneous. In addition to grain boundary structure modifying the degree of segregation, the existence of a phase transformation between low and high solute content grain boundaries is predicted. In order to conduct this study, new embedded atom method interatomic potentials are developed for Pt, Au, and the PtAu binary alloy.

LAMMPS pair_style eam/alloy (2017--OBrien-C-J--Pt-Au--LAMMPS--ipr1)
See Computed Properties
Notes: This file was submitted by Dr. C.J. O'Brien (Sandia National Laboratories) on 07 May 2018. Dr. O'Brien also provided a description of the potential and its implementation, which can be found in OBrien-SI.pdf.
File(s):
See Computed Properties
Notes: Listing found at https://openkim.org. This KIM potential is based on the files from 2017--OBrien-C-J--Pt-Au--LAMMPS--ipr1.
Link(s):

Au-Si

2018--Starikov-S-V-Lopanitsyna-N-Y-Smirnova-D-E-Makarov-S-V--Si-Au
S.V. Starikov, N.Y. Lopanitsyna, D.E. Smirnova, and S.V. Makarov (2018), "Atomistic simulation of Si-Au melt crystallization with novel interatomic potential", Computational Materials Science, 142, 303-311. DOI: 10.1016/j.commatsci.2017.09.054.
Abstract: In this work we studied crystallization of the liquid Si-Au system at rapid cooling. For this purpose we performed atomistic simulation with novel interatomic potential. Results of the simulations showed that crystallization proceeds in different ways for pure silicon and Si-Au melt. For the studied binary system, the main factor limiting crystallization is diffusion of Au atoms in the liquid state. Threshold cooling rate for crystallization significantly depends on the Au content.

See Computed Properties
Notes: These files were sent by Dr. Sergey Starikov (Joint Institute for High Temperatures, Russia) on 6 November 2017 and posted with his permission.
File(s): superseded


See Computed Properties
Notes: A new implementation was sent by Dr. Sergey Starikov on 1 October 2018 and posted with his permission with the following comments: "The old version of the potential (above) could not correctly describe several dense structures of silicon (like fcc and hcp) as the explored values of density (rho) exceeded those tabulated. As such, many structures incorrectly had energy lower than diamond lattice. This version fixes the bug by increasing the maximum tabulated rho from 1.0 to 2.0, and gives the right hierarchy of the crystal structures."
File(s):

B-C-N

2012--Kinaci-A-Haskins-J-B-Sevik-C-Cagin-T--B-N-C
A. Kınacı, J.B. Haskins, C. Sevik, and T. Çağın (2012), "Thermal conductivity of BN-C nanostructures", Physical Review B, 86(11), 115410. DOI: 10.1103/physrevb.86.115410.
Abstract: Chemical and structural diversity present in hexagonal boron nitride (h-BN) and graphene hybrid nanostructures provide avenues for tuning various properties for their technological applications. In this paper we investigate the variation of thermal conductivity (κ) of hybrid graphene/h-BN nanostructures: stripe superlattices and BN (graphene) dots embedded in graphene (BN) are investigated using equilibrium molecular dynamics. To simulate these systems, we have parametrized a Tersoff type interaction potential to reproduce the ab initio energetics of the B-C and N-C bonds for studying the various interfaces that emerge in these hybrid nanostructures. We demonstrate that both the details of the interface, including energetic stability and shape, as well as the spacing of the interfaces in the material, exert strong control on the thermal conductivity of these systems. For stripe superlattices, we find that zigzag configured interfaces produce a higher κ in the direction parallel to the interface than the armchair configuration, while the perpendicular conductivity is less prone to the details of the interface and is limited by the κ of h-BN. Additionally, the embedded dot structures, having mixed zigzag and armchair interfaces, affect the thermal transport properties more strongly than superlattices. The largest reduction in thermal conductivity is observed at 50% dot concentration, but the dot radius appears to have little effect on the magnitude of reduction around this concentration.

LAMMPS pair_style tersoff (2012--Kinaci-A--B-N-C--LAMMPS--ipr1)
See Computed Properties
Notes: This file was taken from the August 22, 2018 LAMMPS distribution.
File(s):

B-N

2017--Los-J-H-Kroes-J-M-H-Albe-K-et-al--B-N
J.H. Los, J.M.H. Kroes, K. Albe, R.M. Gordillo, M.I. Katsnelson, and A. Fasolino (2017), "Extended Tersoff potential for boron nitride: Energetics and elastic properties of pristine and defective h-BN", Physical Review B, 96(18), 184108. DOI: 10.1103/physrevb.96.184108.
Abstract: We present an extended Tersoff potential for boron nitride (BN-ExTeP) for application in large scale atomistic simulations. BN-ExTeP accurately describes the main low energy B, N, and BN structures and yields quantitatively correct trends in the bonding as a function of coordination. The proposed extension of the bond order, added to improve the dependence of bonding on the chemical environment, leads to an accurate description of point defects in hexagonal BN (h-BN) and cubic BN (c-BN). We have implemented this potential in the molecular dynamics LAMMPS code and used it to determine some basic properties of pristine 2D h-BN and the elastic properties of defective h-BN as a function of defect density at zero temperature. Our results show that there is a strong correlation between the size of the static corrugation induced by the defects and the weakening of the in-plane elastic moduli.

LAMMPS pair_style extep (2017--Los-J-H--B-N--LAMMPS--ipr1)
See Computed Properties
Notes: This file was taken from the August 22, 2018 LAMMPS distribution and listed as having been contributed by J.H. Los and J.M.H. Kroes (Radboud University)
File(s):

Be

2013--Agrawal-A-Mishra-R-Ward-L-et-al--Be
A. Agrawal, R. Mishra, L. Ward, K.M. Flores, and W. Windl (2013), "An embedded atom method potential of beryllium", Modelling and Simulation in Materials Science and Engineering, 21(8), 085001. DOI: 10.1088/0965-0393/21/8/085001.
Abstract: We present an embedded atom method (EAM) potential for hexagonal beryllium, with a pair function in the form of a Morse potential and a Johnson embedding function with exponential electron density. The cohesive energy, elastic constants, lattice parameters and relaxed vacancy formation energy were used to fit the potential. The fitted-potential was validated by a comparison to first-principles and, wherever available, experimental results for the lattice energies of various crystal structures: vacancy cluster, interstitial formation and surface. Using a large cutoff distance of 5 Å, which includes interactions to approximately the eighth neighbor shell of beryllium, allows our potential to reproduce these quantities considerably better than previous EAM potentials. The accuracy obtained by our potential is similar to or in some cases even better than available modified EAM potentials, while being computationally less intensive.

Notes: There is a corrigendum for the publication located here.

LAMMPS pair_style eam/alloy (2013--Agrawal-A--Be--LAMMPS--ipr1)
See Computed Properties
Notes: These files were sent by A. Agrawal (Washington University in St. Louis) on 29 August 2016 and posted with her permission.
File(s):
See Computed Properties
Notes: Listing found at https://openkim.org. This KIM potential is based on the files from 2013--Agrawal-A--Be--LAMMPS--ipr1.
Link(s):

Be-O

2018--Byggmastar-J-Hodille-E-A-Ferro-Y-Nordlund-K--Be-O
J. Byggmästar, E.A. Hodille, Y. Ferro, and K. Nordlund (2018), "Analytical bond order potential for simulations of BeO 1D and 2D nanostructures and plasma-surface interactions", Journal of Physics: Condensed Matter, 30(13), 135001. DOI: 10.1088/1361-648x/aaafb3.
Abstract: An analytical interatomic bond order potential for the Be–O system is presented. The potential is fitted and compared to a large database of bulk BeO and point defect properties obtained using density functional theory. Its main applications include simulations of plasma-surface interactions involving oxygen or oxide layers on beryllium, as well as simulations of BeO nanotubes and nanosheets. We apply the potential in a study of oxygen irradiation of Be surfaces, and observe the early stages of an oxide layer forming on the Be surface. Predicted thermal and elastic properties of BeO nanotubes and nanosheets are simulated and compared with published ab initio data.

Notes: J. Byggmästar (University of Helsinki) noted that the pure elemental potentials for Be-Be and O-O are from the following references:
Be-Be: Björkas, C., Juslin, N., Timko, H., Vörtler, K., Nordlund, K., Henriksson, K., & Erhart, P. (2009). Interatomic potentials for the Be–C–H system. Journal of Physics: Condensed Matter, 21(44), 445002. DOI: 10.1088/0953-8984/21/44/445002
O-O: Erhart, P., Juslin, N., Goy, O., Nordlund, K., Müller, R., & Albe, K. (2006). Analytic bond-order potential for atomistic simulations of zinc oxide. Journal of Physics: Condensed Matter, 18(29), 6585–6605. DOI: https://doi.org/10.1088/0953-8984/18/29/003
which should be cited if only the Be-Be or O-O parts are used.

LAMMPS pair_style tersoff/zbl (2018--Byggmastar-J--Be-O--LAMMPS--ipr1)
See Computed Properties
Notes: These files were sent by J. Byggmästar (University of Helsinki) on 6 Mar. 2018 and posted with his permission.
File(s):

Br-Cl-Cs-F-I-K-Li-Na-Rb

2011--Zhou-X-W-Doty-F-P-Yang-P--Li-Na-K-Rb-Cs-F-Cl-Br-I
X.W. Zhou, F.P. Doty, and P. Yang (2011), "Atomistic simulation study of atomic size effects on B1 (NaCl), B2 (CsCl), and B3 (zinc-blende) crystal stability of binary ionic compounds", Computational Materials Science, 50(8), 2470-2481. DOI: 10.1016/j.commatsci.2011.03.028.
Abstract: Ionic compounds exhibit a variety of crystal structures that can critically affect their applications. Traditionally, relative sizes of cations and anions have been used to explain coordination of ions within the crystals. Such approaches assume atoms to be hard spheres and they cannot explain the observed structures of some crystals. Here we develop an atomistic method and use it to explore the structure-determining factors beyond the limitations of the hard sphere approach. Our approach is based upon a calibrated interatomic potential database that uses independent intrinsic bond lengths to measure atomic sizes. By carrying out extensive atomistic simulations, striking relationships among intrinsic bond lengths are discovered to determine the B1 (NaCl), B2 (CsCl), and B3 (zinc-blende) structure of binary ionic compounds.

See Computed Properties
Notes: This file was taken from the August 22, 2018 LAMMPS distribution. It is listed as being contributed by Xiaowang Zhou (Sandia)
File(s):

C

2015--Zhou-X-W-Ward-D-K-Foster-M-E--C
X.W. Zhou, D.K. Ward, and M.E. Foster (2015), "An analytical bond-order potential for carbon", Journal of Computational Chemistry, 36(23), 1719-1735. DOI: 10.1002/jcc.23949.
Abstract: Carbon is the most widely studied material today because it exhibits special properties not seen in any other materials when in nano dimensions such as nanotube and graphene. Reduction of material defects created during synthesis has become critical to realize the full potential of carbon structures. Molecular dynamics (MD) simulations, in principle, allow defect formation mechanisms to be studied with high fidelity, and can, therefore, help guide experiments for defect reduction. Such MD simulations must satisfy a set of stringent requirements. First, they must employ an interatomic potential formalism that is transferable to a variety of carbon structures. Second, the potential needs to be appropriately parameterized to capture the property trends of important carbon structures, in particular, diamond, graphite, graphene, and nanotubes. Most importantly, the potential must predict the crystalline growth of the correct phases during direct MD simulations of synthesis to achieve a predictive simulation of defect formation. Because an unlimited number of structures not included in the potential parameterization are encountered, the literature carbon potentials are often not sufficient for growth simulations. We have developed an analytical bond order potential for carbon, and have made it available through the public MD simulation package LAMMPS. We demonstrate that our potential reasonably captures the property trends of important carbon phases. Stringent MD simulations convincingly show that our potential accounts not only for the crystalline growth of graphene, graphite, and carbon nanotubes but also for the transformation of graphite to diamond at high pressure.

LAMMPS pair_style bop (2015--Zhou-X-W--C--LAMMPS--ipr1)
See Computed Properties
Notes: This file was taken from the August 22, 2018 LAMMPS distribution and listed as having been created by X.W. Zhou (Sandia)
File(s):

2003--Los-J-H-Fasolino-A--C
J.H. Los, and A. Fasolino (2003), "Intrinsic long-range bond-order potential for carbon: Performance in Monte Carlo simulations of graphitization", Physical Review B, 68(2), 024107. DOI: 10.1103/physrevb.68.024107.
Abstract: We propose a bond order potential for carbon with built-in long-range interactions. The potential is defined as the sum of an angular and coordination dependent short-range part accounting for the strong covalent interactions and a radial long-range part describing the weak interactions responsible, e.g., for the interplanar binding in graphite. The short-range part is a Brenner type of potential, with several modifications introduced to get an improved description of elastic properties and conjugation. Contrary to previous long-range extensions of existing bond order potentials, we prevent the loss of accuracy by compensating for the additional long-range interactions by an appropriate parametrization of the short-range part. We also provide a short-range bond order potential. In Monte Carlo simulations our potential gives a good description of the diamond to graphite transformation. For thin (111) slabs graphitization proceeds perpendicular to the surface as found in ab initio simulations, whereas for thick layers we find that graphitization occurs layer by layer.

LAMMPS pair_style lcbop (2003--Los-J-H--C--LAMMPS--ipr1)
See Computed Properties
Notes: This file was taken from the August 22, 2018 LAMMPS distribution. The LAMMPS documentation for pair_style lcbop notes "The parameters/coefficients for the LCBOP potential as applied to C are listed in the C.lcbop file to agree with the original (Los and Fasolino) paper. Thus the parameters are specific to this potential and the way it was fit, so modifying the file should be done carefully."
File(s):

C-Cu

2015--Zhou-X-W-Ward-D-K-Foster-M-E--C-Cu
X.W. Zhou, D.K. Ward, and M.E. Foster (2015), "An analytical bond-order potential for carbon", Journal of Computational Chemistry, 36(23), 1719-1735. DOI: 10.1002/jcc.23949.
Abstract: Carbon is the most widely studied material today because it exhibits special properties not seen in any other materials when in nano dimensions such as nanotube and graphene. Reduction of material defects created during synthesis has become critical to realize the full potential of carbon structures. Molecular dynamics (MD) simulations, in principle, allow defect formation mechanisms to be studied with high fidelity, and can, therefore, help guide experiments for defect reduction. Such MD simulations must satisfy a set of stringent requirements. First, they must employ an interatomic potential formalism that is transferable to a variety of carbon structures. Second, the potential needs to be appropriately parameterized to capture the property trends of important carbon structures, in particular, diamond, graphite, graphene, and nanotubes. Most importantly, the potential must predict the crystalline growth of the correct phases during direct MD simulations of synthesis to achieve a predictive simulation of defect formation. Because an unlimited number of structures not included in the potential parameterization are encountered, the literature carbon potentials are often not sufficient for growth simulations. We have developed an analytical bond order potential for carbon, and have made it available through the public MD simulation package LAMMPS. We demonstrate that our potential reasonably captures the property trends of important carbon phases. Stringent MD simulations convincingly show that our potential accounts not only for the crystalline growth of graphene, graphite, and carbon nanotubes but also for the transformation of graphite to diamond at high pressure.

Notes: Notes from Dr. Zhou about the C-Cu interactions: "The C-Cu potential was constructed from the carbon potential (2015--Zhou-X-W-Ward-D-K-Foster-M-E--C) and Cu of the Al-Cu and Cu-H potentials (2016--Zhou-X-W-Ward-D-K-Foster-M-E--Al-Cu, 2015--Zhou-X-W-Ward-D-K-Foster-M-Zimmerman-J-A--Cu-H), except that a Morse potential is added to the Cu so that the cohesive energy of Cu is deliberately significantly increased but the lattice constant of Cu is unchanged. This allows simulations of growth of C on Cu to be performed at temperatures higher than the Cu melting temperature (to accelerate the simulations) without other negative consequencies."

See Computed Properties
Notes: This file was taken from the August 22, 2018 LAMMPS distribution and listed as having been created by X.W. Zhou (Sandia)
File(s):

C-Fe

2014--Liyanage-L-S-I-Kim-S-G-Houze-J-et-al--Fe-C
L.S.I. Liyanage, S.-G. Kim, J. Houze, S. Kim, M.A. Tschopp, M.I. Baskes, and M.F. Horstemeyer (2014), "Structural, elastic, and thermal properties of cementite (Fe3C) calculated using a modified embedded atom method", Physical Review B, 89(9), 094102. DOI: 10.1103/physrevb.89.094102.
Abstract: Structural, elastic, and thermal properties of cementite (Fe3C) were studied using a modified embedded atom method (MEAM) potential for iron-carbon (Fe-C) alloys. Previously developed Fe and C single-element potentials were used to develop a Fe-C alloy MEAM potential, using a statistics-based optimization scheme to reproduce structural and elastic properties of cementite, the interstitial energies of C in bcc Fe, and heat of formation of Fe-C alloys in L12 and B1 structures. The stability of cementite was investigated by molecular dynamics simulations at high temperatures. The nine single-crystal elastic constants for cementite were obtained by computing total energies for strained cells. Polycrystalline elastic moduli for cementite were calculated from the single-crystal elastic constants of cementite. The formation energies of (001), (010), and (100) surfaces of cementite were also calculated. The melting temperature and the variation of specific heat and volume with respect to temperature were investigated by performing a two-phase (solid/liquid) molecular dynamics simulation of cementite. The predictions of the potential are in good agreement with first-principles calculations and experiments.

See Computed Properties
Notes: These files were contributed by Laalitha Liyanage (Central Michigan Univ., Univ. of North Texas) on 14 Apr. 2014.
File(s):

2013--Henriksson-K-O-E-Bjorkas-C-Nordlund-K--Fe-C
K.O.E. Henriksson, C. Björkas, and K. Nordlund (2013), "Atomistic simulations of stainless steels: a many-body potential for the Fe-Cr-C system", Journal of Physics: Condensed Matter, 25(44), 445401. DOI: 10.1088/0953-8984/25/44/445401.
Abstract: Stainless steels found in real-world applications usually have some C content in the base Fe–Cr alloy, resulting in hard and dislocation-pinning carbides—Fe3C (cementite) and Cr23C6—being present in the finished steel product. The higher complexity of the steel microstructure has implications, for example, for the elastic properties and the evolution of defects such as Frenkel pairs and dislocations. This makes it necessary to re-evaluate the effects of basic radiation phenomena and not simply to rely on results obtained from purely metallic Fe–Cr alloys. In this report, an analytical interatomic potential parameterization in the Abell–Brenner–Tersoff form for the entire Fe–Cr–C system is presented to enable such calculations. The potential reproduces, for example, the lattice parameter(s), formation energies and elastic properties of the principal Fe and Cr carbides (Fe3C, Fe5C2, Fe7C3, Cr3C2, Cr7C3, Cr23C6), the Fe–Cr mixing energy curve, formation energies of simple C point defects in Fe and Cr, and the martensite lattice anisotropy, with fair to excellent agreement with empirical results. Tests of the predictive power of the potential show, for example, that Fe–Cr nanowires and bulk samples become elastically stiffer with increasing Cr and C concentrations. High-concentration nanowires also fracture at shorter relative elongations than wires made of pure Fe. Also, tests with Fe3C inclusions show that these act as obstacles for edge dislocations moving through otherwise pure Fe.

Notes: Note that this entry only represents the Fe-C subset of interatomic potentials developed and used in this reference.

LAMMPS pair_style tersoff/zbl (2013--Henriksson-K-O-E--Fe-C--LAMMPS--ipr1)
See Computed Properties
Notes: The Tersoff/ZBL file was contributed by Astrid Gubbels-Elzas and Peter Klaver (Delft University of Technology, Netherlands) and posted with their approval and that of Krister Henriksson (Univ. of Helsinki, Finland) on 9 Jul. 2014. Note that this file only represents the Fe-C subset of interatomic potentials developed and used in this reference.
File(s):
EAM tabulated functions (2013--Henriksson-K-O-E--Fe-C--table--ipr1)
Notes: The following files were contributed by Dr. Henriksson and modified by C. Becker to include the reference and format in the header information. They represent the potential in Equation 7 of the reference, and the columns are r, VZBL, and d/dr (VZBL). They were approved by Dr. Henriksson for posting on 25 Jul. 2014.
File(s):

2008--Hepburn-D-J-Ackland-G-J--Fe-C
D.J. Hepburn, and G.J. Ackland (2008), "Metallic-covalent interatomic potential for carbon in iron", Physical Review B, 78(16), 165115. DOI: 10.1103/physrevb.78.165115.
Abstract: Existing interatomic potentials for the iron-carbon system suffer from qualitative flaws in describing even the simplest of defects. In contrast to more accurate first-principles calculations, all previous potentials show strong bonding of carbon to overcoordinated defects (e.g., self-interstitials, dislocation cores) and a failure to accurately reproduce the energetics of carbon-vacancy complexes. Thus any results from their application in molecular dynamics to more complex environments are unreliable. The problem arises from a fundamental error in potential design—the failure to describe short-ranged covalent bonding of the carbon p electrons. We describe a resolution to the problem and present an empirical potential based on insights from density-functional theory, showing covalent-type bonding for carbon. The potential correctly describes the interaction of carbon and iron across a wide range of defect environments. It has the embedded atom method form and hence appropriate for billion atom molecular-dynamics simulations.

LAMMPS pair_style eam/fs (2008--Hepburn-D-J--Fe-C--LAMMPS--ipr1)
See Computed Properties
Notes: This file was implemented in the LAMMPS-compatible EAM/FS format by Sebastien Garruchet and posted with the permission of G.J. Ackland on 13 May 2009.
File(s):
Fe-C_Hepburn_Ackland.eam.fs

OpenKIM (MO_143977152728)
See Computed Properties
Notes: Listing found at https://openkim.org. This KIM potential is based on the files from 2008--Hepburn-D-J--Fe-C--LAMMPS--ipr1.
Link(s):
KIM page EAM_Dynamo_HepburnAckland_2008_FeC__MO_143977152728_005


C-Fe-Mn-Si

2019--Aslam-I-Baskes-M-I-Dickel-D-E-et-al--Fe-Mn-Si-C
I. Aslam, M.I. Baskes, D.E. Dickel, S. Adibi, B. Li, H. Rhee, M. Asle Zaeem, and M.F. Horstemeyer (2019), "Thermodynamic and kinetic behavior of low-alloy steels: An atomic level study using an Fe-Mn-Si-C modified embedded atom method (MEAM) potential", Materialia, 8, 100473. DOI: 10.1016/j.mtla.2019.100473.
Abstract: A quaternary element Modified Embedded Atom Method (MEAM) potential comprising Fe, Mn, Si, and C is developed by employing a hierarchical multiscale modeling paradigm to simulate low-alloy steels. Experimental information alongside first-principles calculations based on Density Functional Theory served as calibration data to upscale and develop the MEAM potential. For calibrating the single element potentials, the cohesive energy, lattice parameters, elastic constants, and vacancy and interstitial formation energies are used as target data. The heat of formation and elastic constants of binary compounds along with substitutional and interstitial formation energies serve as binary potential calibration data, while substitutional and interstitial pair binding energies aid in developing the ternary potential. Molecular dynamics simulations employing the developed potentials predict the thermal expansion coefficient, heat capacity, self-diffusion coefficients, and stacking fault energy for steel alloys comparable to those reported in the literature.

See Computed Properties
Notes: This file was provided by Imran Aslam (Mississippi State) on Feb 28, 2020 and posted with his permission.
File(s):

C-Fe-Ti

2009--Kim-H-K-Jung-W-S-Lee-B-J--Fe-Ti-C
H.-K. Kim, W.-S. Jung, and B.-J. Lee (2009), "Modified embedded-atom method interatomic potentials for the Fe-Ti-C and Fe-Ti-N ternary systems", Acta Materialia, 57(11), 3140-3147. DOI: 10.1016/j.actamat.2009.03.019.
Abstract: Modified embedded-atom method (MEAM) interatomic potentials for the Fe-Ti-C and Fe-Ti-N ternary systems have been developed based on the previously developed MEAM potentials for sub-unary and binary systems. An attempt was made to find a way to determine ternary potential parameters using the corresponding binary parameters. The calculated coherent interface properties, interfacial energy, work of separation and misfit strain energy between body-centered cubic Fe and NaCl-type TiC or TiN were reasonable when compared with relevant first-principles calculations under the same condition. The applicability of the present potentials for atomistic simulations to investigate nucleation kinetics of TiC or TiN precipitates and their effects on mechanical properties in steels is also demonstrated.

See Computed Properties
Notes: This file was submitted by Sebastián ECHEVERRI RESTREPO (SKF Engineering & Research Centre) on 31 August 2015 and approved for distribution by Byeong-Joo Lee (POSTECH). This version is compatible with LAMMPS. Implementation information can be found in FeTiC_Implementation.pdf.
File(s):
See Computed Properties
Notes: Listing found at https://openkim.org.
Link(s):

C-H-O

2008--Chenoweth-K-van-Duin-A-C-T-Goddard-W-A--C-H-O
K. Chenoweth, A.C.T. van Duin, and W.A. Goddard (2008), "ReaxFF Reactive Force Field for Molecular Dynamics Simulations of Hydrocarbon Oxidation", The Journal of Physical Chemistry A, 112(5), 1040-1053. DOI: 10.1021/jp709896w.
Abstract: To investigate the initial chemical events associated with high-temperature gas-phase oxidation of hydrocarbons, we have expanded the ReaxFF reactive force field training set to include additional transition states and chemical reactivity of systems relevant to these reactions and optimized the force field parameters against a quantum mechanics (QM)-based training set. To validate the ReaxFF potential obtained after parameter optimization, we performed a range of NVT−MD simulations on various hydrocarbon/O2 systems. From simulations on methane/O2, o-xylene/O2, propene/O2, and benzene/O2 mixtures, we found that ReaxFF obtains the correct reactivity trend (propene > o-xylene > methane > benzene), following the trend in the C−H bond strength in these hydrocarbons. We also tracked in detail the reactions during a complete oxidation of isolated methane, propene, and o-xylene to a CO/CO2/H2O mixture and found that the pathways predicted by ReaxFF are in agreement with chemical intuition and our QM results. We observed that the predominant initiation reaction for oxidation of methane, propene, and o-xylene under fuel lean conditions involved hydrogen abstraction of the methyl hydrogen by molecular oxygen forming hydroperoxyl and hydrocarbon radical species. While under fuel rich conditions with a mixture of these hydrocarbons, we observed different chemistry compared with the oxidation of isolated hydrocarbons including a change in the type of initiation reactions, which involved both decomposition of the hydrocarbon or attack by other radicals in the system. Since ReaxFF is capable of simulating complicated reaction pathways without any preconditioning, we believe that atomistic modeling with ReaxFF provides a useful method for determining the initial events of oxidation of hydrocarbons under extreme conditions and can enhance existing combustion models.

See Computed Properties
Notes: The file "ffield.reax.CHO_2008" was provided by Adri van Duin. From Prof. van Duin: "The ffield-file contains the force field parameters; this file is readable by LAMMPS." The ReaxFF manual (including file formatting information) was obtained from http://www.wag.caltech.edu/home/duin/manual.html. All files were posted with Prof. van Duin's approval. The standalone ReaxFF program is available without charge for academic users by emailing him.
File(s):

C-Si

2012--Jiang-C-Morgan-D-Szlufarska-I--Si-C
C. Jiang, D. Morgan, and I. Szlufarska (2012), "Carbon tri-interstitial defect: A model for the DII center", Physical Review B, 86(14), 144118. DOI: 10.1103/physrevb.86.144118.
Abstract: Using a combination of random configuration sampling, molecular dynamics simulated annealing with empirical potential, and ensuing structural refinement by first-principles density functional calculations, we perform an extensive ground-state search for the most stable configurations of small carbon interstitial clusters in SiC. Our search reveals a "magic" cluster number of three atoms, where the formation energy per interstitial shows a distinct minimum. A carbon tri-interstitial cluster with trigonal C3v symmetry is discovered, in which all carbon atoms are fourfold coordinated. In addition to its special thermodynamic stability, its localized vibrational modes are also in a very good agreement with the experimental photoluminescence spectra of the DII center in both 3C- and 4H-SiC. The DII center is one of the most persistent defects in SiC, and we propose that the discovered carbon tri-interstitial is responsible for this center.

LAMMPS pair_style edip/multi (2012--Jiang-C--Si-C--LAMMPS--ipr1)
See Computed Properties
Notes: This file was taken from the August 22, 2018 LAMMPS distribution. It is listed as being contributed by Chao Jiang (University of Wisconsin)
File(s):

2007--Vashishta-P-Kalia-R-K-Nakano-A-Rino-J-P--Si-C
P. Vashishta, R.K. Kalia, A. Nakano, and J.P. Rino (2007), "Interaction potential for silicon carbide: A molecular dynamics study of elastic constants and vibrational density of states for crystalline and amorphous silicon carbide", Journal of Applied Physics, 101(10), 103515. DOI: 10.1063/1.2724570.
Abstract: An effective interatomic interaction potential for SiC is proposed. The potential consists of two-body and three-body covalent interactions. The two-body potential includes steric repulsions due to atomic sizes, Coulomb interactions resulting from charge transfer between atoms, charge-induced dipole-interactions due to the electronic polarizability of ions, and induced dipole-dipole (van der Waals) interactions. The covalent characters of the Si–C–Si and C–Si–C bonds are described by the three-body potential. The proposed three-body interaction potential is a modification of the Stillinger-Weber form proposed to describe Si. Using the molecular dynamics method, the interaction potential is used to study structural, elastic, and dynamical properties of crystalline (3C), amorphous, and liquid states of SiC for several densities and temperatures. The structural energy for cubic (3C) structure has the lowest energy, followed by the wurtzite (2H) and rock-salt (RS) structures. The pressure for the structural transformation from 3C-to-RS from the common tangent is found to be 90 GPa. For 3C-SiC, our computed elastic constants (C11, C12, and C44), melting temperature, vibrational density-of-states, and specific heat agree well with the experiments. Predictions are made for the elastic constant as a function of density for the crystalline and amorphous phase. Structural correlations, such as pair distribution function and neutron and x-ray static structure factors are calculated for the amorphous and liquid state.

LAMMPS pair_style vashishta (2007--Vashishta-P--Si-C--LAMMPS--ipr1)
See Computed Properties
Notes: This file was taken from the August 22, 2018 LAMMPS distribution.
File(s):

2005--Erhart-P-Albe-K--Si-C-I
P. Erhart, and K. Albe (2005), "Analytical potential for atomistic simulations of silicon, carbon, and silicon carbide", Physical Review B, 71(3), 035211. DOI: 10.1103/physrevb.71.035211.
Abstract: We present an analytical bond-order potential for silicon, carbon, and silicon carbide that has been optimized by a systematic fitting scheme. The functional form is adopted from a preceding work [Phys. Rev. B 65, 195124 (2002)] and is built on three independently fitted potentials for Si-Si, C-C, and Si-C interaction. For elemental silicon and carbon, the potential perfectly reproduces elastic properties and agrees very well with first-principles results for high-pressure phases. The formation enthalpies of point defects are reasonably reproduced. In the case of silicon stuctural features of the melt agree nicely with data taken from literature. For silicon carbide the dimer as well as the solid phases B1, B2, and B3 were considered. Again, elastic properties are very well reproduced including internal relaxations under shear. Comparison with first-principles data on point defect formation enthalpies shows fair agreement. The successful validation of the potentials for configurations ranging from the molecular to the bulk regime indicates the transferability of the potential model and makes it a good choice for atomistic simulations that sample a large configuration space.

Notes: This entry uses the paper's Si-I interaction, which was recommended for SiC simulations.

LAMMPS pair_style tersoff (2005--Erhart-P--Si-C-I--LAMMPS--ipr1)
See Computed Properties
Notes: This file was created and verified by Lucas Hale. The parameter values are comparable to those in the SiC_Erhart-Albe.tersoff file in the August 22, 2018 LAMMPS distribution with this file using higher precision for the derived parameters.
File(s):
2005_SiC_I.tersoff

OpenKIM (MO_903987585848)
See Computed Properties
Notes: Listing found at https://openkim.org. This KIM potential is based on the SiC_Erhart-Albe.tersoff file from the LAMMPS potentials directory.
Link(s):
KIM page Tersoff_LAMMPS_ErhartAlbe_2005_SiC__MO_903987585848_003
DOI 10.25950/d9bfe73a


2005--Erhart-P-Albe-K--Si-C-II
P. Erhart, and K. Albe (2005), "Analytical potential for atomistic simulations of silicon, carbon, and silicon carbide", Physical Review B, 71(3), 035211. DOI: 10.1103/physrevb.71.035211.
Abstract: We present an analytical bond-order potential for silicon, carbon, and silicon carbide that has been optimized by a systematic fitting scheme. The functional form is adopted from a preceding work [Phys. Rev. B 65, 195124 (2002)] and is built on three independently fitted potentials for Si-Si, C-C, and Si-C interaction. For elemental silicon and carbon, the potential perfectly reproduces elastic properties and agrees very well with first-principles results for high-pressure phases. The formation enthalpies of point defects are reasonably reproduced. In the case of silicon stuctural features of the melt agree nicely with data taken from literature. For silicon carbide the dimer as well as the solid phases B1, B2, and B3 were considered. Again, elastic properties are very well reproduced including internal relaxations under shear. Comparison with first-principles data on point defect formation enthalpies shows fair agreement. The successful validation of the potentials for configurations ranging from the molecular to the bulk regime indicates the transferability of the potential model and makes it a good choice for atomistic simulations that sample a large configuration space.

Notes: This entry uses the paper's Si-II interaction, which gives better elastic and thermal properties for elemental silicon.

LAMMPS pair_style tersoff (2005--Erhart-P--Si-C-II--LAMMPS--ipr1)
See Computed Properties
Notes: This file was created and verified by Lucas Hale. The parameter values are identical to the ones in the parameter file used by openKIM model MO_408791041969_001.
File(s):
2005_SiC_II.tersoff

OpenKIM (MO_408791041969)
See Computed Properties
Notes: Listing found at https://openkim.org. This KIM potential is based on a parameter file with identical parameter values as 2005--Erhart-P--Si-C-II--LAMMPS--ipr1.
Link(s):
KIM page Tersoff_LAMMPS_ErhartAlbe_2005SiII_SiC__MO_408791041969_002
DOI 10.25950/9edfb96b


1998--Devanathan-R-Diaz-de-la-Rubia-T-Weber-W-J--Si-C
R. Devanathan, T. Diaz de la Rubia, and W.J. Weber (1998), "Displacement threshold energies in β-SiC", Journal of Nuclear Materials, 253(1-3), 47-52. DOI: 10.1016/s0022-3115(97)00304-8.
Abstract: We have calculated the displacement threshold energies (Ed) for C and Si primary knock-on atoms (PKA) in β-SiC using molecular dynamic simulations. The interactions between atoms were modeled using a modified form of the Tersoff potential in combination with a realistic repulsive potential obtained from density-functional theory calculations. The simulation cell was cubic, contained 8000 atoms and had periodic boundaries. The temperature of the simulation was about 150 K. Our results indicate strong anisotropy in the Ed values for both Si and C PKA. The displacement threshold for Si varies from about 36 eV along [001] to 113 eV along [111], while Ed for C varies from 28 eV along [111] to 71 eV along [111]. These results are in good agreement with experimental observations.

LAMMPS pair_style tersoff/zbl (1998--Devanathan-R--Si-C--LAMMPS--ipr1)
See Computed Properties
Notes: This file was taken from the August 22, 2018 LAMMPS distribution.
File(s):
SiC.tersoff.zbl


1994--Tersoff-J--Si-C
J. Tersoff (1994), "Chemical order in amorphous silicon carbide", Physical Review B, 49(23), 16349-16352. DOI: 10.1103/physrevb.49.16349.
Abstract: While ordering in alloy crystals is well understood, short-range ordering in amorphous alloys remains controversial. Here, by studying computer-generated models of amorphous SiC, we show that there are two principal factors controlling the degree of chemical order in amorphous covalent alloys. One, the chemical preference for mixed bonds, is much the same in crystalline and amorphous materials. However, the other factor, the atomic size difference, is far less effective at driving ordering in amorphous material than in the crystal. As a result, the amorphous phase may show either strong ordering (as in GaAs), or weaker ordering (as in SiC), depending upon the relative importance of these two factors.

Notes: This parameterization uses the interactions of 1990--Tersoff-J--Si-C and the cutoff of 1989--Tersoff-J--Si-C, with a slight correction for heat of mixing.

LAMMPS pair_style tersoff (1994--Tersoff-J--Si-C--LAMMPS--ipr1)
See Computed Properties
Notes: This file was created and verified by Lucas Hale. The parameter values are comparable to the SiC_1994.tersoff file in the August 22, 2018 LAMMPS distribution, with this file having higher numerical precision for the derived mixing parameters.
File(s):
1994_SiC.tersoff


1990--Tersoff-J--Si-C
J. Tersoff (1990), "Carbon defects and defect reactions in silicon", Physical Review Letters, 64(15), 1757-1760. DOI: 10.1103/physrevlett.64.1757.
Abstract: The energies of carbon defects in silicon are calculated, using an empirical classical potential, and used to infer defect properties and reactions. Substitutional carbon is found to react with silicon interstitials, with the carbon "kicked out" to form a (100) split interstitial. This interstitial can in turn bind to a second substitutional carbon, relieving stress, in three configurations with similar energies. The results here accord well with a variety of experimental data, including defect structures, activation energies for defect motion, and coupling to strain. A discrepancy with the accepted values for carbon solubility in silicon suggests a reinterpretation of the experimental data.

Notes: This parameterization focused on studying C interstitials in bulk Si. It has a sharp cutoff not suited for unconstrained simulations.

LAMMPS pair_style tersoff (1990--Tersoff-J--Si-C--LAMMPS--ipr1)
See Computed Properties
Notes: This file was created and verified by Lucas Hale. The parameter values are comparable to the SiC_1990.tersoff file in the August 22, 2018 LAMMPS distribution, with this file having higher numerical precision for the derived mixing parameters.
File(s):
1990_SiC.tersoff


1989--Tersoff-J--Si-C
J. Tersoff (1989), "Modeling solid-state chemistry: Interatomic potentials for multicomponent systems", Physical Review B, 39(8), 5566-5568. DOI: 10.1103/physrevb.39.5566.
Abstract: A general form is proposed for an empirical interatomic potential for multicomponent systems. This form interpolates between potentials for the respective elements to treat heteronuclear bonds. The approach is applied to C-Si and Si-Ge systems. In particular, the properties of SiC and its defects are well described.
J. Tersoff (1990), "Erratum: Modeling solid-state chemistry: Interatomic potentials for multicomponent systems", Physical Review B, 41(5), 3248-3248. DOI: 10.1103/physrevb.41.3248.2.

Notes: This is Tersoff's original multicomponent potential for Si-C interactions.

LAMMPS pair_style tersoff (1989--Tersoff-J--Si-C--LAMMPS--ipr1)
See Computed Properties
Notes: This file was created and verified by Lucas Hale. The parameter values are comparable to the Si(D)-C interactions in SiCGe.tersoff file in the August 22, 2018 LAMMPS distribution, with this file having higher numerical precision for the derived mixing parameters.
File(s):
1989_SiC.tersoff

OpenKIM (MO_171585019474)
See Computed Properties
Notes: Listing found at https://openkim.org. This KIM potential is based on a parameter file with identical parameter values as 1989--Tersoff-J--Si-C--LAMMPS--ipr1.
Link(s):
KIM page Tersoff_LAMMPS_Tersoff_1989_SiC__MO_171585019474_002
DOI 10.25950/5e8e8324

J. Tersoff (1990), "Erratum: Modeling solid-state chemistry: Interatomic potentials for multicomponent systems", Physical Review B, 41(5), 3248-3248. DOI: 10.1103/physrevb.41.3248.2.

Notes: This is Tersoff's original multicomponent potential for Si-C interactions.

LAMMPS pair_style tersoff (1989--Tersoff-J--Si-C--LAMMPS--ipr1)
See Computed Properties
Notes: This file was created and verified by Lucas Hale. The parameter values are comparable to the Si(D)-C interactions in SiCGe.tersoff file in the August 22, 2018 LAMMPS distribution, with this file having higher numerical precision for the derived mixing parameters.
File(s):
1989_SiC.tersoff

OpenKIM (MO_171585019474)
See Computed Properties
Notes: Listing found at https://openkim.org. This KIM potential is based on a parameter file with identical parameter values as 1989--Tersoff-J--Si-C--LAMMPS--ipr1.
Link(s):
KIM page Tersoff_LAMMPS_Tersoff_1989_SiC__MO_171585019474_002
DOI 10.25950/5e8e8324


CH

2014--Nouranian-S-Tschopp-M-A-Gwaltney-S-R-et-al--CH
S. Nouranian, M.A. Tschopp, S.R. Gwaltney, M.I. Baskes, and M.F. Horstemeyer (2014), "An interatomic potential for saturated hydrocarbons based on the modified embedded-atom method", Physical Chemistry Chemical Physics, 16(13), 6233-6249. DOI: 10.1039/c4cp00027g.
Abstract: In this work, we developed an interatomic potential for saturated hydrocarbons using the modified embedded-atom method (MEAM), a reactive semi-empirical many-body potential based on density functional theory and pair potentials. We parameterized the potential by fitting to a large experimental and first-principles (FP) database consisting of (1) bond distances, bond angles, and atomization energies at 0 K of a homologous series of alkanes and their select isomers from methane to n-octane, (2) the potential energy curves of H2, CH, and C2 diatomics, (3) the potential energy curves of hydrogen, methane, ethane, and propane dimers, i.e., (H2)2, (CH4)2, (C2H6)2, and (C3H8)2, respectively, and (4) pressure–volume–temperature (PVT) data of a dense high-pressure methane system with the density of 0.5534 g cc−1. We compared the atomization energies and geometries of a range of linear alkanes, cycloalkanes, and free radicals calculated from the MEAM potential to those calculated by other commonly used reactive potentials for hydrocarbons, i.e., second-generation reactive empirical bond order (REBO) and reactive force field (ReaxFF). MEAM reproduced the experimental and/or FP data with accuracy comparable to or better than REBO or ReaxFF. The experimental PVT data for a relatively large series of methane, ethane, propane, and butane systems with different densities were predicted reasonably well by the MEAM potential. Although the MEAM formalism has been applied to atomic systems with predominantly metallic bonding in the past, the current work demonstrates the promising extension of the MEAM potential to covalently bonded molecular systems, specifically saturated hydrocarbons and saturated hydrocarbon-based polymers. The MEAM potential has already been parameterized for a large number of metallic unary, binary, ternary, carbide, nitride, and hydride systems, and extending it to saturated hydrocarbons provides a reliable and transferable potential for atomistic/molecular studies of complex material phenomena involving hydrocarbon–metal or polymer–metal interfaces, polymer–metal nanocomposites, fracture and failure in hydrocarbon-based polymers, etc. The latter is especially true since MEAM is a reactive potential that allows for dynamic bond formation and bond breaking during simulation. Our results show that MEAM predicts the energetics of two major chemical reactions for saturated hydrocarbons, i.e., breaking a C–C and a C–H bond, reasonably well. However, the current parameterization does not accurately reproduce the energetics and structures of unsaturated hydrocarbons and, therefore, should not be applied to such systems.

Notes: Dr. Sasan Nouranian (Center for Advanced Vehicular Systems, Mississippi State Univ.) noted: "These MEAM parameters for elements C and H as well as the diatomic CH are appropriate for energy minimization and reactive molecular dynamics simulations of SATURATED hydrocarbons, where all carbon atoms have the sp3 hybridization (single C-C bonds). At the current state, MEAM cannot handle unsaturated compounds with great accuracy. Furthermore, these C and H parameters are not appropriate for diamond and graphite systems. For the first time, MEAM can be used to simulate hydrocarbons and hydrocarbon/metal systems, since it has a large parameter database for major metals in the periodic table of elements. Since MEAM is a reactive potential, it can also be used to simulate fracture and fatigue in hydrocarbon-based polymers, such as polyethylene and polypropylene and their composites with nanometals as well as polymer/metal interfaces."

LAMMPS pair_style meam (2014--Nouranian-S--CH--ipr1)
Notes: These files were contributed by Sasan Nouranian (Center for Advanced Vehicular Systems, Mississippi State Univ.) on 1 Jul. 2014. An example of energy minimization for an isobutane molecule using the MEAM potential in LAMMPS is also included (Isobutane.in and Isobutane.dat).
File(s):

Cd-Hg-S-Se-Te-Zn

2013--Zhou-X-W-Ward-D-K-Martin-J-E-et-al--Zn-Cd-Hg-S-Se-Te
X.W. Zhou, D.K. Ward, J.E. Martin, F.B. van Swol, J.L. Cruz-Campa, and D. Zubia (2013), "Stillinger-Weber potential for the II-VI elements Zn-Cd-Hg-S-Se-Te", Physical Review B, 88(8), 085309. DOI: 10.1103/physrevb.88.085309.
Abstract: Bulk and multilayered thin film crystals of II-VI semiconductor compounds are the leading materials for infrared sensing, γ-ray detection, photovoltaics, and quantum dot lighting applications. The key to achieving high performance for these applications is reducing crystallographic defects. Unfortunately, past efforts to improve these materials have been prolonged due to a lack of understanding with regards to defect formation and evolution mechanisms. To enable high-fidelity and high-efficiency atomistic simulations of defect mechanisms, this paper develops a Stillinger-Weber interatomic potential database for semiconductor compounds composed of the major II-VI elements Zn, Cd, Hg, S, Se, and Te. The potential's fidelity is achieved by optimizing all the pertinent model parameters, by imposing reasonable energy trends to correctly capture the transformation between elemental, solid solution, and compound phases, and by capturing exactly the experimental cohesive energies, lattice constants, and bulk moduli of all binary compounds. Verification tests indicate that our model correctly predicts crystalline growth of all binary compounds during molecular dynamics simulations of vapor deposition. Two stringent cases convincingly show that our potential is applicable for a variety of compound configurations involving all the six elements considered here. In the first case, we demonstrate a successful molecular dynamics simulation of crystalline growth of an alloyed (Cd0.28Zn0.68Hg0.04) (Te0.20Se0.18S0.62) compound on a ZnS substrate. In the second case, we demonstrate the predictive power of our model on defects, such as misfit dislocations, stacking faults, and subgrain nucleation, using a complex growth simulation of ZnS/CdSe/HgTe multilayers that also contain all the six elements considered here. Using CdTe as a case study, a comprehensive comparison of our potential with literature potentials is also made. Finally, we also propose unique insights for improving the Stillinger-Weber potential in future developments.

See Computed Properties
Notes: This file was sent by Dr. Xiaowang Zhou (Sandia National Laboratories) and approved for distribution on 11 Sept. 2013. This file is compatible with LAMMPS and is intended to be used for elements and compounds of the Zn-Cd-Hg-S-Se-Te system (II-VI semiconductors).
File(s):
See Computed Properties
Notes: Listing found at https://openkim.org. This KIM potential is based on the files from 2013--Zhou-X-W--Zn-Cd-Hg-S-Se-Te--LAMMPS--ipr1.
Link(s):

Cd-Se-Te

2014--Zhou-X-W-Foster-M-E-van-Swol-F-B-et-al--Cd-Te-Se
X.W. Zhou, M.E. Foster, F.B. van Swol, J.E. Martin, and B.M. Wong (2014), "Analytical Bond-Order Potential for the Cd-Te-Se Ternary System", The Journal of Physical Chemistry C, 118(35), 20661-20679. DOI: 10.1021/jp505915u.
Abstract: CdTe/CdSe core/shell structured quantum dots do not suffer from the defects typically seen in lattice-mismatched films and can therefore lead to improved solid-state lighting devices as compared to the multilayered structures (e.g., InxGa1–xN/GaN). To achieve these devices, however, the quantum dots must be optimized with respect to the structural details at an atomistic level. Molecular dynamics simulations are effective for exploring nano structures at a resolution unattainable by experimental techniques. To enable accurate molecular dynamics simulations of CdTe/CdSe core/shell structures, we have developed a full Cd–Te–Se ternary bond-order potential based on the analytical formalisms derived from quantum mechanical theories by Pettifor et al. A variety of elemental and compound configurations (with coordination varying from 1 to 12) including small clusters, bulk lattices, defects, and surfaces are explicitly considered during potential parametrization. More importantly, enormous iterations are performed to strictly ensure that our potential can simulate the correct crystalline growth of the ground-state structures for Cd, Te, and Se elements as well as CdTe, CdSe, and CdTe1–xSex compounds during molecular dynamics vapor deposition simulations. Extensive test simulation results clearly indicate that our new Cd–Te–Se potential has unique advantages over the existing literature potential involving Cd, Te, and Se elements.

See Computed Properties
Notes: This file was taken from the August 22, 2018 LAMMPS distribution and listed as having been created by X.W. Zhou (Sandia)
File(s):

Cd-Te

2012--Ward-D-K-Zhou-X-W-Wong-B-M-et-al--Cd-Te
D.K. Ward, X.W. Zhou, B.M. Wong, F.P. Doty, and J.A. Zimmerman (2012), "Analytical bond-order potential for the cadmium telluride binary system", Physical Review B, 85(11), 115206. DOI: 10.1103/physrevb.85.115206.
Abstract: CdTe and Cd1−xZnxTe are the leading semiconductor compounds for both photovoltaic and radiation detection applications. The performance of these materials is sensitive to the presence of atomic-scale defects in the structures. To enable accurate studies of these defects using modern atomistic simulation technologies, we have developed a high-fidelity analytical bond-order potential for the CdTe system. This potential incorporates primary (σ) and secondary (π) bonding and the valence dependence of the heteroatom interactions. The functional forms of the potential are directly derived from quantum-mechanical tight-binding theory under the condition that the first two and first four levels of the expanded Green's function for the σ- and π-bond orders, respectively, are retained. The potential parameters are optimized using iteration cycles that include first-fitting properties of a variety of elemental and compound configurations (with coordination varying from 1 to 12) including small clusters, bulk lattices, defects, and surfaces, and then checking crystalline growth through vapor deposition simulations. It is demonstrated that this CdTe bond-order potential gives structural and property trends close to those seen in experiments and quantum-mechanical calculations and provides a good description of melting temperature, defect characteristics, and surface reconstructions of the CdTe compound. Most importantly, this potential captures the crystalline growth of the ground-state structures for Cd, Te, and CdTe phases in vapor deposition simulations.

See Computed Properties
Notes: This file was taken from the August 22, 2018 LAMMPS distribution and listed as having been created by D. Ward (Sandia)
File(s):

1989--Wang-Z-Q-Stroud-D-Markworth-A-J--Cd-Te
Z.Q. Wang, D. Stroud, and A.J. Markworth (1989), "Monte Carlo study of the liquid CdTe surface", Physical Review B, 40(5), 3129-3132. DOI: 10.1103/physrevb.40.3129.
Abstract: We study the liquid-vapor interface of CdTe by a Monte Carlo technique. The interatomic interactions are modeled by a combination of two-body and three-body potentials, using the form proposed by Stillinger and Weber, but with the parameters fitted to bulk atomization energies, lattice constants, and melting temperatures. The calculated heat of fusion and elastic constants agree well with experiments. The surface tension is calculated with a direct Monte Carlo evaluation of the free energy required to create the surface. The calculated surface tension is found to be about 220 ergs/cm2, in good agreement with experimental estimates. The surface region is found to be Cd rich, even though elemental Cd has a higher surface tension than elemental Te.

LAMMPS pair_style sw (1989--Wang-Z-Q--Cd-Te--LAMMPS--ipr1)
See Computed Properties
Notes: This file was taken from the August 22, 2018 LAMMPS distribution.
File(s):
OpenKIM (MO_786496821446)
See Computed Properties
Notes: Listing found at https://openkim.org. This KIM potential corresponds to the CdTe.sw distributed with the LAMMPS package, but the parameter file format is different.
Link(s):

Cd-Te-Zn

2013--Ward-D-K-Zhou-X-Wong-B-M-Doty-F-P--Cd-Te-Zn
D.K. Ward, X. Zhou, B.M. Wong, and F.P. Doty (2013), "A refined parameterization of the analytical Cd-Zn-Te bond-order potential", Journal of Molecular Modeling, 19(12), 5469-5477. DOI: 10.1007/s00894-013-2004-8.
Abstract: This paper reports an updated parameterization for a CdTe bond order potential. The original potential is a rigorously parameterized analytical bond order potential for ternary the Cd–Zn–Te systems. This potential effectively captures property trends of multiple Cd, Zn, Te, CdZn, CdTe, ZnTe, and Cd1-xZnxTe phases including clusters, lattices, defects, and surfaces. It also enables crystalline growth simulations of stoichiometric compounds/alloys from non-stoichiometric vapors. However, the potential over predicts the zinc-blende CdTe lattice constant compared to experimental data. Here, we report a refined analytical Cd–Zn–Te bond order potential parameterization that predicts a better CdTe lattice constant. Characteristics of the second potential are given based on comparisons with both literature potentials and the quantum mechanical calculations.

Notes: This is the second analytical BOP Cd-Zn-Te parameterization.

See Computed Properties
Notes: This file was taken from the August 22, 2018 LAMMPS distribution and listed as having been created by X.W. Zhou (Sandia)
File(s):

2012--Ward-D-K-Zhou-X-W-Wong-B-M-et-al--Cd-Te-Zn
D.K. Ward, X.W. Zhou, B.M. Wong, F.P. Doty, and J.A. Zimmerman (2012), "Analytical bond-order potential for the Cd-Zn-Te ternary system", Physical Review B, 86(24), 245203. DOI: 10.1103/physrevb.86.245203.
Abstract: Cd-Zn-Te ternary alloyed semiconductor compounds are key materials in radiation detection and photovoltaic applications. Currently, crystalline defects such as dislocations limit the performance of these materials. Atomistic simulations are a powerful method for exploring crystalline defects at a resolution unattainable by experimental techniques. To enable accurate atomistic simulations of defects in the Cd-Zn-Te systems, we develop a full Cd-Zn-Te ternary bond-order potential. This Cd-Zn-Te potential has numerous unique advantages over other potential formulations: (1) It is analytically derived from quantum mechanical theories and is therefore more likely to be transferable to environments that are not explicitly tested. (2) A variety of elemental and compound configurations (with coordination varying from 1 to 12) including small clusters, bulk lattices, defects, and surfaces are explicitly considered during parameterization. As a result, the potential captures structural and property trends close to those seen in experiments and quantum mechanical calculations and provides a good description of melting temperature, defect characteristics, and surface reconstructions. (3) Most importantly, this potential is validated to correctly predict the crystalline growth of the ground-state structures for Cd, Zn, Te elements as well as CdTe, ZnTe, and Cd1−xZnxTe compounds during highly challenging molecular dynamics vapor deposition simulations.

Notes: This is the first analytical BOP Cd-Zn-Te parameterization. Notes from Dr. Zhou "This was fitted to a theoretical CdTe lattice constant that is significantly larger than the experimental one. The later version (2013--Ward-D-K-Zhou-X-Wong-B-M-Doty-F-P--Cd-Te-Zn) was fitted to the experimental lattice constant."

LAMMPS pair_style bop (2012--Ward-D-K--Cd-Te-Zn--LAMMPS--ipr1)
See Computed Properties
Notes: This file was taken from the August 22, 2018 LAMMPS distribution and listed as having been created by X.W. Zhou (Sandia)
File(s):

Ce-O

2015--Broqvist-P-Kullgren-J-Wolf-M-J-et-al--Ce-O
P. Broqvist, J. Kullgren, M.J. Wolf, A.C.T. van Duin, and K. Hermansson (2015), "ReaxFF Force-Field for Ceria Bulk, Surfaces, and Nanoparticles", The Journal of Physical Chemistry C, 119(24), 13598-13609. DOI: 10.1021/acs.jpcc.5b01597.
Abstract: We have developed a reactive force-field of the ReaxFF type for stoichiometric ceria (CeO2) and partially reduced ceria (CeO2–x). We describe the parametrization procedure and provide results validating the parameters in terms of their ability to accurately describe the oxygen chemistry of the bulk, extended surfaces, surface steps, and nanoparticles of the material. By comparison with our reference electronic structure method (PBE+U), we find that the stoichiometric bulk and surface systems are well reproduced in terms of bulk modulus, lattice parameters, and surface energies. For the surfaces, step energies on the (111) surface are also well described. Upon reduction, the force-field is able to capture the bulk and surface vacancy formation energies (Evac), and in particular, it reproduces the Evac variation with depth from the (110) and (111) surfaces. The force-field is also able to capture the energy hierarchy of differently shaped stoichiometric nanoparticles (tetrahedra, octahedra, and cubes), and of partially reduced octahedra. For these reasons, we believe that this force-field provides a significant addition to the method repertoire available for simulating redox properties at ceria surfaces.

Notes: J. Kullgren included the following notes: "Usage: The parameters have been tested for static calculations of CeO2 and partially reduced CeO(2-x) using the LAMMPS code with the fortran implementation of reaxFF. For energy comparisons, use the in-cell approach (see the paper) when calculating reaction energies. Note to the users: After publication we have made further use of the published ceria parameters and noticed an additional (false) local minimum occurring for partially reduced ceria at a short Ce-O distance (approx. 1.89 Angstrom). This may (for example) have consequences for dynamic simulations at moderate temperatures. Our attempts to heal this deficiency have so far destroyed the good performance regarding the ordering of the surface vacancy energies on the (111) surface. In relevant cases, we advice our users to analyze the bond distances from the simulations."

LAMMPS pair_style reax/c (2015--Broqvist-P--Ce-O--LAMMPS--ipr1)
See Computed Properties
Notes: This file was sent by J. Kullgren (Uppsala University) on 19 December 2016 and posted with his permission. Update March 15, 2020: This version was identified to not be compatible with LAMMPS.
File(s): retracted


LAMMPS pair_style reax/c (2015--Broqvist-P--Ce-O--LAMMPS--ipr2)
See Computed Properties
Notes: These files were posted on March 15, 2020 by Lucas Hale. They modify the above version by separating the comments into a separate file, making the parameter file compatible with LAMMPS.
File(s):

Co

2012--Purja-Pun-G-P-Mishin-Y--Co
G.P. Purja Pun, and Y. Mishin (2012), "Embedded-atom potential for hcp and fcc cobalt", Physical Review B, 86(13), 134116. DOI: 10.1103/physrevb.86.134116.
Abstract: We report on the development of an embedded-atom interatomic potential representing basic properties of both the hcp and the fcc phases of cobalt with nearly equal accuracy. The potential also reproduces the structural phase transformation between the two phases at a temperature close to the experimental value. The proposed potential can be used for large-scale atomistic simulations of cobalt microstructures over a wide range of temperatures. In a more general context, it offers a model for studying thermodynamic and kinetic properties of hcp/fcc interfaces and microstructure evolution in two-phase materials.

LAMMPS pair_style eam/alloy (2012--Purja-Pun-G-P--Co--LAMMPS--ipr1)
See Computed Properties
Notes: This interatomic potential file was generated by G.P. Purja Pun (George Mason Univ.) and sent by Y. Mishin on 19 Oct. 2012. It was posted with their permission on 22 Oct. 2012. 29 Oct. 2012: The reference was updated when the manuscript was published. Testing information is available in Co_PurjaPun_2012_potential_test.pdf. This file was provided by Y. Mishin and G.P. Purja Pun.
File(s):
See Computed Properties
Notes: Listing found at https://openkim.org. This KIM potential is based on the files from 2012--Purja-Pun-G-P--Co--LAMMPS--ipr1.
Link(s):

2004--Zhou-X-W-Johnson-R-A-Wadley-H-N-G--Co
X.W. Zhou, R.A. Johnson, and H.N.G. Wadley (2004), "Misfit-energy-increasing dislocations in vapor-deposited CoFe/NiFe multilayers", Physical Review B, 69(14), 144113. DOI: 10.1103/physrevb.69.144113.
Abstract: Recent molecular dynamics simulations of the growth of [Ni0.8Fe0.2/Au] multilayers have revealed the formation of misfit-strain-reducing dislocation structures very similar to those observed experimentally. Here we report similar simulations showing the formation of edge dislocations near the interfaces of vapor-deposited (111) [NiFe/CoFe/Cu] multilayers. Unlike misfit dislocations that accommodate lattice mismatch, the dislocation structures observed here increase the mismatch strain energy. Stop-action observations of the dynamically evolving atomic structures indicate that during deposition on the (111) surface of a fcc lattice, adatoms may occupy either fcc sites or hcp sites. This results in the random formation of fcc and hcp domains, with dislocations at the domain boundaries. These dislocations enable atoms to undergo a shift from fcc to hcp sites, or vice versa. These shifts lead to missing atoms, and therefore a later deposited layer can have missing planes compared to a previously deposited layer. This dislocation formation mechanism can create tensile stress in fcc films. The probability that such dislocations are formed was found to quickly diminish under energetic deposition conditions.

FORTRAN (2004--Zhou-X-W--Co--FORTRAN--ipr1)
Notes: These are the original files sent by X.W. Zhou (Sandia National Laboratory) and posted with his permission. C.A. Becker (NIST) modified create.f to include the reference in the generated potential files and the EAM.input file for this composition. These files can be used to generate alloy potentials for Cu, Ag, Au, Ni, Pd, Pt, Al, Pb, Fe, Mo, Ta, W, Mg, Co, Ti, and Zr by editing EAM.input. However, as addressed in the reference, these potentials were not designed for use with metal compounds.
File(s): superseded


LAMMPS pair_style eam/alloy (2004--Zhou-X-W--Co--LAMMPS--ipr1)
See Computed Properties
Notes: This file was generated by C.A. Becker (NIST) from create.f and posted with X.W. Zhou's (Sandia National Laboratory) permission.
File(s): superseded


FORTRAN (2004--Zhou-X-W--Co--FORTRAN--ipr2)
Notes: The file Zhou04_create_v2.f is an updated version of create.f modified by L.M. Hale (NIST) following advice from X.W. Zhou (Sandia National Laboratory). This version removes spurious fluctuations in the tabulated functions of the original potential files caused by single/double precision floating point number conflicts.
File(s):
LAMMPS pair_style eam/alloy (2004--Zhou-X-W--Co--LAMMPS--ipr2)
See Computed Properties
Notes: This file was generated by L.M. Hale from Zhou04_create_v2.f on 13 April 2018 and posted with X.W. Zhou's (Sandia National Laboratory) permission. This version corrects an issue with spurious fluctuations in the tabulated functions.
File(s):
OpenKIM (MO_924630542818)
See Computed Properties
Notes: Listing found at https://openkim.org. This KIM potential is based on the files from 2004--Zhou-X-W--Co--LAMMPS--ipr1.
Link(s):
OpenKIM (MO_247800397145)
See Computed Properties
Notes: Listing found at https://openkim.org. This KIM potential is based on the files from 2004--Zhou-X-W--Co--LAMMPS--ipr2.
Link(s):

Co-Cr-Cu-Fe-Ni

2018--Farkas-D-Caro-A--Fe-Ni-Cr-Co-Cu
D. Farkas, and A. Caro (2018), "Model interatomic potentials and lattice strain in a high-entropy alloy", Journal of Materials Research, 33(19), 3218-3225. DOI: 10.1557/jmr.2018.245.
Abstract: A set of embedded atom method model interatomic potentials is presented to represent a high-entropy alloy with five components. The set is developed to resemble but not model precisely face-centered cubic (fcc) near-equiatomic mixtures of Fe–Ni–Cr–Co–Cu. The individual components have atomic sizes deviating up to 3%. With the heats of mixing of all binary equiatomic random fcc mixtures being less than 0.7 kJ/mol and the corresponding value for the quinary being −0.0002 kJ/mol, the potentials predict the random equiatomic fcc quinary mixture to be stable with respect to phase separation or ordering and with respect to bcc and hcp random mixtures. The details of lattice distortion, strain, and stress states in this phase are reported. The standard deviation in the individual nearest neighbor bond lengths was found to be in the range of 2%. Most importantly, individual atoms in the alloy were found to be under atomic strains up to 0.5%, corresponding to individual atomic stresses up to several GPa.

See Computed Properties
Notes: This file was provided by Diana Farkas (Virginia Tech) on 19 March 2019 and posted with her permission. Update 2019-05-20: Superseded by new version.
File(s): superseded


See Computed Properties
Notes: This file was provided by Diana Farkas (Virginia Tech) on 20 May 2019. Professor Farkas notes "The update is to make the potentials go to zero smoothly for distances of 5.8 Å. The original version went up to 6 Å and the last 0.2 Å were not smooth. This does not affect any of the common calculations but may make a difference in some cases like Peierls stresses of dislocations."
File(s):

Co-Ni

2016--Beland-L-K-Lu-C-Osetskiy-Y-N-et-al--Ni-Co
L.K. Béland, C. Lu, Y.N. Osetskiy, G.D. Samolyuk, A. Caro, L. Wang, and R.E. Stoller (2016), "Features of primary damage by high energy displacement cascades in concentrated Ni-based alloys", Journal of Applied Physics, 119(8), 085901. DOI: 10.1063/1.4942533.
Abstract: Alloying of Ni with Fe or Co has been shown to reduce primary damage production under ion irradiation. Similar results have been obtained from classical molecular dynamics simulations of 1, 10, 20, and 40 keV collision cascades in Ni, NiFe, and NiCo. In all cases, a mix of imperfect stacking fault tetrahedra, faulted loops with a 1/3⟨111⟩ Burgers vector, and glissile interstitial loops with a 1/2⟨110⟩ Burgers vector were formed, along with small sessile point defect complexes and clusters. Primary damage reduction occurs by three mechanisms. First, Ni-Co, Ni-Fe, Co-Co, and Fe-Fe short-distance repulsive interactions are stiffer than Ni-Ni interactions, which lead to a decrease in damage formation during the transition from the supersonic ballistic regime to the sonic regime. This largely controls final defect production. Second, alloying decreases thermal conductivity, leading to a longer thermal spike lifetime. The associated annealing reduces final damage production. These two mechanisms are especially important at cascades energies less than 40 keV. Third, at the higher energies, the production of large defect clusters by subcascades is inhibited in the alloys. A number of challenges and limitations pertaining to predictive atomistic modeling of alloys under high-energy particle irradiation are discussed.

Notes: Prof. Beland notes that "The potential takes elemental Ni from 2004--Mishin-Y--Ni-Al and Co from 2012--Purja-Pun-G-P-Mishin-Y--Co and mixes them. We first applied the effective gauge transformation, and then fitted the cross-term as to reproduce the heat of mixing of Ni(x)-Co(1-x). The potential is very soft at short distances. In order to perform collision cascades, it should be overlaid to the ZBL potential, with an outer cutoff of 2.0 Angstroms."

LAMMPS pair_style eam/alloy (2016--Beland-L-K--Ni-Co--LAMMPS--ipr1)
See Computed Properties
Notes: This file was provided by Laurent Béland on 7 Nov 2019 and posted with his permission. Note: The EAM potential by itself is very soft at short distances. In order to perform collision cascades, use the hybrid style listed below.
File(s):
LAMMPS pair_style hybrid/overlay zbl eam/alloy (2016--Beland-L-K--Ni-Co--LAMMPS--ipr2)
See Computed Properties
Notes: The eam file was provided by Laurent Béland on 7 Nov 2019 and posted with his permission. It is the same eam/alloy file as the above implementation. example.lammps.in provides an example of how to call the potential with the ZBL overlay applied.
File(s):

2015--Purja-Pun-G-P-Yamakov-V-Mishin-Y--Ni-Co
G.P. Purja Pun, V. Yamakov, and Y. Mishin (2015), "Interatomic potential for the ternary Ni–Al–Co system and application to atomistic modeling of the B2–L10 martensitic transformation", Modelling and Simulation in Materials Science and Engineering, 23(6), 065006. DOI: 10.1088/0965-0393/23/6/065006.
Abstract: Ni–Al–Co is a promising system for ferromagnetic shape memory applications. This paper reports on the development of a ternary embedded-atom potential for this system by fitting to experimental and first-principles data. Reasonably good agreement is achieved for physical properties between values predicted by the potential and values known from experiment and/or first-principles calculations. The potential reproduces basic features of the martensitic phase transformation from the B2-ordered high-temperature phase to a tetragonal CuAu-ordered low-temperature phase. The compositional and temperature ranges of this transformation and the martensite microstructure predicted by the potential compare well with existing experimental data. These results indicate that the proposed potential can be used for simulations of the shape memory effect in the Ni–Al–Co system.

Notes: The reference information was updated on 26 Aug. 2015.

LAMMPS pair_style eam/alloy (2015--Purja-Pun-G-P--Ni-Co--LAMMPS--ipr1)
See Computed Properties
Notes: This file was sent by Y. Mishin (George Mason Univ.) on 17 Sept. 2013 and was posted on 17 Jan. 2014. This version is compatible with LAMMPS. Validation and usage information can be found in Mishin-Ni-Co-2013_lammps.pdf.
File(s): superseded


LAMMPS pair_style eam/alloy (2015--Purja-Pun-G-P--Ni-Co--LAMMPS--ipr2)
See Computed Properties
Notes: This file was sent by G Purja Pun (George Mason Univ.) on 12 Oct. 2015 and was posted on 15 Dec. 2015. This version corrects an issue with the cutoff distance for Co interactions that was discovered during calculations of pressure dependent elastic constants.
File(s):
OpenKIM (MO_010613863288)
See Computed Properties
Notes: Listing found at https://openkim.org. This KIM potential is based on the files from 2015--Purja-Pun-G-P--Ni-Co--LAMMPS--ipr2.
Link(s):

Cr

2018--Howells-C-A-Mishin-Y--Cr
C.A. Howells, and Y. Mishin (2018), "Angular-dependent interatomic potential for the binary Ni-Cr system", Modelling and Simulation in Materials Science and Engineering, 26(8), 085008. DOI: 10.1088/1361-651x/aae400.
Abstract: A new interatomic potential has been developed for the Ni–Cr system in the angular-dependent potential (ADP) format by fitting the potential parameters to a set of experimental and first-principles data. The ADP potential reproduces a wide range of properties of both elements as well as binary alloys with reasonable accuracy, including thermal and mechanical properties, defects, melting points of Ni and Cr, and the Ni–Cr phase diagram. The potential can be used for atomistic simulations of solidification, mechanical behavior and microstructure of the Ni-based and Cr-based phases as well as two-phase alloys.

See Computed Properties
Notes: This file was provided by Yuri Mishin (George Mason University) on 2 Nov. 2018.
File(s):

Cr-Fe

2015--Eich-S-M-Beinke-D-Schmitz-G--Fe-Cr
S.M. Eich, D. Beinke, and G. Schmitz (2015), "Embedded-atom potential for an accurate thermodynamic description of the iron-chromium system", Computational Materials Science, 104, 185-192. DOI: 10.1016/j.commatsci.2015.03.047.
Abstract: A new potential for the iron–chromium (Fe–Cr) alloy system was optimized for the embedded-atom method (EAM) within the two-band model (TBM) extension. In contrast to previous works, free model parameters are predominantly adapted to available experimental high-temperature data of the mixing enthalpy. As a major improvement, the metastable α/α' miscibility gap is accurately described in agreement with experimental data and a recent CALPHAD parametrization. The potential was also fitted to obtain an enriched solubility for chromium atoms in an iron matrix at 0 K, as it is predicted by several ab initio calculations. Furthermore, it was benchmarked against phonon excess entropies at 300 K and 1600 K demonstrating good agreement with respective results of inelastic neutron scattering.

EAM tabulated functions (2015--Eich-S-M--Fe-Cr--table--ipr1)
Notes: These files were sent by S.M. Eich (University of Stuttgart) on 20 Aug. 2015 and posted with his permission. Dr. Eich noted, "That the provided tables are directly obtained by the fitting process for the Fe-Cr interaction without subsequent transformation into the effective pair format. This was done in the publication for comparison, but the additional rescaling of the electron density for pure components wouldn't describe the energetics of alloys correctly unless the rescaling has been performed before starting the fitting routine (which then would affect the fitting process)." Dr. Eich noted that the distance units are Angstroms and the energy units are eV.
File(s): superseded


EAM tabulated functions (2015--Eich-S-M--Fe-Cr--table--ipr2)
Notes: These files were provided by Sebastian Eich (Universität Stuttgart) on March 9, 2021 and posted with his permission. The new tables contain more grid points and includes values below 0.5 Angstroms.
File(s):
LAMMPS pair_style hybrid/overlay eam/alloy eam/fs (2015--Eich-S-M--Fe-Cr--LAMMPS--ipr1)
See Computed Properties
Notes: These files were provided by Sebastian Eich (Universität Stuttgart) on March 9, 2021 and posted with his permission.
File(s):

2011--Bonny-G-Pasianot-R-C-Terentyev-D-Malerba-L--Fe-Cr
G. Bonny, R.C. Pasianot, D. Terentyev, and L. Malerba (2011), "Iron chromium potential to model high-chromium ferritic alloys", Philosophical Magazine, 91(12), 1724-1746. DOI: 10.1080/14786435.2010.545780.
Abstract: We present an Fe–Cr interatomic potential to model high-Cr ferritic alloys. The potential is fitted to thermodynamic and point-defect properties obtained from density functional theory (DFT) calculations and experiments. The developed potential is also benchmarked against other potentials available in literature. It shows particularly good agreement with the DFT obtained mixing enthalpy of the random alloy, the formation energy of intermetallics and experimental excess vibrational entropy and phase diagram. In addition, DFT calculated point-defect properties, both interstitial and substitutional, are well reproduced, as is the screw dislocation core structure. As a first validation of the potential, we study the precipitation hardening of Fe–Cr alloys via static simulations of the interaction between Cr precipitates and screw dislocations. It is concluded that the description of the dislocation core modification near a precipitate might have a significant influence on the interaction mechanisms observed in dynamic simulations.

EAM tabulated functions (2011--Bonny-G--Fe-Cr--table--ipr1)
Notes: These files were sent by Dr. Giovanni Bonny (Nuclear Materials Science Institute of SCK-CEN, Belgium) on 2 November 2017 and posted with his permission.
File(s):
Fe F(ρ): Fd_Fe.spt
Cr F(ρ): Fd_Cr.spt
Fe ρd(r): rhoFe.spt
Cr ρd(r): rhoCr.spt
Fe-Cr ρs(r): rhoFeCr.spt
Fe-Fe φ(r): pFeFe.spt
Cr-Cr φ(r): pCrCr.spt
Fe-Cr φ(r): pFeCr.spt
Documentation: README.txt

LAMMPS pair_style hybrid/overlay eam/alloy eam/fs (2011--Bonny-G--Fe-Cr--LAMMPS--ipr1)
See Computed Properties
Notes: These files were sent by Dr. Giovanni Bonny (Nuclear Materials Science Institute of SCK-CEN, Belgium) on 2 November 2017 and posted with his permission. Giovanni Bonny also included Caution.pdf file, which explains why a large number of grid points for the s-embedding function are necessary. Giovanni Bonny noted that this warning is in fact valid for all known two-band model (2BM) potentials. Giovanni Bonny thanks Junlei Zhao (Department of Physics, University of Helsinki, Finland) for help in preparation of the LAMMPS files. Update March 15, 2020: This version was identified to not be compatible with LAMMPS versions after 7 Aug 2019 due to more rigorous format checks.
File(s): superseded


LAMMPS pair_style hybrid/overlay eam/alloy eam/fs (2011--Bonny-G--Fe-Cr--LAMMPS--ipr2)
See Computed Properties
Notes: This is a modification to the above version posted by Lucas Hale on March 15, 2020. Missing pair function tables of all zeros were added to the FeCr_s.eam.fs file to make the files compatible with LAMMPS versions after 7 Aug 2019. Update May 26 2021: This version is not compatible for LAMMPS versions starting with 29 Oct 2020 due to Infinify and NaN values no longer allowed.
File(s): superseded


LAMMPS pair_style hybrid/overlay eam/alloy eam/fs (2011--Bonny-G--Fe-Cr--LAMMPS--ipr3)
See Computed Properties
Notes: This is a modification to the above version posted by Lucas Hale on May 26, 2021. To make the files compatible with LAMMPS versions after 29 Oct 2020, the Infinity and NaN values associated with the Cr elemental tables at r=0 are replaced with 1e+8 and 0.0 values, respectively.
File(s):
Documentation READ_ME.txt
Documentation Caution.pdf
d_band FeCr_d.eam.alloy
s_band FeCr_s.eam.fs


2009--Stukowski-A-Sadigh-B-Erhart-P-Caro-A--Fe-Cr
A. Stukowski, B. Sadigh, P. Erhart, and A. Caro (2009), "Efficient implementation of the concentration-dependent embedded atom method for molecular-dynamics and Monte-Carlo simulations", Modelling and Simulation in Materials Science and Engineering, 17(7), 075005. DOI: 10.1088/0965-0393/17/7/075005.
Abstract: The concentration-dependent embedded atom method (CD-EAM) is a powerful model for atomistic simulation of concentrated alloys with arbitrarily complex mixing enthalpy curves. In this paper, we show that in spite of explicit three-body forces, this model can be implemented quite simply with a computational efficiency comparable to the standard EAM for molecular-dynamics (MD) simulations. Ready-to-use subroutines for the parallel MD code LAMMPS can be provided by the authors upon request. We further propose an improved version of this potential that allows for very efficient calculations of single-particle displacement/transmutation energies, while retaining the complexity implicit in the three-body interactions. This enables large-scale Monte-Carlo simulations of alloys with the interatomic interactions described by the CD-EAM model.

LAMMPS pair_style eam/cd (2009--Stukowski-A--Fe-Cr--LAMMPS--ipr1)
See Computed Properties
Notes: This file was taken from the August 22, 2018 LAMMPS distribution. It is listed as being contributed by Alexander Stukowski (Technische Universität Darmstadt)
File(s):
FeCr.cdeam


Cr-Fe-Ni

2019--Mendelev-M-I--Fe-Ni-Cr
M.I. Mendelev (2019), "to be published".

Notes: This potential was designed to simulate stainless steels. All pure components potentials here are original and are not the same as previously published potentials from Mendelev.

See Computed Properties
Notes: This file was provided by Mikhail Mendelev (Ames Laboratory) on 8 October 2019. Update 19 July 2021: The contact email in the file's header has been changed.
File(s):
See Computed Properties
Notes: Listing found at https://openkim.org. This KIM potential is based on the files from 2019--Mendelev-M-I--Fe-Ni-Cr--LAMMPS--ipr1.
Link(s):

2018--Zhou-X-W-Foster-M-E-Sills-R-B--Fe-Ni-Cr
X.W. Zhou, M.E. Foster, and R.B. Sills (2018), "An Fe-Ni-Cr embedded atom method potential for austenitic and ferritic systems", Journal of Computational Chemistry, 39(29), 2420-2431. DOI: 10.1002/jcc.25573.
Abstract: Fe‐Ni‐Cr stainless‐steels are important structural materials because of their superior strength and corrosion resistance. Atomistic studies of mechanical properties of stainless‐steels, however, have been limited by the lack of high‐fidelity interatomic potentials. Here using density functional theory as a guide, we have developed a new Fe‐Ni‐Cr embedded atom method potential. We demonstrate that our potential enables stable molecular dynamics simulations of stainless‐steel alloys at high temperatures, accurately reproduces the stacking fault energy-known to strongly influence the mode of plastic deformation (e.g., twinning vs. dislocation glide vs. cross‐slip)-of these alloys over a range of compositions, and gives reasonable elastic constants, energies, and volumes for various compositions. The latter are pertinent for determining short‐range order and solute strengthening effects. Our results suggest that our potential is suitable for studying mechanical properties of austenitic and ferritic stainless‐steels which have vast implementation in the scientific and industrial communities. Published 2018. This article is a U.S. Government work and is in the public domain in the USA.

LAMMPS pair_style eam/alloy (2018--Zhou-X-W--Fe-Ni-Cr--LAMMPS--ipr1)
See Computed Properties
Notes: This file was provided by Xiaowang Zhou (Sandia National Laboratories) on 1 January 2019 and posted with his permission. The function tabulations are identical to 2018--Zhou-X-W--Fe-Ni-Cr--LAMMPS--ipr2 below, only the file format is different.
File(s):
LAMMPS pair_style eam/fs (2018--Zhou-X-W--Fe-Ni-Cr--LAMMPS--ipr2)
See Computed Properties
Notes: This file was provided by Xiaowang Zhou (Sandia National Laboratories) on 1 January 2019 and posted with his permission. The function tabulations are identical to 2018--Zhou-X-W--Fe-Ni-Cr--LAMMPS--ipr1 above, only the file format is different.
File(s):

2017--Beland-L-K-Tamm-A-Mu-S-et-al--Fe-Ni-Cr
L.K. Béland, A. Tamm, S. Mu, G.D. Samolyuk, Y.N. Osetsky, A. Aabloo, M. Klintenberg, A. Caro, and R.E. Stoller (2017), "Accurate classical short-range forces for the study of collision cascades in Fe–Ni–Cr", Computer Physics Communications, 219, 11-19. DOI: 10.1016/j.cpc.2017.05.001.
Abstract: The predictive power of a classical molecular dynamics simulation is largely determined by the physical validity of its underlying empirical potential. In the case of high-energy collision cascades, it was recently shown that correctly modeling interactions at short distances is necessary to accurately predict primary damage production. An ab initio based framework is introduced for modifying an existing embedded-atom method FeNiCr potential to handle these short-range interactions. Density functional theory is used to calculate the energetics of two atoms approaching each other, embedded in the alloy, and to calculate the equation of state of the alloy as it is compressed. The pairwise terms and the embedding terms of the potential are modified in accordance with the ab initio results. Using this reparametrized potential, collision cascades are performed in Ni50Fe50, Ni80Cr20 and Ni33Fe33Cr33. The simulations reveal that alloying Ni and NiCr to Fe reduces primary damage production, in agreement with some previous calculations. Alloying Ni and NiFe to Cr does not reduce primary damage production, in contradiction with previous calculations.

Notes: Prof. Béland notes that "The potential takes the 2011--Bonny-G-Terentyev-D-Pasianot-R-C-et-al--Fe-Ni-Cr potential and re-parameterizes the short-distance interactions based on DFT calculations, as explained in the paper and https://doi.org/10.1021/acs.jctc.5b01194. We recommend using this potential for simulating collision cascades."

LAMMPS pair_style eam/alloy (2017--Beland-L-K--Fe-Ni-Cr--LAMMPS--ipr1)
See Computed Properties
Notes: This file was provided by Laurent Béland on 7 Nov 2019 and posted with his permission.
File(s):
FeNiCr_ArturV3.eam


2013--Bonny-G-Castin-N-Terentyev-D--Fe-Ni-Cr
G. Bonny, N. Castin, and D. Terentyev (2013), "Interatomic potential for studying ageing under irradiation in stainless steels: the FeNiCr model alloy", Modelling and Simulation in Materials Science and Engineering, 21(8), 085004. DOI: 10.1088/0965-0393/21/8/085004.
Abstract: The degradation of austenitic stainless steels in a radiation environment is a known problem for the in-core components of nuclear light water reactors. For a better understanding of the prevailing mechanisms responsible for the materials' degradation, large-scale atomistic simulations are desirable. In this framework and as a follow-up on Bonny et al (2011 Modelling Simul. Mater. Sci. Eng. 19 085008), we developed an embedded atom method type interatomic potential for the ternary FeNiCr system to model the production and evolution of radiation defects. Special attention has been drawn to the Fe10Ni20Cr alloy, whose properties were ensured to be close to those of 316L austenitic stainless steels. The potential is extensively benchmarked against density functional theory calculations and the potential developed in our earlier work. As a first validation, the potential is used in AKMC simulations to simulate thermal annealing experiments in order to determine the self-diffusion coefficients of the components in FeNiCr alloys around the Fe10Ni20Cr composition. The results from these simulations are consistent with experiments, i.e., DCr > DNi > DFe.

Notes: Notes from Giovanni Bonny: "The present potential was developed to model POINT DEFECTS near the Fe-10Ni-20Cr composition.

LAMMPS pair_style eam/alloy (2013--Bonny-G--Fe-Ni-Cr--LAMMPS--ipr1)
See Computed Properties
Notes: This file was provided by Giovanni Bonny (Nuclear Materials Science Institute of SCK-CEN, Belgium) on 13 Jan. 2014.
File(s):
FeNiCr_Bonny_2013_ptDef.eam.alloy

EAM tabulated functions (2013--Bonny-G--Fe-Ni-Cr--table--ipr1)
Notes: These files were provided by Giovanni Bonny on 13 Jan. 2014.
File(s):
Fe F(ρ): F_Fe_Bonny_2013.spt
Ni F(ρ): F_Ni_Bonny_2013.spt
Cr F(ρ): F_Cr_Bonny_2013.spt
Fe ρ(r): rhoFe_Bonny_2013.spt
Ni ρ(r): rhoNi_Bonny_2013.spt
Cr ρ(r): rhoCr_Bonny_2013.spt
Fe φ(r): pFeFe_Bonny_2013.spt
Ni φ(r): pNiNi_Bonny_2013.spt
Cr φ(r): pCrCr_Bonny_2013.spt
Fe-Ni φ(r): pFeNi_Bonny_2013.spt
Fe-Cr φ(r): pFeCr_Bonny_2013.spt
Ni-Cr φ(r): pNiCr_Bonny_2013.spt

OpenKIM (MO_763197941039)
See Computed Properties
Notes: Listing found at https://openkim.org. This KIM potential is based on the files from 2013--Bonny-G--Fe-Ni-Cr--LAMMPS--ipr1.
Link(s):
KIM page EAM_Dynamo_BonnyCastinTerentyev_2013_FeNiCr__MO_763197941039_000


2011--Bonny-G-Terentyev-D-Pasianot-R-C-et-al--Fe-Ni-Cr
G. Bonny, D. Terentyev, R.C. Pasianot, S. Poncé, and A. Bakaev (2011), "Interatomic potential to study plasticity in stainless steels: the FeNiCr model alloy", Modelling and Simulation in Materials Science and Engineering, 19(8), 085008. DOI: 10.1088/0965-0393/19/8/085008.
Abstract: Austenitic stainless steels are commonly used materials for in-core components of nuclear light water reactors. In service, such components are exposed to harsh conditions: intense neutron irradiation, mechanical and thermal stresses, and aggressive corrosion environment which all contribute to the components' degradation. For a better understanding of the prevailing mechanisms responsible for the materials degradation, large-scale atomistic simulations are desirable. In this framework we developed an embedded atom method type interatomic potential for the ternary FeNiCr system to model movement of dislocations and their interaction with radiation defects. Special attention has been drawn to the Fe-10Ni-20Cr alloy, whose properties were ensured to be close to those of 316L austenitic stainless steel. In particular, the stacking fault energy and elastic constants are well reproduced. The fcc phase for the Fe–10Ni-20Cr random alloy was proven to be stable in the temperature range 0–900 K and under shear strain up to 5%. For the same alloy the stable glide of screw dislocations and stability of Frank loops was confirmed.

Notes: Notes from Giovanni Bonny: "The present potential was developed to model dislocations around the Fe-10Ni-20Cr composition."

LAMMPS pair_style eam/alloy (2011--Bonny-G--Fe-Ni-Cr--LAMMPS--ipr1)
See Computed Properties
Notes: This file was provided by Giovanni Bonny (Nuclear Materials Science Institute of SCK-CEN, Belgium) on 2 Sept. 2013. Update May 26 2021: This version is not compatible for LAMMPS versions starting with 29 Oct 2020 due to Infinify and NaN values no longer allowed.
File(s): superseded


EAM tabulated functions (2011--Bonny-G--Fe-Ni-Cr--table--ipr1)
Notes: These files were provided by Giovanni Bonny on 2 Sept. 2013.
File(s):
Fe F(ρ): F_Fe.spt
Ni F(ρ): F_Ni.spt
Cr F(ρ): F_Cr.spt
Fe ρ(r): rhoFe.spt
Ni ρ(r): rhoNi.spt
Cr ρ(r): rhoCr.spt
Fe φ(r): pFeFe.spt
Ni φ(r): pNiNi.spt
Cr φ(r): pCrCr.spt
Fe-Ni φ(r): pFeNi.spt
Fe-Cr φ(r): pFeCr.spt
Ni-Cr φ(r): pNiCr.spt

LAMMPS pair_style eam/alloy (2011--Bonny-G--Fe-Ni-Cr--LAMMPS--ipr2)
See Computed Properties
Notes: This is a modification to the previous LAMMPS version and was posted by Lucas Hale on May 26, 2021. To make the file compatible with LAMMPS versions after 29 Oct 2020, INF values at r=0 for the elemental r*phi tables were replaced by values computed using the parameters listed in the paper.
File(s):
FeNiCr.eam.alloy


Cr-Fe-W

2013--Bonny-G-Castin-N-Bullens-J-et-al--Fe-Cr-W
G. Bonny, N. Castin, J. Bullens, A. Bakaev, T.C.P. Klaver, and D. Terentyev (2013), "On the mobility of vacancy clusters in reduced activation steels: an atomistic study in the Fe-Cr-W model alloy", Journal of Physics: Condensed Matter, 25(31), 315401. DOI: 10.1088/0953-8984/25/31/315401.
Abstract: Reduced activation steels are considered as structural materials for future fusion reactors. Besides iron and the main alloying element chromium, these steels contain other minor alloying elements, typically tungsten, vanadium and tantalum. In this work we study the impact of chromium and tungsten, being major alloying elements of ferritic Fe–Cr–W-based steels, on the stability and mobility of vacancy defects, typically formed under irradiation in collision cascades. For this purpose, we perform ab initio calculations, develop a many-body interatomic potential (EAM formalism) for large-scale calculations, validate the potential and apply it using an atomistic kinetic Monte Carlo method to characterize the lifetime and diffusivity of vacancy clusters. To distinguish the role of Cr and W we perform atomistic kinetic Monte Carlo simulations in Fe–Cr, Fe–W and Fe–Cr–W alloys. Within the limitation of transferability of the potentials it is found that both Cr and W enhance the diffusivity of vacancy clusters, while only W strongly reduces their lifetime. The cluster lifetime reduction increases with W concentration and saturates at about 1-2 at.%. The obtained results imply that W acts as an efficient 'breaker' of small migrating vacancy clusters and therefore the short-term annealing process of cascade debris is modified by the presence of W, even in small concentrations.

Notes: Dr. Bonny noted that the FeCr part is identical to the bcc FeCr potential by himself and posted to the NIST Repository. He further noted that since the FeCr potential is in the 2BM formalism, the ternary is in the same format.

LAMMPS pair_style hybrid/overlay eam/alloy eam/fs (2013--Bonny-G--Fe-Cr-W--LAMMPS--ipr1)
See Computed Properties
Notes: These files were provided by Giovanni Bonny (Nuclear Materials Science Institute of SCK-CEN, Belgium) on 7 Mar. 2018 and posted with his permission. Dr. Bonny noted that the potentials were not stiffened and cannot be used in their present form for collision cascades. Update March 15, 2020: This version was identified to not be compatible with LAMMPS versions after 7 Aug 2019 due to more rigorous format checks.
File(s): superseded


EAM tabulated functions (2013--Bonny-G--Fe-Cr-W--table--ipr1)
Notes: These files were provided by Giovanni Bonny (Nuclear Materials Science Institute of SCK-CEN, Belgium) on 7 Mar. 2018 and posted with his permission.
File(s):
Cr Fd(ρ): Fd_Cr.spt
Fe Fd(ρ): Fd_Fe.spt
W Fd(ρ): Fd_W.spt
Cr Fs(ρ): Fs_Cr.spt
Fe Fs(ρ): Fs_Fe.spt
Cr ρ(r): rhoCr.spt
Fe ρ(r): rhoFe.spt
Fe-Cr ρ(r): rhoFeCr.spt
W ρ(r): rhoW.spt
Cr φ(r): pCrCr.spt
Fe φ(r): pFeFe.spt
W φ(r): pWW.spt
Cr-W φ(r): pCrW.spt
Fe-Cr φ(r): pFeCr.spt
Fe-W φ(r): pFeW.spt

LAMMPS pair_style hybrid/overlay eam/alloy eam/fs (2013--Bonny-G--Fe-Cr-W--LAMMPS--ipr2)
See Computed Properties
Notes: This is a modification to the above version posted by Lucas Hale on March 15, 2020. Missing pair function tables of all zeros were added to the FeCr_s.eam.fs file to make the files compatible with LAMMPS versions after 7 Aug 2019. Update May 26 2021: This version is not compatible for LAMMPS versions starting with 29 Oct 2020 due to Infinify and NaN values no longer allowed.
File(s): superseded


LAMMPS pair_style hybrid/overlay eam/alloy eam/fs (2013--Bonny-G--Fe-Cr-W--LAMMPS--ipr3)
See Computed Properties
Notes: This is a modification to the above version posted by Lucas Hale on May 26, 2021. To make the files compatible with LAMMPS versions after 29 Oct 2020, the Infinity and NaN values associated with the Cr elemental tables at r=0 are replaced with 1e+8 and 0.0 values, respectively.
File(s):
Documentation READ_ME.txt
d_band FeCrW_d.eam.alloy
s_band FeCrW_s.eam.fs


Cr-Ni

2018--Howells-C-A-Mishin-Y--Cr-Ni
C.A. Howells, and Y. Mishin (2018), "Angular-dependent interatomic potential for the binary Ni-Cr system", Modelling and Simulation in Materials Science and Engineering, 26(8), 085008. DOI: 10.1088/1361-651x/aae400.
Abstract: A new interatomic potential has been developed for the Ni–Cr system in the angular-dependent potential (ADP) format by fitting the potential parameters to a set of experimental and first-principles data. The ADP potential reproduces a wide range of properties of both elements as well as binary alloys with reasonable accuracy, including thermal and mechanical properties, defects, melting points of Ni and Cr, and the Ni–Cr phase diagram. The potential can be used for atomistic simulations of solidification, mechanical behavior and microstructure of the Ni-based and Cr-based phases as well as two-phase alloys.

See Computed Properties
Notes: This file was provided by Yuri Mishin (George Mason University) on 2 Nov. 2018.
File(s):

Cs

2016--Nichol-A-Ackland-G-J--Cs
A. Nichol, and G.J. Ackland (2016), "Property trends in simple metals: An empirical potential approach", Physical Review B, 93(18), 184101. DOI: 10.1103/physrevb.93.184101.
Abstract: We demonstrate that the melting points and other thermodynamic quantities of the alkali metals can be calculated based on static crystalline properties. To do this we derive analytic interatomic potentials for the alkali metals fitted precisely to cohesive and vacancy energies, elastic moduli, the lattice parameter, and crystal stability. These potentials are then used to calculate melting points by simulating the equilibration of solid and liquid samples in thermal contact at ambient pressure. With the exception of lithium, remarkably good agreement is found with experimental values. The instability of the bcc structure in Li and Na at low temperatures is also reproduced and, unusually, is not due to a soft T1N phonon mode. No forces or finite-temperature properties are included in the fit, so this demonstrates a surprisingly high level of intrinsic transferability in the simple potentials. Currently, there are few potentials available for the alkali metals, so in addition to demonstrating trends in behavior, we expect that the potentials will be of broad general use.

Notes: G.J. Ackland noted that lattice parameters, elastic constants and cohesive energies were used in the fitting process, so the values produced by this conversion should match known values. He noted that bcc crystal structure should be stable and produce a melting temperature of 301 K. Publication information was updated on 12 Oct. 2017. Prior publication listing for this potential was Han, S., Zepeda-Ruiz, L. A., Ackland, G. J., Car, R., and Srolovitz, D. J. (2003). Interatomic potential for vanadium suitable for radiation damage simulations. Journal of Applied Physics, 93(6), 3328. DOI: 10.1063/1.1555275

Moldy FS (2016--Nichol-A--Cs--MOLDY--ipr1)
Notes: The parameters in cs.moldy were obtained from http://homepages.ed.ac.uk/graeme/moldy/moldy.html and posted with the permission of G.J. Ackland.
File(s):
LAMMPS pair_style eam/fs (2016--Nichol-A--Cs--LAMMPS--ipr1)
See Computed Properties
Notes: This conversion was performed by G.J. Ackland and submitted on 8 Dec. 2015.
File(s): superseded


LAMMPS pair_style eam/fs (2016--Nichol-A--Cs--LAMMPS--ipr2)
See Computed Properties
Notes: A new conversion to LAMMPS performed by G.J. Ackland was submitted on 10 Oct. 2017. The previous setfl version above had a spurious oscillation period in the tabulated r*phi function that influenced measurements, most notably static elastic constant evaluations.
File(s):
See Computed Properties
Notes: Listing found at https://openkim.org. This KIM potential is based on the files from 2016--Nichol-A--Cs--LAMMPS--ipr2.
Link(s):

Cu

2018--Etesami-S-A-Asadi-E--Cu
S.A. Etesami, and E. Asadi (2018), "Molecular dynamics for near melting temperatures simulations of metals using modified embedded-atom method", Journal of Physics and Chemistry of Solids, 112, 61-72. DOI: 10.1016/j.jpcs.2017.09.001.
Abstract: Availability of a reliable interatomic potential is one of the major challenges in utilizing molecular dynamics (MD) for simulations of metals at near the melting temperatures and melting point (MP). Here, we propose a novel approach to address this challenge in the concept of modified-embedded-atom (MEAM) interatomic potential; also, we apply the approach on iron, nickel, copper, and aluminum as case studies. We propose adding experimentally available high temperature elastic constants and MP of the element to the list of typical low temperature properties used for the development of MD interatomic potential parameters. We show that the proposed approach results in a reasonable agreement between the MD calculations of melting properties such as latent heat, expansion in melting, liquid structure factor, and solid-liquid interface stiffness and their experimental/computational counterparts. Then, we present the physical properties of mentioned elements near melting temperatures using the new MEAM parameters. We observe that the behavior of elastic constants, heat capacity and thermal linear expansion coefficient at room temperature compared to MP follows an empirical linear relation (α±β × MP) for transition metals. Furthermore, a linear relation between the tetragonal shear modulus and the enthalpy change from room temperature to MP is observed for face-centered cubic materials.

Notes: S. A. Etesami (University of Memphis) noted that "We added both melting point and high temperature elastic constants into material properties database for MEAM parameter development process."

See Computed Properties
Notes: These files were sent by S. A. Etesami (University of Memphis) on 23 April 2018 and posted with his permission. This version is compatible with LAMMPS.
File(s):

2015--Asadi-E-Zaeem-M-A-Nouranian-S-Baskes-M-I--Cu
E. Asadi, M.A. Zaeem, S. Nouranian, and M.I. Baskes (2015), "Two-phase solid-liquid coexistence of Ni, Cu, and Al by molecular dynamics simulations using the modified embedded-atom method", Acta Materialia, 86, 169-181. DOI: 10.1016/j.actamat.2014.12.010.
Abstract: The two-phase solid–liquid coexisting structures of Ni, Cu, and Al are studied by molecular dynamics (MD) simulations using the second nearest-neighbor (2NN) modified-embedded atom method (MEAM) potential. For this purpose, the existing 2NN-MEAM parameters for Ni and Cu were modified to make them suitable for the MD simulations of the problems related to the two-phase solid–liquid coexistence of these elements. Using these potentials, we compare calculated low-temperature properties of Ni, Cu, and Al, such as elastic constants, structural energy differences, vacancy formation energy, stacking fault energies, surface energies, specific heat and thermal expansion coefficient with experimental data. The solid–liquid coexistence approach is utilized to accurately calculate the melting points of Ni, Cu, and Al. The MD calculations of the expansion in melting, latent heat and the liquid structure factor are also compared with experimental data. In addition, the solid–liquid interface free energy and surface anisotropy of the elements are determined from the interface fluctuations, and the predictions are compared to the experimental and computational data in the literature.

Notes: Prof. Mohsen Zaeem said that this potential was designed for accurately representing properties from 0K up to the melting point.

LAMMPS pair_style meam (2015--Asadi-E--Cu--LAMMPS--ipr1)
See Computed Properties
Notes: This file was sent by Prof. Mohsen Zaeem (Missouri S&T) on 12 April 2017 and posted on 5 May 2017. Update 5 Sept 2019: The 31 July 2018 update of the repository inadvertantly replaced the parameter files with those from the 2018--Etesami-S-A--Ni--LAMMPS--ipr1 potential. The links below now point to the correct files.
File(s):

2013--Mendelev-M-I-King-A-H--Cu
M.I. Mendelev, and A.H. King (2013), "The interactions of self-interstitials with twin boundaries", Philosophical Magazine, 93(10-12), 1268-1278. DOI: 10.1080/14786435.2012.747012.
Abstract: A new mechanism of adsorption of self-interstitials onto twin boundaries (TB) in face-centred cubic (fcc) metals is identified using molecular dynamics simulations. In this mechanism, self-interstitials are arranged in the twin boundary plane forming a previously unknown kind of self-interstitial cluster. The self-interstitial cluster in the twin boundary is bounded by lines of atoms under high hydrostatic pressure while the pressure inside the cluster is much smaller. The atoms in the middle of the cluster have hcp short range order rather than fcc. However, if a new self-interstitial cluster forms in the middle of a pre-existing one, then the atoms in the middle of the new cluster will have regular twin boundary coordination. As a consequence of the formation of self-interstitial clusters inside each other, TB can be powerful, non-saturating sinks for self-interstitials.

Notes: Update 2018-06-12: Publication information added.

LAMMPS pair_style eam/fs (2012--Mendelev-M-I--Cu--LAMMPS--ipr1)
See Computed Properties
Notes: This file was provided by Mikhail Mendelev (Ames Laboratory) and posted with his permission on 25 Jul. 2012. He noted that "This potential is an improvement of Cu1 (2008--Mendelev-M-I-Kramer-M-J-Becker-C-A-Asta-M--Cu) to better describe stacking fault energies." Update 19 July 2021: The contact email in the file's header has been changed.
File(s):
Mendelev_Cu2_2012.eam.fs

OpenKIM (MO_748636486270)
See Computed Properties
Notes: Listing found at https://openkim.org. This KIM potential is based on the files from 2012--Mendelev-M-I--Cu--LAMMPS--ipr1.
Link(s):
KIM page EAM_Dynamo_MendelevKing_2013_Cu__MO_748636486270_005


2008--Mendelev-M-I-Kramer-M-J-Becker-C-A-Asta-M--Cu
M.I. Mendelev, M.J. Kramer, C.A. Becker, and M. Asta (2008), "Analysis of semi-empirical interatomic potentials appropriate for simulation of crystalline and liquid Al and Cu", Philosophical Magazine, 88(12), 1723-1750. DOI: 10.1080/14786430802206482.
Abstract: We investigate the application of embedded atom method (EAM) interatomic potentials in the study of crystallization kinetics from deeply undercooled melts, focusing on the fcc metals Al and Cu. For this application, it is important that the EAM potential accurately reproduces melting properties and liquid structure, in addition to the crystalline properties most commonly fit in its development. To test the accuracy of previously published EAM potentials and to guide the development of new potential in this work, first-principles calculations have been performed and new experimental measurements of the Al and Cu liquid structure factors have been undertaken by X-ray diffraction. We demonstrate that the previously published EAM potentials predict a liquid structure that is too strongly ordered relative to measured diffraction data. We develop new EAM potentials for Al and Cu to improve the agreement with the first-principles and measured liquid diffraction data. Furthermore, we calculate liquid-phase diffusivities and find that this quantity correlates well with the liquid structure. Finally, we perform molecular dynamics simulations of crystal nucleation from the melt during quenching at constant cooling rate. We find that EAM potentials, which predict the same zero-temperature crystal properties but different liquid structures, can lead to quite different crystallization kinetics. More interestingly, we find that two potentials predicting very similar equilibrium solid and liquid properties can still produce very different crystallization kinetics under far-from-equilibrium conditions characteristic of the rapid quenching simulations employed here.

LAMMPS pair_style eam/fs (2008--Mendelev-M-I--Cu--LAMMPS--ipr1)
See Computed Properties
Notes: This file was provided by Mikhail Mendelev (Ames Laboratory) and posted with his permission on 14 Oct. 2010. He noted that it is the Cu potential used for 2007--Mendelev-M-I-Sordelet-D-J-Kramer-M-J--Cu-Zr and 2009--Mendelev-M-I-Kramer-M-J-Ott-R-T-et-al--Cu-Zr, though the files are different due to transformations of the density and embedding energy functions which do not affect the pure element properties. Update 19 July 2021: The contact email in the file's header has been changed.
File(s):
Cu1.eam.fs

OpenKIM (MO_945691923444)
See Computed Properties
Notes: Listing found at https://openkim.org. This KIM potential is based on the files from 2008--Mendelev-M-I--Cu--LAMMPS--ipr1.
Link(s):
KIM page EAM_Dynamo_MendelevKramerBecker_2008_Cu__MO_945691923444_005


2004--Zhou-X-W-Johnson-R-A-Wadley-H-N-G--Cu
X.W. Zhou, R.A. Johnson, and H.N.G. Wadley (2004), "Misfit-energy-increasing dislocations in vapor-deposited CoFe/NiFe multilayers", Physical Review B, 69(14), 144113. DOI: 10.1103/physrevb.69.144113.
Abstract: Recent molecular dynamics simulations of the growth of [Ni0.8Fe0.2/Au] multilayers have revealed the formation of misfit-strain-reducing dislocation structures very similar to those observed experimentally. Here we report similar simulations showing the formation of edge dislocations near the interfaces of vapor-deposited (111) [NiFe/CoFe/Cu] multilayers. Unlike misfit dislocations that accommodate lattice mismatch, the dislocation structures observed here increase the mismatch strain energy. Stop-action observations of the dynamically evolving atomic structures indicate that during deposition on the (111) surface of a fcc lattice, adatoms may occupy either fcc sites or hcp sites. This results in the random formation of fcc and hcp domains, with dislocations at the domain boundaries. These dislocations enable atoms to undergo a shift from fcc to hcp sites, or vice versa. These shifts lead to missing atoms, and therefore a later deposited layer can have missing planes compared to a previously deposited layer. This dislocation formation mechanism can create tensile stress in fcc films. The probability that such dislocations are formed was found to quickly diminish under energetic deposition conditions.

FORTRAN (2004--Zhou-X-W--Cu--FORTRAN--ipr1)
Notes: These are the original files sent by X.W. Zhou (Sandia National Laboratory) and posted with his permission. C.A. Becker (NIST) modified create.f to include the reference in the generated potential files and the EAM.input file for this composition. These files can be used to generate alloy potentials for Cu, Ag, Au, Ni, Pd, Pt, Al, Pb, Fe, Mo, Ta, W, Mg, Co, Ti, and Zr by editing EAM.input. However, as addressed in the reference, these potentials were not designed for use with metal compounds.
File(s): superseded


LAMMPS pair_style eam/alloy (2004--Zhou-X-W--Cu--LAMMPS--ipr1)
See Computed Properties
Notes: This file was generated by C.A. Becker (NIST) from create.f and posted with X.W. Zhou's (Sandia National Laboratory) permission.
File(s): superseded


FORTRAN (2004--Zhou-X-W--Cu--FORTRAN--ipr2)
Notes: The file Zhou04_create_v2.f is an updated version of create.f modified by L.M. Hale (NIST) following advice from X.W. Zhou (Sandia National Laboratory). This version removes spurious fluctuations in the tabulated functions of the original potential files caused by single/double precision floating point number conflicts.
File(s):
README_v2
Zhou04_create_v2.f
EAM.input.Cu
EAM_code

LAMMPS pair_style eam/alloy (2004--Zhou-X-W--Cu--LAMMPS--ipr2)
See Computed Properties
Notes: This file was generated by L.M. Hale from Zhou04_create_v2.f on 13 April 2018 and posted with X.W. Zhou's (Sandia National Laboratory) permission. This version corrects an issue with spurious fluctuations in the tabulated functions.
File(s):
Cu_Zhou04.eam.alloy

OpenKIM (MO_127245782811)
See Computed Properties
Notes: Listing found at https://openkim.org. This KIM potential is based on the files from 2004--Zhou-X-W--Cu--LAMMPS--ipr1.
Link(s):
KIM page EAM_Dynamo_ZhouJohnsonWadley_2004_Cu__MO_127245782811_005

OpenKIM (MO_759493141826)
See Computed Properties
Notes: Listing found at https://openkim.org. This KIM potential is based on the files from 2004--Zhou-X-W--Cu--LAMMPS--ipr2.
Link(s):
KIM page EAM_Dynamo_ZhouJohnsonWadley_2004NISTretabulation_Cu__MO_759493141826_000


2001--Mishin-Y-Mehl-M-J-Papaconstantopoulos-D-A-et-al--Cu-1
Y. Mishin, M.J. Mehl, D.A. Papaconstantopoulos, A.F. Voter, and J.D. Kress (2001), "Structural stability and lattice defects in copper: Ab initio, tight-binding, and embedded-atom calculations", Physical Review B, 63(22), 224106. DOI: 10.1103/physrevb.63.224106.
Abstract: We evaluate the ability of the embedded-atom method (EAM) potentials and the tight-binding (TB) method to predict reliably energies and stability of nonequilibrium structures by taking Cu as a model material. Two EAM potentials are used here. One is constructed in this work by using more fitting parameters than usual and including ab initio energies in the fitting database. The other potential was constructed previously using a traditional scheme. Excellent agreement is observed between ab initio, TB, and EAM results for the energies and stability of several nonequilibrium structures of Cu, as well as for energies along deformation paths between different structures. We conclude that not only TB calculations but also EAM potentials can be suitable for simulations in which correct energies and stability of different atomic configurations are essential, at least for Cu. The bcc, simple cubic, and diamond structures of Cu were identified as elastically unstable, while some other structures (e.g., hcp and 9R) are metastable. As an application of this analysis, nonequilibrium structures of epitaxial Cu films on (001)-oriented fcc or bcc substrates are evaluated using a simple model and atomistic simulations with an EAM potential. In agreement with experimental data, the structure of the film can be either deformed fcc or deformed hcp. The bcc structure cannot be stabilized by epitaxial constraints.

Notes: This listing is for the reference's EAM1 potential.

EAM tabulated functions (2001--Mishin-Y--Cu-1--table--ipr1)
Notes: These files were provided by Yuri Mishin.
File(s):
F(ρ): F_cu.plt
ρ(r): fcu.plt
φ(r): pcu.plt

LAMMPS pair_style eam/alloy (2001--Mishin-Y--Cu-1--LAMMPS--ipr1)
See Computed Properties
Notes: This conversion was produced by Chandler Becker on 4 February 2009 from the plt files listed above. This version is compatible with LAMMPS. Validation and usage information can be found in Cu01_releaseNotes_1.pdf. If you use this setfl file, please credit the website in addition to the original reference.
File(s):
Cu01.eam.alloy
Cu01_releaseNotes_1.pdf

OpenKIM (MO_346334655118)
See Computed Properties
Notes: Listing found at https://openkim.org. This KIM potential is based on the files from 2001--Mishin-Y--Cu-1--LAMMPS--ipr1.
Link(s):
KIM page EAM_Dynamo_MishinMehlPapaconstantopoulos_2001_Cu__MO_346334655118_005


2001--Mishin-Y-Mehl-M-J-Papaconstantopoulos-D-A-et-al--Cu-2
Y. Mishin, M.J. Mehl, D.A. Papaconstantopoulos, A.F. Voter, and J.D. Kress (2001), "Structural stability and lattice defects in copper: Ab initio, tight-binding, and embedded-atom calculations", Physical Review B, 63(22), 224106. DOI: 10.1103/physrevb.63.224106.
Abstract: We evaluate the ability of the embedded-atom method (EAM) potentials and the tight-binding (TB) method to predict reliably energies and stability of nonequilibrium structures by taking Cu as a model material. Two EAM potentials are used here. One is constructed in this work by using more fitting parameters than usual and including ab initio energies in the fitting database. The other potential was constructed previously using a traditional scheme. Excellent agreement is observed between ab initio, TB, and EAM results for the energies and stability of several nonequilibrium structures of Cu, as well as for energies along deformation paths between different structures. We conclude that not only TB calculations but also EAM potentials can be suitable for simulations in which correct energies and stability of different atomic configurations are essential, at least for Cu. The bcc, simple cubic, and diamond structures of Cu were identified as elastically unstable, while some other structures (e.g., hcp and 9R) are metastable. As an application of this analysis, nonequilibrium structures of epitaxial Cu films on (001)-oriented fcc or bcc substrates are evaluated using a simple model and atomistic simulations with an EAM potential. In agreement with experimental data, the structure of the film can be either deformed fcc or deformed hcp. The bcc structure cannot be stabilized by epitaxial constraints.

Notes: This listing is for the reference's EAM2 potential.

EAM tabulated functions (2001--Mishin-Y--Cu-2--table--ipr1)
Notes: These files were provided by Yuri Mishin and posted on 10 Dec. 2009.
File(s):
F(ρ): F_cu-voter.plt
ρ(r): fcu-voter.plt
φ(r): pcu-voter.plt


1990--Ackland-G-J-Vitek-V--Cu
G.J. Ackland, and V. Vitek (1990), "Many-body potentials and atomic-scale relaxations in noble-metal alloys", Physical Review B, 41(15), 10324-10333. DOI: 10.1103/physrevb.41.10324.
Abstract: We derive empirical many-body potentials for noble-metal alloy systems in the framework of the Finnis-Sinclair model [Philos. Mag. A 50, 45 (1984)] which is based on a second-moment approximation to the tight-binding density of states for transition metals [F. Cyrot, J. Phys. Chem. Solids 29, 1235 (1968)]. The most important extension of the model is a simple incorporation of interspecies interactions which involves fitting the alloying energies. The importance of properly accounting for the local atomic relaxations when constructing the potentials is emphasized. The observed principal features of the phase diagrams of the alloys are all well reproduced by this scheme. Furthermore, reasonable concentration dependences of the alloy lattice parameter and elastic constants are obtained. This leads us to suggest that fine details of the electronic structure may be less important in determining atomic structures than are more global parameters such as atomic sizes and binding energies.

LAMMPS pair_style eam/fs (1990--Ackland-G-J--Cu--LAMMPS--ipr1)
See Computed Properties
Notes: A conversion to LAMMPS from MOLDY was performed by G.J. Ackland and submitted on 10 Oct. 2017. This implementation includes the short-range repulsion for radiation studies. Update March 15, 2020: This version was identified to not be compatible with LAMMPS.
File(s): retracted


LAMMPS pair_style eam/fs (1990--Ackland-G-J--Cu--LAMMPS--ipr2)
See Computed Properties
Notes: This file was posted on 15 March 2020. It corrects the 4th line to be compatible with LAMMPS.
File(s):
Cu2.eam.fs

OpenKIM (MO_642748370624)
See Computed Properties
Notes: Listing found at https://openkim.org. This KIM potential is based on the files from 1990--Ackland-G-J--Cu--LAMMPS--ipr1.
Link(s):
KIM page EAM_Dynamo_AcklandVitek_1990_Cu__MO_642748370624_000


1989--Adams-J-B-Foiles-S-M-Wolfer-W-G--Cu
J.B. Adams, S.M. Foiles, and W.G. Wolfer (1989), "Self-diffusion and impurity diffusion of fcc metals using the five-frequency model and the Embedded Atom Method", Journal of Materials Research, 4(1), 102-112. DOI: 10.1557/jmr.1989.0102.
Abstract: The activation energies for self-diffusion of transition metals (Au, Ag, Cu, Ni, Pd, Pt) have been calculated with the Embedded Atom Method (EAM); the results agree well with available experimental data for both mono-vacancy and di-vacancy mechanisms. The EAM was also used to calculate activation energies for vacancy migration near dilute impurities. These energies determine the atomic jump frequencies of the classic "five-frequency formula," which yields the diffusion rates of impurities by a mono-vacancy mechanism. These calculations were found to agree fairly well with experiment and with Neumann and Hirschwald's "Tm" model.

LAMMPS pair_style eam (1989--Adams-J-B--Cu--LAMMPS--ipr1)
See Computed Properties
Notes: cuu6.txt was obtained from http://enpub.fulton.asu.edu/cms/ potentials/main/main.htm and posted with the permission of J.B. Adams. The name of the file was retained, even though the header information lists the potential as 'universal 4.' Except for the first comment line, this file is identical to "Cu_u6.eam" in the August 22, 2018 LAMMPS distribution.
File(s):
cuu6.txt

OpenKIM (MO_145873824897)
See Computed Properties
Notes: Listing found at https://openkim.org. This KIM potential is based on the same files as 1989--Adams-J-B--Cu--LAMMPS--ipr1.
Link(s):
KIM page EAM_Dynamo_AdamsFoilesWolfer_1989Universal6_Cu__MO_145873824897_000


1987--Ackland-G-J-Tichy-G-Vitek-V-Finnis-M-W--Cu
G.J. Ackland, G. Tichy, V. Vitek, and M.W. Finnis (1987), "Simple N-body potentials for the noble metals and nickel", Philosophical Magazine A, 56(6), 735-756. DOI: 10.1080/01418618708204485.
Abstract: Using the approach of Finnis and Sinclair, N-body potentials for copper, silver, gold and nickel have been constructed. The total energy is regarded as consisting of a pair-potential part and a many body cohesive part. Both these parts are functions of the atomic separations only and are represented by cubic splines, fitted to various bulk properties. For the noble metals, the pair-potentials were fitted at short range to pressure-volume relationships calculated by Christensen and Heine so that interactions at separations smaller than that of the first-nearest neighbours can be treated in this scheme. Using these potentials, point defects, surfaces (including the surface reconstructions) and grain boundaries have been studied and satisfactory agreement with available experimental data has been found.

Moldy FS (1987--Ackland-G-J--Cu--MOLDY--ipr1)
Notes: The parameters in cu.moldy were obtained from http://homepages.ed.ac.uk/graeme/moldy/moldy.html and posted with the permission of G.J. Ackland.
File(s):
cu.moldy

LAMMPS pair_style eam/fs (1987--Ackland-G-J--Cu--LAMMPS--ipr1)
See Computed Properties
Notes: This conversion was performed from G.J. Ackland's parameters by M.I. Mendelev. Conversion checks from M.I. Mendelev can be found in the conversion_check.pdf. These files were posted on 30 June 2009 with the permission of G.J. Ackland and M.I. Mendelev. These potentials are not designed for simulations of radiation damage. Update 19 July 2021: The contact email in the file's header has been changed.
File(s):
Cu.eam.fs
conversion_check.pdf

LAMMPS pair_style eam/fs (1987--Ackland-G-J--Cu--LAMMPS--ipr2)
See Computed Properties
Notes: A new conversion to LAMMPS performed by G.J. Ackland was submitted on 10 Oct. 2017. This version adds close-range repulsion for radiation studies.
File(s):
Cu1_v2.eam.fs

OpenKIM (MO_179025990738)
See Computed Properties
Notes: Listing found at https://openkim.org. This KIM potential is based on the files from 1987--Ackland-G-J--Cu--LAMMPS--ipr1.
Link(s):
KIM page EAM_Dynamo_AcklandTichyVitek_1987_Cu__MO_179025990738_005

OpenKIM (MO_762798677854)
See Computed Properties
Notes: Listing found at https://openkim.org. This KIM potential is based on the files from 1987--Ackland-G-J--Cu--LAMMPS--ipr2.
Link(s):
KIM page EAM_Dynamo_AcklandTichyVitek_1987v2_Cu__MO_762798677854_000


1986--Foiles-S-M-Baskes-M-I-Daw-M-S--Cu
S.M. Foiles, M.I. Baskes, and M.S. Daw (1986), "Embedded-atom-method functions for the fcc metals Cu, Ag, Au, Ni, Pd, Pt, and their alloys", Physical Review B, 33(12), 7983-7991. DOI: 10.1103/physrevb.33.7983.
Abstract: A consistent set of embedding functions and pair interactions for use with the embedded-atom method [M.S. Daw and M. I. Baskes, Phys. Rev. B 29, 6443 (1984)] have been determined empirically to describe the fcc metals Cu, Ag, Au, Ni, Pd, and Pt as well as alloys containing these metals. The functions are determined empirically by fitting to the sublimation energy, equilibrium lattice constant, elastic constants, and vacancy-formation energies of the pure metals and the heats of solution of the binary alloys. The validity of the functions is tested by computing a wide range of properties: the formation volume and migration energy of vacancies, the formation energy, formation volume, and migration energy of divacancies and self-interstitials, the surface energy and geometries of the low-index surfaces of the pure metals, and the segregation energy of substitutional impurities to (100) surfaces.

LAMMPS pair_style eam (1986--Foiles-S-M--Cu--LAMMPS--ipr1)
See Computed Properties
Notes: This file was taken from the August 22, 2018 LAMMPS distribution.
File(s):
Cu_u3.eam

OpenKIM (MO_666348409573)
See Computed Properties
Notes: Listing found at https://openkim.org. This KIM potential is based on the same files as 1986--Foiles-S-M--Cu--LAMMPS--ipr1.
Link(s):
KIM page EAM_Dynamo_FoilesBaskesDaw_1986Universal3_Cu__MO_666348409573_004


Cu-Fe-Ni

2009--Bonny-G-Pasianot-R-C-Castin-N-Malerba-L--Fe-Cu-Ni
G. Bonny, R.C. Pasianot, N. Castin, and L. Malerba (2009), "Ternary Fe-Cu-Ni many-body potential to model reactor pressure vessel steels: First validation by simulated thermal annealing", Philosophical Magazine, 89(34-36), 3531-3546. DOI: 10.1080/14786430903299824.
Abstract: In recent years, the development of atomistic models dealing with microstructure evolution and subsequent mechanical property change in reactor pressure vessel steels has been recognised as an important complement to experiments. In this framework, a literature study has shown the necessity of many-body interatomic potentials for multi-component alloys. In this paper, we develop a ternary many-body Fe–Cu–Ni potential for this purpose. As a first validation, we used it to perform a simulated thermal annealing study of the Fe–Cu and Fe–Cu–Ni alloys. Good qualitative agreement with experiments is found, although fully quantitative comparison proved impossible, due to limitations in the used simulation techniques. These limitations are also briefly discussed.

Notes: Notes from Giovanni Bonny: The references for the elements and binary potentials used in Fe-Cu-Ni are
  • Fe: 'potential 2' from M.I. Mendelev, A. Han, D.J. Srolovitz, G.J. Ackland, D.Y. Sun and M. Asta, Phil. Mag. A 83 (2003) 3977.
  • Cu: 'EAM 1' from Y. Mishin, M.J. Mehl, D.A. Papaconstantopoulos, A.F. Voter, J.D. Kress, Phys. Rev. B 63 (2001) 224106.
  • Ni: A.F. Voter and S.P. Chen, Mater. Res. Soc. Symp. Proc. 82 (1987) 175.
  • FeCu: R.C. Pasianot and L. Malerba, J. Nucl. Mater. 360 (2007) 118.
  • FeNi: G. Bonny, R.C. Pasianot and L. Malerba, Model. Simul. Mater. Sci. Eng. 17 (2009) 025010.
F_Ni.spt was modified for densities past 4.8 because of a discontinuity. Unless for cascade conditions (for which the potential was not stiffened), the properties should stay exactly the same (equilibrium density is around 1).

LAMMPS pair_style eam/alloy (2009--Bonny-G--Fe-Cu-Ni--LAMMPS--ipr1)
See Computed Properties
Notes: This file was provided by Giovanni Bonny (Nuclear Materials Science Institute of SCK-CEN, Belgium) on 8 Feb. 2010.
File(s):
EAM tabulated functions (2009--Bonny-G--Fe-Cu-Ni--table--ipr1)
Notes: These files were provided by Giovanni Bonny on 8 Feb. 2010.
File(s):
Fe F(ρ): F_Fe.spt
Ni F(ρ): F_Ni.spt
Cu F(ρ): F_Cu.spt
Fe ρ(r): rhoFe.spt
Ni ρ(r): rhoNi.spt
Cu ρ(r): rhoCu.spt
Fe φ(r): pFeFe.spt
Ni φ(r): pNiNi.spt
Cu φ(r): pCuCu.spt
Fe-Ni φ(r): pFeNi.spt
Fe-Cu φ(r): pFeCu.spt
Cu-Ni φ(r): pCuNi.spt

See Computed Properties
Notes: Listing found at https://openkim.org. This KIM potential is based on the files from 2009--Bonny-G--Fe-Cu-Ni--LAMMPS--ipr1.
Link(s):

Cu-H

2015--Zhou-X-W-Ward-D-K-Foster-M-Zimmerman-J-A--Cu-H
X.W. Zhou, D.K. Ward, M. Foster, and J.A. Zimmerman (2015), "An analytical bond-order potential for the copper-hydrogen binary system", Journal of Materials Science, 50(7), 2859-2875. DOI: 10.1007/s10853-015-8848-9.
Abstract: Despite extensive studies in the past, deterioration of mechanical properties due to hydrogen environment exposure remains a serious problem for structural materials. More effective improvement of a material’s resilience requires advanced computational methods to elucidate the fundamental mechanisms of the hydrogen effects. To enable accurate molecular dynamics (MD) studies of the hydrogen effects on metals, we have developed a high-fidelity analytical bond-order potential (BOP) for the copper–hydrogen binary system as a representative case. This potential is available through the publically available MD code LAMMPS. The potential parameters are optimized using an iterative process. First, the potential is fitted to static and reactive properties of a variety of elemental and binary configurations including small clusters and bulk lattices (with coordination varying from 1 to 12). Then the potential is put through a series of rigorous MD simulation tests (e.g., vapor deposition and solidification) that involve chaotic initial configurations. It is demonstrated that this Cu–H BOP not only gives structural and property trends close to those seen in experiments and quantum mechanical calculations, but also predicts the correct phase transformations and chemical reactions in direct MD simulations. The correct structural evolution from chaotic initial states strongly verifies the transferability of the potential. A highly transferable potential is the reason that a well-parameterized analytical BOP can enable MD simulations of metal-hydrogen interactions to reach a fidelity level not achieved in the past.

See Computed Properties
Notes: This file was taken from the August 22, 2018 LAMMPS distribution and listed as having been created by X.W. Zhou (Sandia)
File(s):

Cu-Ni

2019--Fischer-F-Schmitz-G-Eich-S-M--Cu-Ni
F. Fischer, G. Schmitz, and S.M. Eich (2019), "A systematic study of grain boundary segregation and grain boundary formation energy using a new copper–nickel embedded-atom potential", Acta Materialia, 176, 220-231. DOI: 10.1016/j.actamat.2019.06.027.
Abstract: In this atomistic study on the copper–nickel system, a new embedded-atom alloy potential between copper and nickel is fitted to experimental data on the mixing enthalpy, taking available potentials for the pure components from literature. The resulting phase boundaries of the new potential are in very good agreement with a recent CALPHAD prediction. Using this new potential, a high angle symmetrical tilt Σ5 and a coherent Σ3 twin grain boundary (GB) are chosen for a systematic investigation of equilibrium GB segregation in the semi-grandcanonical ensemble at temperatures from 400 K to 800 K. Applying thermodynamically accurate integration techniques, the GB formation energies are calculated exactly and as an absolute value for every temperature and composition, which also enables the evaluation of GB excess entropies. The thorough thermodynamic model of GBs developed by Frolov and Mishin is excellently confirmed by the simulations quantitatively, if the impact of both segregation and GB tension on the change in GB formation energy is accounted for. In the case of the Σ3 coherent GB, it turns out that the change in GB formation energy at low temperatures is for the most part attributed to the GB tension, while segregation only has a small influence. This demonstrated effect of GB tensions should also be taken into account in the interpretation of experiments.

EAM tabulated functions (2019--Fischer-F--Cu-Ni--table--ipr1)
Notes: These files were provided by Felix Fischer (Universität Stuttgart) on March 3, 2020 and posted with his permission.
File(s): superseded


LAMMPS pair_style eam/alloy (2019--Fischer-F--Cu-Ni--LAMMPS--ipr1)
See Computed Properties
Notes: These files were provided by Felix Fischer (Universität Stuttgart) on August 7, 2020 and posted with his permission.
File(s): superseded


LAMMPS pair_style eam/alloy (2019--Fischer-F--Cu-Ni--LAMMPS--ipr2)
See Computed Properties
Notes: This file was provided by Felix Fischer (Universität Stuttgart) on August 13, 2020 and posted with his permission.This version takes the low distance elemental interactions to match the ones in the hosted parameter files for the parent potentials.
File(s): superseded


EAM tabulated functions (2019--Fischer-F--Cu-Ni--table--ipr2)
Notes: These files were provided by Felix Fischer (Universität Stuttgart) on March 13, 2021 and posted with his permission. This version uses the corrected Ni interaction from 2004--Mishin-Y--Ni-Al--LAMMPS--ipr2 that ensures the energy of isolated Ni atoms is zero.
File(s):
LAMMPS pair_style eam/alloy (2019--Fischer-F--Cu-Ni--LAMMPS--ipr3)
See Computed Properties
Notes: This file was provided by Felix Fischer (Universität Stuttgart) on March 13, 2021 and posted with his permission. This version uses the corrected Ni interaction from 2004--Mishin-Y--Ni-Al--LAMMPS--ipr2 that ensures the energy of isolated Ni atoms is zero.
File(s):

2013--Onat-B-Durukanoglu-S--Cu-Ni
B. Onat, and S. Durukanoğlu (2013), "An optimized interatomic potential for Cu–Ni alloys with the embedded-atom method", Journal of Physics: Condensed Matter, 26(3), 035404. DOI: 10.1088/0953-8984/26/3/035404.
Abstract: We have developed a semi-empirical and many-body type model potential using a modified charge density profile for Cu–Ni alloys based on the embedded-atom method (EAM) formalism with an improved optimization technique. The potential is determined by fitting to experimental and first-principles data for Cu, Ni and Cu–Ni binary compounds, such as lattice constants, cohesive energies, bulk modulus, elastic constants, diatomic bond lengths and bond energies. The generated potentials were tested by computing a variety of properties of pure elements and the alloy of Cu, Ni: the melting points, alloy mixing enthalpy, lattice specific heat, equilibrium lattice structures, vacancy formation and interstitial formation energies, and various diffusion barriers on the (100) and (111) surfaces of Cu and Ni.

LAMMPS pair_style eam/alloy (2013--Onat-B--Cu-Ni--LAMMPS--ipr1)
See Computed Properties
Notes: This file was taken from the August 22, 2018 LAMMPS distribution.
File(s): superseded


LAMMPS pair_style eam/alloy (2013--Onat-B--Cu-Ni--LAMMPS--ipr2)
See Computed Properties
Notes: This file was taken from openKIM model EAM_Dynamo_Onat_Durukanoglu_CuNi__MO_592013496703_004. It features more tabulation points and higher cutoffs for both rho and r.
File(s):
OpenKIM (MO_592013496703)
See Computed Properties
Notes: Listing found at https://openkim.org. This KIM potential is based on the same files as 2013--Onat-B--Cu-Ni--LAMMPS--ipr2.
Link(s):

1985--Foiles-S-M--Ni-Cu
S.M. Foiles (1985), "Calculation of the surface segregation of Ni-Cu alloys with the use of the embedded-atom method", Physical Review B, 32(12), 7685-7693. DOI: 10.1103/physrevb.32.7685.
Abstract: The surface composition of Ni-Cu alloys has been calculated as a function of atomic layer, crystal face, and bulk composition at a temperature of 800 K. The results show that the composition varies nonmonotonically near the surface with the surface layer strongly enriched in Cu while the near-surface layers are enriched in Ni. The calculations use the embedded-atom method [M. S. Daw and M. I. Baskes, Phys. Rev. B 29, 6443 (1984)] in conjunction with Monte Carlo computer simulations. The embedding functions and pair interactions needed to describe Ni-Cu alloys are developed and applied to the calculation of bulk energies, lattice constants, and short-range order. The heats of segregation are computed for the dilute limit, and the composition profile is obtained for the (100), (110), and (111) surfaces for a variety of bulk compositions. The results are found to be in accord with experimental data.

LAMMPS pair_style eam (1985--Foiles-S-M--Ni-Cu--LAMMPS--ipr1)
See Computed Properties
Notes: These files were obtained from the December 9, 2007 LAMMPS distribution. According to Stephen M. Foiles, they differ from the original formulations in the following ways: a) The fcc is upper case in one and lower case in the other. b) The comment in the LAMMPS distribution for Ni_smf7.eam incorrectly lists it as being for the NiPd alloys rather than NiCu alloys. The potential file has been updated with "NiCu" to reflect the second comment.
File(s):
Cu_smf7.eam
Ni_smf7.eam

OpenKIM (MO_831121933939)
See Computed Properties
Notes: Listing found at https://openkim.org. This KIM potential is based on the Cu file from 1985--Foiles-S-M--Ni-Cu--LAMMPS--ipr1.
Link(s):
KIM page EAM_Dynamo_Foiles_1985_Cu__MO_831121933939_000

OpenKIM (MO_010059867259)
See Computed Properties
Notes: Listing found at https://openkim.org. This KIM potential is based on the Ni file from 1985--Foiles-S-M--Ni-Cu--LAMMPS--ipr1.
Link(s):
KIM page EAM_Dynamo_Foiles_1985_Ni__MO_010059867259_000


Cu-Pb

2003--Hoyt-J-J-Garvin-J-W-Webb-E-B-Asta-M--Cu-Pb
J.J. Hoyt, J.W. Garvin, E.B. Webb, and M. Asta (2003), "An embedded atom method interatomic potential for the Cu-Pb system", Modelling and Simulation in Materials Science and Engineering, 11(3), 287-299. DOI: 10.1088/0965-0393/11/3/302.
Abstract: A simple procedure is used to formulate a Cu–Pb pair interaction function within the embedded atom (EAM) method framework. Embedding, density and pair functions for pure Cu and pure Pb are taken from previously published EAM studies. Optimization of the Cu–Pb potential was achieved by comparing with experiment the computed heats of mixing for Cu–Pb liquid alloys and the equilibrium phase diagram, the latter being determined via a thermodynamic integration technique. The topology of the temperature-composition phase diagram computed with this EAM potential is consistent with experiment and features a liquid–liquid miscibility gap, low solubility of Pb in solid Cu and a monotectic reaction at approximately 1012 K.

LAMMPS pair_style eam/alloy (2003--Hoyt-J-J--Cu-Pb--LAMMPS--ipr1)
See Computed Properties
Notes: This file was supplied by J.J. Hoyt on 14 October 2008.
File(s):
See Computed Properties
Notes: Listing found at https://openkim.org. This KIM potential is based on the files from 2003--Hoyt-J-J--Cu-Pb--LAMMPS--ipr1.
Link(s):

Cu-Ta

2015--Purja-Pun-G-P-Darling-K-A-Kecskes-L-J-Mishin-Y--Cu-Ta
G.P. Purja Pun, K.A. Darling, L.J. Kecskes, and Y. Mishin (2015), "Angular-dependent interatomic potential for the Cu-Ta system and its application to structural stability of nano-crystalline alloys", Acta Materialia, 100, 377-391. DOI: 10.1016/j.actamat.2015.08.052.
Abstract: Atomistic computer simulations are capable of providing insights into physical mechanisms responsible for the extraordinary structural stability and strength of immiscible Cu–Ta alloys. To enable reliable simulations of these alloys, we have developed an angular-dependent potential (ADP) for the Cu–Ta system by fitting to a large database of first-principles and experimental data. This, in turn, required the development of a new ADP potential for elemental Ta, which accurately reproduces a wide range of properties of Ta and is transferable to severely deformed states and diverse atomic environments. The new Cu–Ta potential is applied for studying the kinetics of grain growth in nano-crystalline Cu–Ta alloys with different chemical compositions. Ta atoms form nanometer-scale clusters preferentially located at grain boundaries (GBs) and triple junctions. These clusters pin some of the GBs in place and cause a drastic decrease in grain growth by the Zener pinning mechanism. The results of the simulations are well consistent with experimental observations and suggest possible mechanisms of the stabilization effect of Ta.

Notes: This potential is meant to supplant the Hahibon 2008 Cu-Ta ADP potential by providing a refit of the Ta-Ta and Cu-Ta interactions.

See Computed Properties
Notes: This file was provided by Yuri Mishin (George Mason University) on 11 Sep. 2015.
File(s): superseded


See Computed Properties
Notes: This file was provided by Yuri Mishin (George Mason University) on 2 Nov. 2018. Ganga Purja Pun noted that the tabulated values are identical to the version above except that the short range behaviors (r < 0.5 Angstroms) for some functions have been fixed so that they now follow the correct trends.
File(s):

2008--Hashibon-A-Lozovoi-A-Y-Mishin-Y-et-al--Cu-Ta
A. Hashibon, A.Y. Lozovoi, Y. Mishin, C. Elsässer, and P. Gumbsch (2008), "Interatomic potential for the Cu-Ta system and its application to surface wetting and dewetting", Physical Review B, 77(9), 094131. DOI: 10.1103/physrevb.77.094131.
Abstract: An angle-dependent interatomic potential has been developed for the Cu-Ta system by crossing two existing potentials for pure Cu and Ta. The cross-interaction functions have been fitted to first-principles data generated in this work. The potential has been extensively tested against first-principles energies not included in the fitting database and applied to molecular dynamics simulations of wetting and dewetting of Cu on Ta. We find that a Cu film placed on a Ta (110) surface dewets from it, forming a Cu droplet on top of a stable Cu monolayer. We also observe that a drop of liquid Cu placed on a clean Ta (110) surface spreads over it as a stable monolayer, while the extra Cu atoms remain in the drop. The stability of a Cu monolayer and instability of thicker Cu films are consistent with recent experiments and first-principles calculations. This agreement demonstrates the utility of the potential for atomistic simulations of Cu-Ta interfaces.

Notes: Prof. Mishin requested the following be noted: There was a typing error in the original ADP paper (Y. Mishin, et al., Acta Mat. 53, 4029 (2005)). More information and a correction can be found in the FAQ. Update 17 Jan. 2014: Prof. Mishin noted that "Our ADP Ta potential has a known error: the elastic constants predicted by the potential as a factor of two different from those reported in the paper. This was the result of a bug in the fitting code that was used during the potential development. All other properties are exactly as reported in the paper. The mixed Cu-Ta interactions are also fine. However, because of this error in the elastic constants, the potential cannot be recommended for studying mechanical properties of pure Ta." Update: The 2015--Purja-Pun-G-P--Cu-Ta ADP potential has supplanted this potential.

ADP tabulated functions (2008--Hashibon-A--Cu-Ta--table--ipr1)
Notes: These files were provided by Yuri Mishin (George Mason University) and posted on 22 Jan. 2010.
File(s): superseded



2004--Zhou-X-W-Johnson-R-A-Wadley-H-N-G--Ta-Cu
X.W. Zhou, R.A. Johnson, and H.N.G. Wadley (2004), "Misfit-energy-increasing dislocations in vapor-deposited CoFe/NiFe multilayers", Physical Review B, 69(14), 144113. DOI: 10.1103/physrevb.69.144113.
Abstract: Recent molecular dynamics simulations of the growth of [Ni0.8Fe0.2/Au] multilayers have revealed the formation of misfit-strain-reducing dislocation structures very similar to those observed experimentally. Here we report similar simulations showing the formation of edge dislocations near the interfaces of vapor-deposited (111) [NiFe/CoFe/Cu] multilayers. Unlike misfit dislocations that accommodate lattice mismatch, the dislocation structures observed here increase the mismatch strain energy. Stop-action observations of the dynamically evolving atomic structures indicate that during deposition on the (111) surface of a fcc lattice, adatoms may occupy either fcc sites or hcp sites. This results in the random formation of fcc and hcp domains, with dislocations at the domain boundaries. These dislocations enable atoms to undergo a shift from fcc to hcp sites, or vice versa. These shifts lead to missing atoms, and therefore a later deposited layer can have missing planes compared to a previously deposited layer. This dislocation formation mechanism can create tensile stress in fcc films. The probability that such dislocations are formed was found to quickly diminish under energetic deposition conditions.

FORTRAN (2004--Zhou-X-W--Ta-Cu--FORTRAN--ipr1)
Notes: These are the original files sent by X.W. Zhou (Sandia National Laboratory) and posted with his permission. C.A. Becker (NIST) modified create.f to include the reference in the generated potential files and the EAM.input file for this composition. These files can be used to generate alloy potentials for Cu, Ag, Au, Ni, Pd, Pt, Al, Pb, Fe, Mo, Ta, W, Mg, Co, Ti, and Zr by editing EAM.input. However, as addressed in the reference, these potentials were not designed for use with metal compounds.
File(s): superseded


LAMMPS pair_style eam/alloy (2004--Zhou-X-W--Ta-Cu--LAMMPS--ipr1)
See Computed Properties
Notes: This file was generated by C.A. Becker (NIST) from create.f and posted with X.W. Zhou's (Sandia National Laboratory) permission. The tabulations in this file are identical to the tabulations in the "CuTa.eam.alloy" file in the August 22, 2018 LAMMPS distribution.
File(s): superseded


FORTRAN (2004--Zhou-X-W--Ta-Cu--FORTRAN--ipr2)
Notes: The file Zhou04_create_v2.f is an updated version of create.f modified by L.M. Hale (NIST) following advice from X.W. Zhou (Sandia National Laboratory). This version removes spurious fluctuations in the tabulated functions of the original potential files caused by single/double precision floating point number conflicts.
File(s):
README_v2
Zhou04_create_v2.f
EAM.input.TaCu
EAM_code

LAMMPS pair_style eam/alloy (2004--Zhou-X-W--Ta-Cu--LAMMPS--ipr2)
See Computed Properties
Notes: This file was generated by L.M. Hale from Zhou04_create_v2.f on 13 April 2018 and posted with X.W. Zhou's (Sandia National Laboratory) permission. This version corrects an issue with spurious fluctuations in the tabulated functions.
File(s):
TaCu_Zhou04.eam.alloy

OpenKIM (MO_547744193826)
See Computed Properties
Notes: Listing found at https://openkim.org. This KIM potential is based on the files from 2004--Zhou-X-W--Ta-Cu--LAMMPS--ipr1.
Link(s): superseded


OpenKIM (MO_950828638160)
See Computed Properties
Notes: Listing found at https://openkim.org. This KIM potential is based on the files from 2004--Zhou-X-W--Ta-Cu--LAMMPS--ipr2.
Link(s):
KIM page EAM_Dynamo_ZhouJohnsonWadley_2004NISTretabulation_CuTa__MO_950828638160_000


Cu-Zr

2019--Mendelev-M-I--Cu-Zr
M.I. Mendelev (2019), "to be published".

Notes: Dr. Mendelev describes this potential as "an improved version of 2009--Mendelev-M-I-Kramer-M-J-Ott-R-T-et-al--Cu-Zr. It was designed to fix the problem with artificially stable Laves phases. The potential should be used to study the verification and glass properties."

See Computed Properties
Notes: This file was provided by Mikhail Mendelev (Ames Laboratory) on 8 October 2019.
File(s):

2016--Borovikov-V-Mendelev-M-I-King-A-H--Cu-Zr
V. Borovikov, M.I. Mendelev, and A.H. King (2016), "Effects of stable and unstable stacking fault energy on dislocation nucleation in nano-crystalline metals", Modelling and Simulation in Materials Science and Engineering, 24(8), 085017. DOI: 10.1088/0965-0393/24/8/085017.
Abstract: Dislocation nucleation from grain boundaries (GB) can control plastic deformation in nano-crystalline metals under certain conditions, but little is known about what controls dislocation nucleation, because when data from different materials are compared, the variations of many interacting properties tend to obscure the effects of any single property. In this study, we seek clarification by applying a unique capability of semi-empirical potentials in molecular dynamics simulations: the potentials can be modified such that all significant material properties but one, are kept constant. Using a set of potentials developed to isolate the effects of stacking fault energy, we show that for a given grain boundary, loading orientation and strain rate, the yield stress depends linearly on both the stable and unstable stacking fault energies. The coefficients of proportionality depend on the GB structure and the value of the yield stress is related to the density of the E structural units in the GB. While the impact of the stable stacking fault energy is easy to understand, the unstable stacking fault energy requires more elucidation and we provide a framework for understanding how it affects the nucleation and propagation process.

Notes: Dr. Mendelev noted that this potential was developed in the same manner as 2009--Mendelev-M-I-Kramer-M-J-Ott-R-T-et-al--Cu-Zr, except that the original Cu potential was replaced by MCu31.eam.fs, which has more realistic stable and unstable stacking fault energies. This potential can be used to simulate the plastic deformation in the Cu-Zr amorphous alloys with embedded Cu particles.

LAMMPS pair_style eam/fs (2016--Borovikov-V--Cu-Zr--LAMMPS--ipr1)
See Computed Properties
Notes: These files were sent by M.I. Mendelev (Ames Laboratory) on 27 Sept. 2017 and posted with his permission. Update 19 July 2021: The contact email in the file's header has been changed.
File(s):
OpenKIM (MO_097471813275)
See Computed Properties
Notes: Listing found at https://openkim.org. This KIM potential is based on the files from 2016--Borovikov-V--Cu-Zr--LAMMPS--ipr1.
Link(s):

2009--Mendelev-M-I-Kramer-M-J-Ott-R-T-et-al--Cu-Zr
M.I. Mendelev, M.J. Kramer, R.T. Ott, D.J. Sordelet, D. Yagodin, and P. Popel (2009), "Development of suitable interatomic potentials for simulation of liquid and amorphous Cu-Zr alloys", Philosophical Magazine, 89(11), 967-987. DOI: 10.1080/14786430902832773.
Abstract: We present a new semi-empirical potential suitable for molecular dynamics simulations of liquid and amorphous Cu–Zr alloys. To provide input data for developing the potential, new experimental measurements of the structure factors for amorphous Cu64.5Zr35.5 alloy were performed. In this work, we propose a new method to include diffraction data in the potential development procedure, which also includes fitting to first-principles and liquid density and enthalpy of mixing data. To refine the new potential, we used first-principles and liquid enthalpy of mixing data published earlier combined with the densities of liquid Cu64.5Zr35.5 measured over a range of temperatures. We show that the potential predicts a liquid-to-glass transition temperature that agrees reasonably well with experimental data. Finally, we compare the new potential with two previously developed semi-empirical potentials for Cu–Zr alloys and examine their comparative and contrasting descriptions of structure and properties for Cu64.5Zr35.5 liquids and glasses.

Notes: Update 22 Apr. 2009: the reference was added. Update 14 Oct. 2010: the Cu part of this potential is available separately as 2008--Mendelev-M-I-Kramer-M-J-Becker-C-A-Asta-M--Cu.

LAMMPS pair_style eam/fs (2009--Mendelev-M-I--Cu-Zr--LAMMPS--ipr1)
See Computed Properties
Notes: This file was supplied by Mikhail Mendelev on 28 Nov. 2008. Update 19 July 2021: The contact email in the file's header has been changed.
File(s):
Cu-Zr_2.eam.fs

OpenKIM (MO_600021860456)
See Computed Properties
Notes: Listing found at https://openkim.org. This KIM potential is based on the files from 2009--Mendelev-M-I--Cu-Zr--LAMMPS--ipr1.
Link(s):
KIM page EAM_Dynamo_MendelevKramerOtt_2009_CuZr__MO_600021860456_005


2007--Mendelev-M-I-Sordelet-D-J-Kramer-M-J--Cu-Zr
M.I. Mendelev, D.J. Sordelet, and M.J. Kramer (2007), "Using atomistic computer simulations to analyze x-ray diffraction data from metallic glasses", Journal of Applied Physics, 102(4), 043501. DOI: 10.1063/1.2769157.
Abstract: We propose a method of using atomistic computer simulations to obtain partial pair correlation functions from wide angle diffraction experiments with metallic liquids and their glasses. In this method, a model is first created using a semiempirical interatomic potential and then an additional atomic force is added to improve the agreement with experimental diffraction data. To illustrate this approach, the structure of an amorphous Cu64.5Zr35.5 alloy is highlighted, where we present the results for the semiempirical many-body potential and fitting to x-ray diffraction data. While only x-ray diffraction data were used in the present work, the method can be easily adapted to the case when there are also data from neutron diffraction or even in combination. Moreover, this method can be employed in the case of multicomponent systems when the data of several diffraction experiments can be combined.

Notes: Update 14 Oct. 2010: the Cu part of this potential is available separately as 2008--Mendelev-M-I-Kramer-M-J-Becker-C-A-Asta-M--Cu.

LAMMPS pair_style eam/fs (2007--Mendelev-M-I--Cu-Zr--LAMMPS--ipr1)
See Computed Properties
Notes: This file was supplied by Mikhail Mendelev. Except for comments, this file is equivalent to "CuZr_mm.eam.fs" in the August 22, 2018 LAMMPS distribution. Update 19 July 2021: The contact email in the file's header has been changed.
File(s):
Cu-Zr.eam.fs

OpenKIM (MO_120596890176)
See Computed Properties
Notes: Listing found at https://openkim.org. This KIM potential is based on the files from 2007--Mendelev-M-I--Cu-Zr--LAMMPS--ipr1.
Link(s):
KIM page EAM_Dynamo_MendelevSordeletKramer_2007_CuZr__MO_120596890176_005


Fe

2020--Byggmastar-J-Granberg-F--Fe
J. Byggmästar, and F. Granberg (2020), "Dynamical stability of radiation-induced C15 clusters in iron", Journal of Nuclear Materials, 528, 151893. DOI: 10.1016/j.jnucmat.2019.151893.
Abstract: Density functional theory predicts clusters in the form of the C15 Laves phase to be the most stable cluster of self-interstitials in iron at small sizes. The C15 clusters can form as a result of irradiation, but their prevalence and survival in harsh irradiation conditions have not been thoroughly studied. Using a new bond-order potential optimised for molecular dynamics simulations of radiation damage, we explore the dynamical stability of the C15 clusters in iron under irradiation conditions. We find that small C15 clusters make up 5–20% of the interstitial clusters formed directly in cascades. In continuous irradiation, C15 clusters are frequently formed, after which they remain highly stable and grow by absorbing nearby single interstitial atoms. Growth of C15 clusters ultimately leads to collapse into dislocation loops, most frequently into 1/2 <111> loops and only rarely collapsing into <100> loops at low temperatures. The population, size, and collapse of C15 clusters during continuous irradiation correlates well with their formation energies relative to dislocation loops calculated at zero Kelvin.

Notes: Jesper Byggmästar notes that "This potential was developed mainly for defect clusters and radiation damage. See also the supplementary pdf of the above paper (open access) for benchmark results."

LAMMPS pair_style tersoff/zbl (2020--Byggmastar-J--Fe--LAMMPS--ipr1)
See Computed Properties
Notes: This file was provided by Jesper Byggmästar (University of Helsinki) on 11 Dec 2019.
File(s):

2018--Etesami-S-A-Asadi-E--Fe
S.A. Etesami, and E. Asadi (2018), "Molecular dynamics for near melting temperatures simulations of metals using modified embedded-atom method", Journal of Physics and Chemistry of Solids, 112, 61-72. DOI: 10.1016/j.jpcs.2017.09.001.
Abstract: Availability of a reliable interatomic potential is one of the major challenges in utilizing molecular dynamics (MD) for simulations of metals at near the melting temperatures and melting point (MP). Here, we propose a novel approach to address this challenge in the concept of modified-embedded-atom (MEAM) interatomic potential; also, we apply the approach on iron, nickel, copper, and aluminum as case studies. We propose adding experimentally available high temperature elastic constants and MP of the element to the list of typical low temperature properties used for the development of MD interatomic potential parameters. We show that the proposed approach results in a reasonable agreement between the MD calculations of melting properties such as latent heat, expansion in melting, liquid structure factor, and solid-liquid interface stiffness and their experimental/computational counterparts. Then, we present the physical properties of mentioned elements near melting temperatures using the new MEAM parameters. We observe that the behavior of elastic constants, heat capacity and thermal linear expansion coefficient at room temperature compared to MP follows an empirical linear relation (α±β × MP) for transition metals. Furthermore, a linear relation between the tetragonal shear modulus and the enthalpy change from room temperature to MP is observed for face-centered cubic materials.

Notes: S. A. Etesami (University of Memphis) noted that "We added both melting point and high temperature elastic constants into material properties database for MEAM parameter development process."

LAMMPS pair_style meam (2018--Etesami-S-A--Fe--LAMMPS--ipr1)
See Computed Properties
Notes: These files were sent by S. A. Etesami (University of Memphis) on 23 April 2018 and posted with his permission. This version is compatible with LAMMPS.
File(s):

2015--Asadi-E-Zaeem-M-A-Nouranian-S-Baskes-M-I--Fe
E. Asadi, M.A. Zaeem, S. Nouranian, and M.I. Baskes (2015), "Quantitative modeling of the equilibration of two-phase solid-liquid Fe by atomistic simulations on diffusive time scales", Physical Review B, 91(2), 024105. DOI: 10.1103/physrevb.91.024105.
Abstract: In this paper, molecular dynamics (MD) simulations based on the modified-embedded atom method (MEAM) and a phase-field crystal (PFC) model are utilized to quantitatively investigate the solid-liquid properties of Fe. A set of second nearest-neighbor MEAM parameters for high-temperature applications are developed for Fe, and the solid-liquid coexisting approach is utilized in MD simulations to accurately calculate the melting point, expansion in melting, latent heat, and solid-liquid interface free energy, and surface anisotropy. The required input properties to determine the PFC model parameters, such as liquid structure factor and fluctuations of atoms in the solid, are also calculated from MD simulations. The PFC parameters are calculated utilizing an iterative procedure from the inputs of MD simulations. The solid-liquid interface free energy and surface anisotropy are calculated using the PFC simulations. Very good agreement is observed between the results of our calculations from MEAM-MD and PFC simulations and the available modeling and experimental results in the literature. As an application of the developed model, the grain boundary free energy of Fe is calculated using the PFC model and the results are compared against experiments.

Notes: Prof. Mohsen Zaeem said that this potential was designed for accurately representing properties from 0K up to the melting point.

LAMMPS pair_style meam (2015--Asadi-E--Fe--LAMMPS--ipr1)
See Computed Properties
Notes: This file was sent by Prof. Mohsen Zaeem (Missouri S&T) on 12 April 2017 and posted on 5 May 2017. Update 5 Sept 2019: The 31 July 2018 update of the repository inadvertantly replaced the parameter files with those from the 2018--Etesami-S-A--Fe--LAMMPS--ipr1 potential. The links below now point to the correct files.
File(s):
Fe.meam
library.Fe.meam


2012--Proville-L-Rodney-D-Marinica-M-C--Fe
L. Proville, D. Rodney, and M.-C. Marinica (2012), "Quantum effect on thermally activated glide of dislocations", Nature Materials, 11(10), 845-849. DOI: 10.1038/nmat3401.
Abstract: Crystal plasticity involves the motion of dislocations under stress. So far, atomistic simulations of this process have predicted Peierls stresses, the stress needed to overcome the crystal resistance in the absence of thermal fluctuations, of more than twice the experimental values, a discrepancy best-known in body-centred cubic crystals. Here we show that a large contribution arises from the crystal zero-point vibrations, which ease dislocation motion below typically half the Debye temperature. Using Wigner’s quantum transition state theory in atomistic models of crystals, we found a large decrease of the kink-pair formation enthalpy due to the quantization of the crystal vibrational modes. Consequently, the flow stress predicted by Orowan’s law is strongly reduced when compared with its classical approximation and in much closer agreement with experiments. This work advocates that quantum mechanics should be accounted for in simulations of materials and not only at very low temperatures or in light-atom systems.

LAMMPS pair_style eam/fs (2012--Proville-L--Fe--LAMMPS--ipr1)
See Computed Properties
Notes: This file was sent by M.-C. Marinica (CEA, France) on 10 January 2017 and posted with his permission.
File(s):
MCM2011_eam.fs

OpenKIM (MO_255315407910)
See Computed Properties
Notes: Listing found at https://openkim.org. This KIM potential is based on the files from 2012--Proville-L--Fe--LAMMPS--ipr1.
Link(s):
KIM page EAM_Dynamo_Marinica_2011_Fe__MO_255315407910_000


2011--Chiesa-S-Derlet-P-M-Dudarev-S-L-Swygenhoven-H-V--Fe-33
S. Chiesa, P.M. Derlet, S.L. Dudarev, and H.V. Swygenhoven (2011), "Optimization of the magnetic potential for α-Fe", Journal of Physics: Condensed Matter, 23(20), 206001. DOI: 10.1088/0953-8984/23/20/206001.
Abstract: A second generation of empirical potentials is produced for α-Fe within the framework of the magnetic potential formalism (Dudarev and Derlet 2005 J. Phys.: Condens. Matter 17 7097). A materials database that, in addition to ab initio-derived point defect formation energies, now includes third-order elastic constant and ab initio-derived string potential data controlling, respectively, the thermal expansion properties and the core structure of the 1/2<111> screw dislocation. Three parameterizations are presented in detail, all of which exhibit positive thermal expansion and produce a non-degenerate configuration for the relaxed 1/2<111> screw dislocation easy core structure. These potentials, along with two other published potentials, are investigated in terms of defect formation volume, early stage dislocation loop clustering energetics, <110> dumbbell interstitial diffusion, and the zero-stress 1/2<111> screw dislocation Peierls barrier and its corresponding kink formation energies.

Notes: This is for the ferromagnetic MP-CS3-33 model described in the reference.

LAMMPS pair_style eam/alloy (2011--Chiesa-S--Fe-33--LAMMPS--ipr1)
See Computed Properties
Notes: This file was provided by Sergei Starikov (Ruhr-Universität Bochum, Germany) on 5 May 2019 and posted with permission from him, Dr. Dudarev and Dr. Derlet.
File(s):
Fe_Fe.CS3_33.alloy

OpenKIM (MO_140444321607)
See Computed Properties
Notes: Listing found at https://openkim.org.
Link(s):
KIM page EAM_Magnetic2GQuintic_ChiesaDerletDudarev_2011_Fe__MO_140444321607_002


2010--Malerba-L-Marinica-M-C-Anento-N-et-al--Fe
L. Malerba, M.C. Marinica, N. Anento, C. Björkas, H. Nguyen, C. Domain, F. Djurabekova, P. Olsson, K. Nordlund, A. Serra, D. Terentyev, F. Willaime, and C.S. Becquart (2010), "Comparison of empirical interatomic potentials for iron applied to radiation damage studies", Journal of Nuclear Materials, 406(1), 19-38. DOI: 10.1016/j.jnucmat.2010.05.017.
Abstract: The performance of four recent semi-empirical interatomic potentials for iron, developed or used within the FP6 Perfect Project, is evaluated by comparing them between themselves and with available experimental or, more often, density functional theory data. The quantities chosen for the comparison are of specific interest for radiation damage studies, i.e. they concern mainly properties of point-defects and their clusters, as well as dislocations. For completeness, an earlier, widely used (also within the Project) iron potential is included in the comparison exercise as well. This exercise allows conclusions to be drawn about the reliability of the available potentials, while providing a snapshot of the state-of-the-art concerning fundamental properties of iron, thereby being also useful as a kind of handbook and as a framework for the validation of future semi-empirical interatomic potentials for iron. It is found that Mendelev-type potentials are currently the best choice in order to "extend density functional theory" to larger scales and this justifies their widespread use, also for the development of iron alloy potentials. However, a fully reliable description of self-interstitial atom clusters and dislocations with interatomic potentials remains largely an elusive objective, that calls for further effort within the concerned scientific community.
M.-C. Marinica, F. Willaime, and J.-P. Crocombette (2012), "Irradiation-Induced Formation of Nanocrystallites with C15 Laves Phase Structure in bcc Iron", Physical Review Letters, 108(2), 025501. DOI: 10.1103/physrevlett.108.025501.
Abstract: A three-dimensional periodic structure is proposed for self-interstitial clusters in body-centered-cubic metals, as opposed to the conventional two-dimensional loop morphology. The underlying crystal structure corresponds to the C15 Laves phase. Using density functional theory and interatomic potential calculations, we demonstrate that in α-iron these C15 aggregates are highly stable and immobile and that they exhibit large antiferromagnetic moments. They form directly in displacement cascades, and they can grow by capturing self-interstitials. They thus constitute an important new element to account for when predicting the microstructural evolution of iron base materials under irradiation.

Notes: Dr. Marinica noted that this iron potential was developed by M.-C. Marinca in 2007. The potential uses EAM formalism and was fitted on a database point defect oriented. The performance of the potential is tested in the above 2010 reference. Someone using this potential should cite the above two papers.

LAMMPS pair_style eam/fs (2010--Malerba-L--Fe--LAMMPS--ipr1)
See Computed Properties
Notes: This file was sent by M.-C. Marinica (CEA, France) on 10 January 2017 and posted with his permission.
File(s):
M07_eam.fs

OpenKIM (MO_466808877130)
See Computed Properties
Notes: Listing found at https://openkim.org. This KIM potential is based on the files from 2010--Malerba-L--Fe--LAMMPS--ipr1.
Link(s):
KIM page EAM_Dynamo_Marinica_2007_Fe__MO_466808877130_000

M.-C. Marinica, F. Willaime, and J.-P. Crocombette (2012), "Irradiation-Induced Formation of Nanocrystallites with C15 Laves Phase Structure in bcc Iron", Physical Review Letters, 108(2), 025501. DOI: 10.1103/physrevlett.108.025501.
Abstract: A three-dimensional periodic structure is proposed for self-interstitial clusters in body-centered-cubic metals, as opposed to the conventional two-dimensional loop morphology. The underlying crystal structure corresponds to the C15 Laves phase. Using density functional theory and interatomic potential calculations, we demonstrate that in α-iron these C15 aggregates are highly stable and immobile and that they exhibit large antiferromagnetic moments. They form directly in displacement cascades, and they can grow by capturing self-interstitials. They thus constitute an important new element to account for when predicting the microstructural evolution of iron base materials under irradiation.

Notes: Dr. Marinica noted that this iron potential was developed by M.-C. Marinca in 2007. The potential uses EAM formalism and was fitted on a database point defect oriented. The performance of the potential is tested in the above 2010 reference. Someone using this potential should cite the above two papers.

LAMMPS pair_style eam/fs (2010--Malerba-L--Fe--LAMMPS--ipr1)
See Computed Properties
Notes: This file was sent by M.-C. Marinica (CEA, France) on 10 January 2017 and posted with his permission.
File(s):
M07_eam.fs

OpenKIM (MO_466808877130)
See Computed Properties
Notes: Listing found at https://openkim.org. This KIM potential is based on the files from 2010--Malerba-L--Fe--LAMMPS--ipr1.
Link(s):
KIM page EAM_Dynamo_Marinica_2007_Fe__MO_466808877130_000


2009--Olsson-P-A-T--Fe
P.A.T. Olsson (2009), "Semi-empirical atomistic study of point defect properties in BCC transition metals", Computational Materials Science, 47(1), 135-145. DOI: 10.1016/j.commatsci.2009.06.025.
Abstract: We have constructed a set of embedded atom method (EAM) potentials for Fe, Ta, W and V and used them in order to study point defect properties. The parametrizations of the potentials ensure that the third order elastic constants are continuous and they have been fitted to the cohesive energies, the lattice constants, the unrelaxed vacancy formation energies and the second order elastic constants. Formation energies for different self-interstitials reveal that the <1 1 0> split dumbbell is the most stable configuration for Fe while for Ta, W and V we find that the <1 1 1> split dumbbell is preferred. Self-interstitial migration energies are simulated using the nudged elastic band method and for Fe and W the migration energies are found to be in good agreement with experimental and ab initio data. Migration energies for Ta and V self-interstitials are found to be quite low. The calculated formation, activation and migration energies for monovacancies are in good agreement with experimental data. Formation energies for divacancies reveal that the second nearest neighbor divacancy is more energetically favorable than nearest neighbor divacancies and the migration energies indicate that nearest neighbor migration paths are more likely to occur than second nearest neighbor migration jumps. For Fe, we have also studied the influence of the pair potential behavior between the second and third nearest neighbor on the stability of the <1 1 0> split dumbbell, which revealed that the higher the energy level of the pair potential is in that region, the more stable the <1 1 0> split dumbbell becomes.

EAM tabulated functions (2009--Olsson-P-A-T--Fe--table--ipr1)
Notes: These files were provided by Pär Olsson (Malmoe University, Sweden) on 11 November 2018 and posted with his permission.
File(s):
F(ρ): F_fe.plt
ρ(r): rho_fe.plt
φ(r): phi_fe.plt

LAMMPS pair_style eam/alloy (2009--Olsson-P-A-T--Fe--LAMMPS--ipr1)
See Computed Properties
Notes: This file was provided by Pär Olsson (Malmoe University, Sweden) on 11 November 2018 and posted with his permission.
File(s):
Fe_Olsson_CMS2009.eam.alloy


2006--Chamati-H-Papanicolaou-N-I-Mishin-Y-Papaconstantopoulos-D-A--Fe
H. Chamati, N.I. Papanicolaou, Y. Mishin, and D.A. Papaconstantopoulos (2006), "Embedded-atom potential for Fe and its application to self-diffusion on Fe(100)", Surface Science, 600(9), 1793-1803. DOI: 10.1016/j.susc.2006.02.010.
Abstract: We have constructed an embedded-atom potential for Fe by fitting to both experimental and first-principles results. The potential reproduces with satisfactory accuracy the lattice properties, surface energies and point defect energies for both BCC and the high temperature FCC phases of the metal. The potential was used in tandem with molecular-dynamics simulations to calculate the thermal expansion of both BCC-Fe and FCC-Fe, the phonon dispersion curves, mean-square displacements and surface relaxations of the element. In addition, we have studied self-diffusion of single adatoms on the BCC-Fe(1 0 0) surface at several temperatures. The migration energies and pre-exponential factors for three main diffusion mechanisms were determined and compared with available experimental data. We have found that the diagonal exchange diffusion process is energetically favored over the direct hopping mechanism and that its migration energy is close to the experimental value. Furthermore, the diffusion coefficient associated with the diagonal exchange diffusion process is about an order of magnitude higher than those of the hopping and the non-diagonal exchange mechanisms.

EAM tabulated functions (2006--Chamati-H--Fe--table--ipr1)
Notes: These files were provided by Yuri Mishin (George Mason University) and posted on 10 Dec. 2009.
File(s):
F(ρ): F_fe.plt
ρ(r): ffe.plt
φ(r): pfe.plt

LAMMPS pair_style eam/alloy (2006--Chamati-H--Fe--LAMMPS--ipr1)
See Computed Properties
Notes: Professor Mishin provided a LAMMPS-compatible version of the potential, which was posted on 23 Aug. 2017.
File(s):
Fe_Mishin2006.eam.alloy

OpenKIM (MO_960699513424)
See Computed Properties
Notes: Listing found at https://openkim.org. This KIM potential is based on the files from 2006--Chamati-H--Fe--LAMMPS--ipr1.
Link(s):
KIM page EAM_Dynamo_ChamatiPapanicolaouMishin_2006_Fe__MO_960699513424_000


2005--Dudarev-S-L-Derlet-P-M--Fe
S.L. Dudarev, and P.M. Derlet (2005), "A 'magnetic' interatomic potential for molecular dynamics simulations", Journal of Physics: Condensed Matter, 17(44), 7097-7118. DOI: 10.1088/0953-8984/17/44/003.
Abstract: We develop a semi-empirical many-body interatomic potential suitable for large scale molecular dynamics simulations of magnetic α-iron. The functional form of the embedding part of the potential is derived using a combination of the Stoner and the Ginzburg–Landau models. We show that it is the symmetry broken solutions of the Ginzburg–Landau model describing spontaneous magnetization of atoms that provide the link between magnetism and interatomic forces. We discuss a range of potential applications of the new method.

MoldyPSI (2005--Dudarev-S-L--Fe--MoldyPSI--ipr1)
Notes: These files were provided by Peter Derlet (Paul Scherrer Institute) and posted with his permission on 2 July 2010. Usage information can be found in the FAQ.
File(s):
fe_dd.dat
potential_functions_Fe_DD.f90

OpenKIM (MO_135034229282)
See Computed Properties
Notes: Listing found at https://openkim.org.
Link(s):
KIM page EAM_MagneticCubic_DudarevDerlet_2005_Fe__MO_135034229282_002


2004--Zhou-X-W-Johnson-R-A-Wadley-H-N-G--Fe
X.W. Zhou, R.A. Johnson, and H.N.G. Wadley (2004), "Misfit-energy-increasing dislocations in vapor-deposited CoFe/NiFe multilayers", Physical Review B, 69(14), 144113. DOI: 10.1103/physrevb.69.144113.
Abstract: Recent molecular dynamics simulations of the growth of [Ni0.8Fe0.2/Au] multilayers have revealed the formation of misfit-strain-reducing dislocation structures very similar to those observed experimentally. Here we report similar simulations showing the formation of edge dislocations near the interfaces of vapor-deposited (111) [NiFe/CoFe/Cu] multilayers. Unlike misfit dislocations that accommodate lattice mismatch, the dislocation structures observed here increase the mismatch strain energy. Stop-action observations of the dynamically evolving atomic structures indicate that during deposition on the (111) surface of a fcc lattice, adatoms may occupy either fcc sites or hcp sites. This results in the random formation of fcc and hcp domains, with dislocations at the domain boundaries. These dislocations enable atoms to undergo a shift from fcc to hcp sites, or vice versa. These shifts lead to missing atoms, and therefore a later deposited layer can have missing planes compared to a previously deposited layer. This dislocation formation mechanism can create tensile stress in fcc films. The probability that such dislocations are formed was found to quickly diminish under energetic deposition conditions.

FORTRAN (2004--Zhou-X-W--Fe--FORTRAN--ipr1)
Notes: These are the original files sent by X.W. Zhou (Sandia National Laboratory) and posted with his permission. C.A. Becker (NIST) modified create.f to include the reference in the generated potential files and the EAM.input file for this composition. These files can be used to generate alloy potentials for Cu, Ag, Au, Ni, Pd, Pt, Al, Pb, Fe, Mo, Ta, W, Mg, Co, Ti, and Zr by editing EAM.input. However, as addressed in the reference, these potentials were not designed for use with metal compounds.
File(s): superseded


LAMMPS pair_style eam/alloy (2004--Zhou-X-W--Fe--LAMMPS--ipr1)
See Computed Properties
Notes: This file was generated by C.A. Becker (NIST) from create.f and posted with X.W. Zhou's (Sandia National Laboratory) permission.
File(s): superseded


FORTRAN (2004--Zhou-X-W--Fe--FORTRAN--ipr2)
Notes: The file Zhou04_create_v2.f is an updated version of create.f modified by L.M. Hale (NIST) following advice from X.W. Zhou (Sandia National Laboratory). This version removes spurious fluctuations in the tabulated functions of the original potential files caused by single/double precision floating point number conflicts.
File(s):
README_v2
Zhou04_create_v2.f
EAM.input.Fe
EAM_code

LAMMPS pair_style eam/alloy (2004--Zhou-X-W--Fe--LAMMPS--ipr2)
See Computed Properties
Notes: This file was generated by L.M. Hale from Zhou04_create_v2.f on 13 April 2018 and posted with X.W. Zhou's (Sandia National Laboratory) permission. This version corrects an issue with spurious fluctuations in the tabulated functions.
File(s):
Fe_Zhou04.eam.alloy

OpenKIM (MO_650279905230)
See Computed Properties
Notes: Listing found at https://openkim.org. This KIM potential is based on the files from 2004--Zhou-X-W--Fe--LAMMPS--ipr1.
Link(s):
KIM page EAM_Dynamo_ZhouJohnsonWadley_2004_Fe__MO_650279905230_005

OpenKIM (MO_681088298208)
See Computed Properties
Notes: Listing found at https://openkim.org. This KIM potential is based on the files from 2004--Zhou-X-W--Fe--LAMMPS--ipr2.
Link(s):
KIM page EAM_Dynamo_ZhouJohnsonWadley_2004NISTretabulation_Fe__MO_681088298208_000


2003--Mendelev-M-I-Han-S-Srolovitz-D-J-et-al--Fe-2
M.I. Mendelev, S. Han, D.J. Srolovitz, G.J. Ackland, D.Y. Sun, and M. Asta (2003), "Development of new interatomic potentials appropriate for crystalline and liquid iron", Philosophical Magazine, 83(35), 3977-3994. DOI: 10.1080/14786430310001613264.
Abstract: Two procedures were developed to fit interatomic potentials of the embedded-atom method (EAM) form and applied to determine a potential which describes crystalline and liquid iron. While both procedures use perfect crystal and crystal defect data, the first procedure also employs the first-principles forces in a model liquid and the second procedure uses experimental liquid structure factor data. These additional types of information were incorporated to ensure more reasonable descriptions of atomic interactions at small separations than is provided using standard approaches, such as fitting to the universal binding energy relation. The new potentials (provided herein) are, on average, in better agreement with the experimental or first-principles lattice parameter, elastic constants, point-defect energies, bcc–fcc transformation energy, liquid density, liquid structure factor, melting temperature and other properties than other existing EAM iron potentials.

Notes: This listing is for the reference's Fe #2 interaction parameters.

LAMMPS pair_style eam/fs (2003--Mendelev-M-I--Fe-2--LAMMPS--ipr1)
See Computed Properties
Notes: This file was provided by Mikhail Mendelev on Jun 10, 2007. Except for comments, this file is identical to "Fe_mm.eam.fs" in the August 22, 2018 LAMMPS distribution. Update 19 July 2021: The contact email in the file's header has been changed.
File(s): superseded


LAMMPS pair_style eam (2003--Mendelev-M-I--Fe-2--LAMMPS--ipr2)
See Computed Properties
Notes: Update 09 Mar 2009: The file for Fe #2 (Feb 22, 2009) was sent as a replacement for the Jun 10, 2007 file above. It better treats radial distances smaller than 0.5 A for use in radiation damage simulations. Update 22 Dec 2010: The file Fe_2.eam was removed because it was found to have an energy of 11.31356 eV/atom for bcc with a=2.855324 A. For archival purposes, the file can be found here. Thanks to Jianyang Wu for bringing this to our attention and Mikhail Mendelev for his help in sorting it out. Update 19 July 2021: The contact email in the file's header has been changed.
File(s): retracted


LAMMPS pair_style eam/fs (2003--Mendelev-M-I--Fe-2--LAMMPS--ipr3)
See Computed Properties
Notes: This file supports radial distances smaller than 0.5 A and gives the proper values of -4.1224351 eV/atom for a = 2.855324 A (LAMMPS 4Aug10). Thanks to Jianyang Wu for bringing this to our attention and Mikhail Mendelev for his help in sorting it out. Update 19 July 2021: The contact email in the file's header has been changed.
File(s):
Fe_2.eam.fs

OpenKIM (MO_856295952425)
See Computed Properties
Notes: Listing found at https://openkim.org.
Link(s):
KIM page EAM_MagneticCubic_MendelevHanSrolovitz_2003_Fe__MO_856295952425_002

OpenKIM (MO_807997826449)
See Computed Properties
Notes: Listing found at https://openkim.org. This KIM potential is based on the files from 2003--Mendelev-M-I--Fe-2--LAMMPS--ipr1.
Link(s): superseded


OpenKIM (MO_769582363439)
See Computed Properties
Notes: Listing found at https://openkim.org. This KIM potential is based on the files from 2003--Mendelev-M-I--Fe-2--LAMMPS--ipr3.
Link(s):
KIM page EAM_Dynamo_MendelevHanSrolovitz_2003Potential2_Fe__MO_769582363439_005


2003--Mendelev-M-I-Han-S-Srolovitz-D-J-et-al--Fe-5
M.I. Mendelev, S. Han, D.J. Srolovitz, G.J. Ackland, D.Y. Sun, and M. Asta (2003), "Development of new interatomic potentials appropriate for crystalline and liquid iron", Philosophical Magazine, 83(35), 3977-3994. DOI: 10.1080/14786430310001613264.
Abstract: Two procedures were developed to fit interatomic potentials of the embedded-atom method (EAM) form and applied to determine a potential which describes crystalline and liquid iron. While both procedures use perfect crystal and crystal defect data, the first procedure also employs the first-principles forces in a model liquid and the second procedure uses experimental liquid structure factor data. These additional types of information were incorporated to ensure more reasonable descriptions of atomic interactions at small separations than is provided using standard approaches, such as fitting to the universal binding energy relation. The new potentials (provided herein) are, on average, in better agreement with the experimental or first-principles lattice parameter, elastic constants, point-defect energies, bcc–fcc transformation energy, liquid density, liquid structure factor, melting temperature and other properties than other existing EAM iron potentials.

Notes: This listing is for the reference's Fe #5 interaction parameters.

LAMMPS pair_style eam/fs (2003--Mendelev-M-I--Fe-5--LAMMPS--ipr1)
See Computed Properties
Notes: This file was provided by Mikhail Mendelev on Jun 10, 2007. Update 19 July 2021: The contact email in the file's header has been changed.
File(s):
Fe_5.eam.fs

OpenKIM (MO_942420706858)
See Computed Properties
Notes: Listing found at https://openkim.org. This KIM potential is based on the files from 2003--Mendelev-M-I--Fe-5--LAMMPS--ipr1.
Link(s):
KIM page EAM_Dynamo_MendelevHanSrolovitz_2003Potential5_Fe__MO_942420706858_005


1998--Meyer-R-Entel-P--Fe
R. Meyer, and P. Entel (1998), "Martensite-austenite transition and phonon dispersion curves of Fe1-xNix studied by molecular-dynamics simulations", Physical Review B, 57(9), 5140-5147. DOI: 10.1103/physrevb.57.5140.
Abstract: We have done molecular-dynamics simulations of Fe1−xNix employing a semiempirical model. We present a phase diagram of the martensite-austenite transition temperatures as a function of the Ni concentration which is in good agreement with experimental observations. In addition to this we have calculated the phonon dispersion curves of Fe and Ni from the model. Results show that the vibrational properties of the metals are well reproduced by the embedded-atom-method potentials. Finally, we have derived the phonon dispersion relations of bcc Fe80Ni20. We find rather low energies of the [110]−TA1 phonons with a strong temperature dependence which we attribute to instabilities of Ni in the bcc phase. We do not find any indications of a soft mode at the martensite-austenite transition in Fe1−xNix.

LAMMPS pair_style eam (1998--Meyer-R--Fe--LAMMPS--ipr1)
See Computed Properties
Notes: This file was provided by Rodrigo Freitas (Stanford) on Jan 10, 2020. It was used for the publication R. Freitas, M. Asta and M. de Koning (2016) Computational Materials Science, 112, 333-341. DOI: 10.1016/j.commatsci.2015.10.050. Update March 13, 2020: The listed LAMMPS pair style corrected from eam/alloy to eam. Update Dec 11, 2020: Lucas Hale verified that the potential's tables are consistent with the parameters in the paper, however, the elastic constants differ by roughly 10% from the published values. The id for the implementation has been updated from 1998--Meyer-R--Fe--ipr-1 to 1998--Meyer-R--Fe--LAMMPS--ipr-1 for consistency.
File(s):
Fe_MeyerEntel.eam


1997--Ackland-G-J-Bacon-D-J-Calder-A-F-Harry-T--Fe
G.J. Ackland, D.J. Bacon, A.F. Calder, and T. Harry (1997), "Computer simulation of point defect properties in dilute Fe-Cu alloy using a many-body interatomic potential", Philosophical Magazine A, 75(3), 713-732. DOI: 10.1080/01418619708207198.
Abstract: The behaviour of copper atoms in dilute solution in α-iron is important for the microstructural changes that occur in ferritic pressure vessel steels under fastneutron irradiation. To investigate the properties of atomic defects that control this behaviour, a set of many-body interatomic potentials has been developed for the Fe—Cu system. The procedures employed, including modifications to ensure suitability for simulating atomic collisions at high energy, are described. The effect of copper on the lattice parameter of iron in the new model is in good agreement with experiment. The phonon properties of the pure crystals and, in particular, the influence of the instability of the metastable, bcc phase of copper that precipitates during irradiation are discussed. The properties of point defects have been investigated. It is found that the vacancy has lower formation and migration energy in bcc copper than in α-iron, and the self-interstitial atom has very low formation energy in this phase of copper. The threshold displacement energy in iron has been computed as a function of recoil orientation for both iron-and copper-atom recoils. The differences between the energy for the two species are small.

Moldy FS (1997--Ackland-G-J--Fe--MOLDY--ipr1)
Notes: The parameters in Fe.moldy were obtained from http://homepages.ed.ac.uk/graeme/moldy/moldy.html and posted with the permission of G.J. Ackland.
File(s):
Fe.moldy

LAMMPS pair_style eam/fs (1997--Ackland-G-J--Fe--LAMMPS--ipr1)
See Computed Properties
Notes: This conversion was performed from G.J. Ackland's parameters by M.I. Mendelev. Conversion checks from M.I. Mendelev can be found in conversion_check.pdf. These files were posted on 30 June 2009 with the permission of G.J. Ackland and M.I. Mendelev. These potentials are not designed for simulations of radiation damage. Update 19 July 2021: The contact email in the file's header has been changed.
File(s):
Fe.eam.fs
conversion_check.pdf

OpenKIM (MO_142799717516)
See Computed Properties
Notes: Listing found at https://openkim.org. This KIM potential is based on the files from 1997--Ackland-G-J--Fe--LAMMPS--ipr1.
Link(s):
KIM page EAM_Dynamo_AcklandBaconCalder_1997_Fe__MO_142799717516_005


Fe-Ni

2009--Bonny-G-Pasianot-R-C-Malerba-L--Fe-Ni
G. Bonny, R.C. Pasianot, and L. Malerba (2009), "Fe-Ni many-body potential for metallurgical applications", Modelling and Simulation in Materials Science and Engineering, 17(2), 025010. DOI: 10.1088/0965-0393/17/2/025010.
Abstract: A many-body interatomic potential for the Fe–Ni system is fitted, capable of describing both the ferritic and austenitic phase. The Fe–Ni system exhibits two stable ordered intermetallic phases, namely, L10 FeNi and L12 FeNi3, that are key issues to be tackled when creating a Fe–Ni potential consistent with thermodynamics. A procedure, based on a rigid lattice Ising model and the theory of correlation functions space, is developed to address all the intermetallics that are possible ground states of the system. While controlling the ground states of the system, the mixing enthalpy and defect properties were fitted. Both bcc and fcc defect properties are compared with density functional theory calculations and other potentials found in the literature. Finally, the potential is thermodynamically validated by constructing the alloy phase diagram. It is shown that the experimental phase diagram is reproduced reasonably well and that our potential gives a globally improved description of the Fe–Ni system in the whole concentration range with respect to the potentials found in the literature.

LAMMPS pair_style eam/alloy (2009--Bonny-G--Fe-Ni--LAMMPS--ipr1)
See Computed Properties
Notes: This file was provided by Giovanni Bonny on 22 Jan. 2009.
File(s):
EAM tabulated functions (2009--Bonny-G--Fe-Ni--table--ipr1)
Notes: These files were provided by Giovanni Bonny on 26 Jan. 2009.
File(s):
Fe F(ρ): F_Fe.spt
Ni F(ρ): F_Ni.spt
Fe ρ(r): rhoFe.spt
Ni ρ(r): rhoNi.spt
Fe φ(r): pFeFe.spt
Ni φ(r): pNiNi.spt
Fe-Ni φ(r): pFeNi.spt

See Computed Properties
Notes: Listing found at https://openkim.org. This KIM potential is based on the files from 2009--Bonny-G--Fe-Ni--LAMMPS--ipr1.
Link(s):

2005--Mishin-Y-Mehl-M-J-Papaconstantopoulos-D-A--Fe-Ni
Y. Mishin, M.J. Mehl, and D.A. Papaconstantopoulos (2005), "Phase stability in the Fe-Ni system: Investigation by first-principles calculations and atomistic simulations", Acta Materialia, 53(15), 4029-4041. DOI: 10.1016/j.actamat.2005.05.001.
Abstract: First-principles calculations of the energy of various crystal structures of Fe, Ni and ordered Fe–Ni compounds with different stoichiometries have been performed by the linearized augmented plane wave (LAPW) method in the generalized gradient approximation. The most stable compounds are L12–Ni3Fe, L10–FeNi, C11f–Ni2Fe and C11f–Fe2Ni. The L12-Ni3Fe compound has the largest negative formation energy, which is consistent with the experimental Fe–Ni phase diagram. The L10–FeNi compound has also been observed experimentally in meteorite samples as a metastable phase. It is suggested here that the C11f compounds could also form in Fe–Ni alloys at low temperatures. A new semi-empirical interatomic potential has been developed for the Fe–Ni system by fitting to experimental data and the results of the LAPW calculations. Recognizing the significance of the covalent component of bonding in this system, the potential is based on the embedded-atom method (EAM) but additionally includes a bond-angle dependence. In comparison with the existing modified EAM method, our potential form is simpler, extends interactions to several (3–5) coordination shells and replaces the screening procedure by a smooth cutoff of the potential functions. The potential reproduces a variety of properties of Fe and Ni with a reasonable accuracy. It also reproduces all stability trends across the Fe–Ni system established by the LAPW calculations. The potential can be useful in atomistic simulations of the phases of the Fe–Ni system.

ADP tabulated functions (2005--Mishin-Y--Fe-Ni--table--ipr1)
Notes: These files were provided by Yuri Mishin (George Mason University) and posted on 22 Dec. 2009. Prof. Mishin requested the following note be included: "The equation appearing in the Appendix on page 4040 contains a typing error: the sign before 1/3 in the last line must be negative." He provided the corrected equation for the angular-dependent force contributions in ADP_Forces.jpg or ADP_Forces.pdf.
File(s):
Fe F(ρ): F_Fe.plt
Ni F(ρ): F_Ni.plt
Fe ρ(r): fFe.plt
Ni ρ(r): fNi.plt
Fe φ(r): pFe.plt
Ni φ(r): pNi.plt
Fe-Ni φ(r): pFeNi.plt
Fe u(r): dFe.plt
Ni u(r): dNi.plt
Fe-Ni u(r): dFeNi.plt
Fe w(r): qFe.plt
Ni w(r): qNi.plt
Fe-Ni w(r): qFeNi.plt
ADP_Forces.jpg
ADP_Forces.pdf


Fe-O

2019--Byggmastar-J-Nagel-M-Albe-K-et-al--Fe-O
J. Byggmästar, M. Nagel, K. Albe, K. Henriksson, and K. Nordlund (2019), "Analytical interatomic bond-order potential for simulations of oxygen defects in iron", Journal of Physics: Condensed Matter, 31, 215401. DOI: 10.1088/1361-648x/ab0931.
Abstract: We present an analytical bond-order potential for the Fe–O system, capable of reproducing the basic properties of wüstite as well as the energetics of oxygen impurities in α-iron. The potential predicts binding energies of various small oxygen-vacancy clusters in α-iron in good agreement with density functional theory results, and is therefore suitable for simulations of oxygen-based defects in iron. We apply the potential in simulations of the stability and structure of Fe/FeO interfaces and FeO precipitates in iron, and observe that the shape of FeO precipitates can change due to formation of well-defined Fe/FeO interfaces. The interface with crystalline Fe also ensures that the precipitates never become fully amorphous, no matter how small they are.

Notes: The potential is not suitable for simulations of the Fe2O3 and Fe3O4 phases.

LAMMPS pair_style tersoff/zbl (2019--Byggmastar-J--Fe-O--LAMMPS--ipr1)
See Computed Properties
Notes: This file was provided by Jesper Byggmästar (University of Helsinki) on 20 March 2019 and posted with his permission.
File(s):

Fe-P

2004--Ackland-G-J-Mendelev-M-I-Srolovitz-D-J-et-al--Fe-P
G.J. Ackland, M.I. Mendelev, D.J. Srolovitz, S. Han, and A.V. Barashev (2004), "Development of an interatomic potential for phosphorus impurities in α-iron", Journal of Physics: Condensed Matter, 16(27), S2629-S2642. DOI: 10.1088/0953-8984/16/27/003.
Abstract: We present the derivation of an interatomic potential for the iron–phosphorus system based primarily on ab initio data. Transferability in this system is extremely problematic, and the potential is intended specifically to address the problem of radiation damage and point defects in iron containing low concentrations of phosphorus atoms. Some preliminary molecular dynamics calculations show that P strongly affects point defect migration.

Equations (2004--Ackland-G-J--Fe-P--parameters--ipr1)
Notes: The file fep4.19 was obtained from http://homepages.ed.ac.uk/graeme/moldy/moldy.html and posted with the permission of G.J. Ackland. Besides the parameterized functions in the file, there are also some calculated quantities useful as confirmation.
From that website: "The iron potential here is slightly improved from the 2003 version to eliminate negative thermal expansion. It has a melting point of 1796 K."
File(s):
See Computed Properties
Notes: This file was provided by Mikhail Mendelev. Except for comments, this file is equivalent to "FeP_mm.eam.fs" in the August 22, 2018 LAMMPS distribution. Update 19 July 2021: The contact email in the file's header has been changed.
File(s):
See Computed Properties
Notes: Listing found at https://openkim.org. This KIM potential is based on the files from 2004--Ackland-G-J--Fe-P--LAMMPS--ipr1.
Link(s):

Fe-V

2007--Mendelev-M-I-Han-S-Son-W-et-al--V-Fe
M.I. Mendelev, S. Han, W.- Son, G.J. Ackland, and D.J. Srolovitz (2007), "Simulation of the interaction between Fe impurities and point defects in V", Physical Review B, 76(21), 214105. DOI: 10.1103/physrevb.76.214105.
Abstract: We report improved results of atomistic modeling of V-Fe alloys. We introduced an electronic structure embedding approach to improve the description of the point defects in first-principles calculations, by including the semicore electrons in some V atoms (those near the interstitial where the semicore levels are broadened) but not those further from the point defect. This enables us to combine good accuracy for the defect within large supercells and to expand the data set of first-principles point defect calculations in vanadium with and without small amounts of iron. Based on these data, previous first-principles work, and new calculations on the alloy liquid, we fitted an interatomic potential for the V-Fe system which describes the important configurations likely to arise when such alloys are exposed to radiation. This potential is in a form suitable for molecular dynamics (MD) simulations of large systems. Using the potential, we have calculated the migration barriers of vacancies in the presence of iron, showing that these are broadly similar. On the other hand, MD simulations show that V self-diffusion at high temperatures and Fe diffusion are greatly enhanced by the presence of interstitials.

See Computed Properties
Notes: This file was provided by Mikhail Mendelev. Except for comments, this file is equivalent to "VFe_mm.eam.fs" in the August 22, 2018 LAMMPS distribution. Update 19 July 2021: The contact email in the file's header has been changed.
File(s):
See Computed Properties
Notes: Listing found at https://openkim.org. This KIM potential is based on the files from 2007--Mendelev-M-I--V-Fe--LAMMPS--ipr1.
Link(s):

Fe-W

2013--Bonny-G-Castin-N-Bullens-J-et-al--Fe-W
G. Bonny, N. Castin, J. Bullens, A. Bakaev, T.C.P. Klaver, and D. Terentyev (2013), "On the mobility of vacancy clusters in reduced activation steels: an atomistic study in the Fe-Cr-W model alloy", Journal of Physics: Condensed Matter, 25(31), 315401. DOI: 10.1088/0953-8984/25/31/315401.
Abstract: Reduced activation steels are considered as structural materials for future fusion reactors. Besides iron and the main alloying element chromium, these steels contain other minor alloying elements, typically tungsten, vanadium and tantalum. In this work we study the impact of chromium and tungsten, being major alloying elements of ferritic Fe–Cr–W-based steels, on the stability and mobility of vacancy defects, typically formed under irradiation in collision cascades. For this purpose, we perform ab initio calculations, develop a many-body interatomic potential (EAM formalism) for large-scale calculations, validate the potential and apply it using an atomistic kinetic Monte Carlo method to characterize the lifetime and diffusivity of vacancy clusters. To distinguish the role of Cr and W we perform atomistic kinetic Monte Carlo simulations in Fe–Cr, Fe–W and Fe–Cr–W alloys. Within the limitation of transferability of the potentials it is found that both Cr and W enhance the diffusivity of vacancy clusters, while only W strongly reduces their lifetime. The cluster lifetime reduction increases with W concentration and saturates at about 1-2 at.%. The obtained results imply that W acts as an efficient 'breaker' of small migrating vacancy clusters and therefore the short-term annealing process of cascade debris is modified by the presence of W, even in small concentrations.

LAMMPS pair_style eam/alloy (2013--Bonny-G--Fe-W--LAMMPS--ipr1)
See Computed Properties
Notes: This file was provided by Giovanni Bonny (Nuclear Materials Science Institute of SCK-CEN, Belgium) on 7 Mar. 2018 and posted with his permission. Dr. Bonny noted that this potential was not stiffened and cannot be used in its present form for collision cascades.
File(s):
See Computed Properties
Notes: Listing found at https://openkim.org. This KIM potential is based on the files from 2013--Bonny-G--Fe-W--LAMMPS--ipr1.
Link(s):

Ga-In-N

2017--Zhou-X-W-Jones-R-E-Chu-K--In-Ga-N
X.W. Zhou, R.E. Jones, and K. Chu (2017), "Polymorphic improvement of Stillinger-Weber potential for InGaN", Journal of Applied Physics, 122(23), 235703. DOI: 10.1063/1.5001339.
Abstract: A Stillinger-Weber potential is computationally very efficient for molecular dynamics simulations. Despite its simple mathematical form, the Stillinger-Weber potential can be easily parameterized to ensure that crystal structures with tetrahedral bond angles (e.g., diamond-cubic, zinc-blende, and wurtzite) are stable and have the lowest energy. As a result, the Stillinger-Weber potential has been widely used to study a variety of semiconductor elements and alloys. When studying an A-B binary system, however, the Stillinger-Weber potential is associated with two major drawbacks. First, it significantly overestimates the elastic constants of elements A and B, limiting its use for systems involving both compounds and elements (e.g., an A/AB multilayer). Second, it prescribes equal energy for zinc-blende and wurtzite crystals, limiting its use for compounds with large stacking fault energies. Here, we utilize the polymorphic potential style recently implemented in LAMMPS to develop a modified Stillinger-Weber potential for InGaN that overcomes these two problems.

LAMMPS pair_style polymorphic (2017--Zhou-X-W--In-Ga-N--LAMMPS--ipr1)
See Computed Properties
Notes: This file was provided by Xiaowang Zhou (Sandia) on 16 August 2019.
File(s):

Ga-N

2006--Bere-A-Serra-A--Ga-N
A. Béré, and A. Serra (2006), "On the atomic structures, mobility and interactions of extended defects in GaN: dislocations, tilt and twin boundaries", Philosophical Magazine, 86(15), 2159-2192. DOI: 10.1080/14786430600640486.
Abstract: Results obtained by atomic computer simulation based on an adapted Stillinger–Weber (SW) potential concerning the structure and relative stability of lattice dislocations, tilt and twin boundaries in GaN are discussed. The method used for the search and description of all possible atomic configurations depends on the crystallographic structure; consequently it is of general application and the results are transferable to the wurtzite binary compounds. On the contrary, the relaxed structures and their relative energetic stability are potential dependent. The results presented here correspond to a GaN model described by a pair potential. Whenever it has been possible our results have been compared with experiments or with ab initio calculations. We present the core shape and energy of a and c crystal dislocations of both edge and screw character; [0001] tilt boundaries of misorientation angles from 9.3° (corresponding to Σ37) to θ = 44.8° (corresponding to Σ43) and (10-1n) twin boundaries (n = 1, 2, 3) [1, 2, 3, 4]. The atomic structures of the tilt boundaries can be described in terms of the three stable structures of the prism a-edge dislocation core. The (10-13) twin boundary is entirely described by 6-coordinated channels whereas the other twin boundaries present more complex structural units.

See Computed Properties
Notes: This file was taken from the August 22, 2018 LAMMPS distribution.
File(s):
See Computed Properties
Notes: Listing found at https://openkim.org. This KIM potential corresponds to the GaN.sw distributed with the LAMMPS package, but the parameter file format is different.
Link(s):

2003--Nord-J-Albe-K-Erhart-P-Nordlund-K--Ga-N
J. Nord, K. Albe, P. Erhart, and K. Nordlund (2003), "Modelling of compound semiconductors: analytical bond-order potential for gallium, nitrogen and gallium nitride", Journal of Physics: Condensed Matter, 15(32), 5649-5662. DOI: 10.1088/0953-8984/15/32/324.
Abstract: An analytical bond-order potential for GaN is presented that describes a wide range of structural properties of GaN as well as bonding and structure of the pure constituents. For the systematic fit of the potential parameters reference data are taken from total-energy calculations within the density functional theory if not available from experiments. Although long-range interactions are not explicitly included in the potential, the present model provides a good fit to different structural geometries including defects and high-pressure phases of GaN.

LAMMPS pair_style tersoff (2003--Nord-J--Ga-N--LAMMPS--ipr1)
See Computed Properties
Notes: This file was created and verified by Lucas Hale. The parameter values are comparable to those in the GaN.tersoff file in the August 22, 2018 LAMMPS distribution with this file using higher precision for the derived parameters. The parameter values are identical to the ones in the parameter file used by openKIM model MO_612061685362_001.
File(s):
OpenKIM (MO_612061685362)
See Computed Properties
Notes: Listing found at https://openkim.org. This KIM potential is based on a parameter file with identical parameter values as 2003--Nord-J--Ga-N--LAMMPS--ipr1.
Link(s):

Ge

2017--Mahdizadeh-S-J-Akhlamadi-G--Ge
S.J. Mahdizadeh, and G. Akhlamadi (2017), "Optimized Tersoff empirical potential for germanene", Journal of Molecular Graphics and Modelling, 72, 1-5. DOI: 10.1016/j.jmgm.2016.11.009.
Abstract: In the current work, the issue of re-parameterization of Tersoff empirical potential model was addressed for 2D nanomaterial ‘germanene’ to be applied in molecular dynamics simulation based studies. The well-known chi-square minimization procedure was used to optimize the original Tersoff potential parameters. Many properties of germanene were extracted using both original and optimized Tersoff potentials and they compared with the corresponding density functional theory data. According to the results, the optimized Tersoff potential provides a significant improvement in many structural, thermodynamic, mechanical, and thermal properties of geramanene.

See Computed Properties
Notes: This file was taken from the August 22, 2018 LAMMPS distribution.
File(s):

Ge-Si

1989--Tersoff-J--Si-Ge
J. Tersoff (1989), "Modeling solid-state chemistry: Interatomic potentials for multicomponent systems", Physical Review B, 39(8), 5566-5568. DOI: 10.1103/physrevb.39.5566.
Abstract: A general form is proposed for an empirical interatomic potential for multicomponent systems. This form interpolates between potentials for the respective elements to treat heteronuclear bonds. The approach is applied to C-Si and Si-Ge systems. In particular, the properties of SiC and its defects are well described.
J. Tersoff (1990), "Erratum: Modeling solid-state chemistry: Interatomic potentials for multicomponent systems", Physical Review B, 41(5), 3248-3248. DOI: 10.1103/physrevb.41.3248.2.

Notes: This is Tersoff's original multicomponent potential for Si-Ge interactions.

LAMMPS pair_style tersoff (1989--Tersoff-J--Si-Ge--LAMMPS--ipr1)
See Computed Properties
Notes: This file was created and verified by Lucas Hale. The parameter values are comparable to the Si(D)-Ge interactions in SiCGe.tersoff file in the August 22, 2018 LAMMPS distribution, with this file having higher numerical precision for the derived mixing parameters.
File(s):
See Computed Properties
Notes: Listing found at https://openkim.org. This KIM potential is based on a parameter file with identical parameter values as 1989--Tersoff-J--Si-Ge--LAMMPS--ipr1.
Link(s):
J. Tersoff (1990), "Erratum: Modeling solid-state chemistry: Interatomic potentials for multicomponent systems", Physical Review B, 41(5), 3248-3248. DOI: 10.1103/physrevb.41.3248.2.

Notes: This is Tersoff's original multicomponent potential for Si-Ge interactions.

LAMMPS pair_style tersoff (1989--Tersoff-J--Si-Ge--LAMMPS--ipr1)
See Computed Properties
Notes: This file was created and verified by Lucas Hale. The parameter values are comparable to the Si(D)-Ge interactions in SiCGe.tersoff file in the August 22, 2018 LAMMPS distribution, with this file having higher numerical precision for the derived mixing parameters.
File(s):
OpenKIM (MO_350526375143)
See Computed Properties
Notes: Listing found at https://openkim.org. This KIM potential is based on a parameter file with identical parameter values as 1989--Tersoff-J--Si-Ge--LAMMPS--ipr1.
Link(s):

H-He-W

2014--Bonny-G-Grigorev-P-Terentyev-D--W-H-He-1
G. Bonny, P. Grigorev, and D. Terentyev (2014), "On the binding of nanometric hydrogen-helium clusters in tungsten", Journal of Physics: Condensed Matter, 26(48), 485001. DOI: 10.1088/0953-8984/26/48/485001.
Abstract: In this work we developed an embedded atom method potential for large scale atomistic simulations in the ternary tungsten–hydrogen–helium (W–H–He) system, focusing on applications in the fusion research domain. Following available ab initio data, the potential reproduces key interactions between H, He and point defects in W and utilizes the most recent potential for matrix W. The potential is applied to assess the thermal stability of various H–He complexes of sizes too large for ab initio techniques. The results show that the dissociation of H–He clusters stabilized by vacancies will occur primarily by emission of hydrogen atoms and then by break-up of V–He complexes, indicating that H–He interaction does influence the release of hydrogen.

Notes: This listing is for the reference's potential parameter set EAM1.

LAMMPS pair_style eam/alloy (2014--Bonny-G--W-H-He-1--LAMMPS--ipr1)
See Computed Properties
Notes: These files were sent by Giovanni Bonny (Nuclear Materials Science Institute of SCK-CEN, Belgium) on 18 Mar. 2016 and posted with his permission. Giovanni Bonny also noted that only W has electron density function and embedding function. The embedding contributions to the energy from H and He are zero.
File(s):
EAM tabulated functions (2014--Bonny-G--W-H-He-1--table--ipr1)
Notes: Same functions in separate EAM tables.
File(s):
See Computed Properties
Notes: Listing found at https://openkim.org. This KIM potential is based on the files from 2014--Bonny-G--W-H-He-1--LAMMPS--ipr1.
Link(s):

2014--Bonny-G-Grigorev-P-Terentyev-D--W-H-He-2
G. Bonny, P. Grigorev, and D. Terentyev (2014), "On the binding of nanometric hydrogen-helium clusters in tungsten", Journal of Physics: Condensed Matter, 26(48), 485001. DOI: 10.1088/0953-8984/26/48/485001.
Abstract: In this work we developed an embedded atom method potential for large scale atomistic simulations in the ternary tungsten–hydrogen–helium (W–H–He) system, focusing on applications in the fusion research domain. Following available ab initio data, the potential reproduces key interactions between H, He and point defects in W and utilizes the most recent potential for matrix W. The potential is applied to assess the thermal stability of various H–He complexes of sizes too large for ab initio techniques. The results show that the dissociation of H–He clusters stabilized by vacancies will occur primarily by emission of hydrogen atoms and then by break-up of V–He complexes, indicating that H–He interaction does influence the release of hydrogen.

Notes: This listing is for the reference's potential parameter set EAM2.

LAMMPS pair_style eam/alloy (2014--Bonny-G--W-H-He-2--LAMMPS--ipr1)
See Computed Properties
Notes: These files were sent by Giovanni Bonny (Nuclear Materials Science Institute of SCK-CEN, Belgium) on 18 Mar. 2016 and posted with his permission. Giovanni Bonny also noted that only W has electron density function. Both W and H have embedding functions that take the electron density from W as an argument. The embedding contributions to the energy from He are zero.
File(s):
EAM tabulated functions (2014--Bonny-G--W-H-He-2--table--ipr1)
Notes: Same functions in separate EAM tables.
File(s):
OpenKIM (MO_626183701337)
See Computed Properties
Notes: Listing found at https://openkim.org. This KIM potential is based on the files from 2014--Bonny-G--W-H-He-2--LAMMPS--ipr1.
Link(s):

H-Mg

2018--Smirnova-D-E-Starikov-S-V-Vlasova-A-M--Mg-H
D.E. Smirnova, S.V. Starikov, and A.M. Vlasova (2018), "New interatomic potential for simulation of pure magnesium and magnesium hydrides", Computational Materials Science, 154, 295-302. DOI: 10.1016/j.commatsci.2018.07.051.
Abstract: We develop an interatomic potential intended for the study of Mg-H system using atomistic methods. The reported potential has an angular-dependent form and can be used for simulation of pure magnesium, as well as for consideration of binary cases including Mg and H. Summary of the performed tests on elastic, thermophysical and diffusional properties proves that the potential has a wide range of applicability. For example, it can be used to model phase transitions existing in pure magnesium (liquid hcp and bcc hcp). We also show how the model represents energies of different point defects and stacking faults in Mg. The primary purpose of the potential is the simulation of hydrogen behavior in magnesium. Here we show examples of the hydrogen diffusion and clusterization in hcp magnesium. Also, it is shown that the proposed potential reproduces stable structures for some of the existing magnesium hydrides: α-MgH2 (P42/mnm) and γ-MgH2 (Pbcn).

See Computed Properties
Notes: These files were submitted by Sergei Starikov on July 28, 2018.
File(s):

H-Pd

2008--Zhou-X-W-Zimmerman-J-A-Wong-B-M-Hoyt-J-J--Pd-H
X.W. Zhou, J.A. Zimmerman, B.M. Wong, and J.J. Hoyt (2008), "An embedded-atom method interatomic potential for Pd-H alloys", Journal of Materials Research, 23(3), 704-718. DOI: 10.1557/jmr.2008.0090.
Abstract: Palladium hydrides have important applications. However, the complex Pd–H alloy system presents a formidable challenge to developing accurate computational models. In particular, the separation of a Pd–H system to dilute (α) and concentrated (β) phases is a central phenomenon, but the capability of interatomic potentials to display this phase miscibility gap has been lacking. We have extended an existing palladium embedded-atom method potential to construct a new Pd–H embedded-atom method potential by normalizing the elemental embedding energy and electron density functions. The developed Pd–H potential reasonably well predicts the lattice constants, cohesive energies, and elastic constants for palladium, hydrogen, and PdHx phases with a variety of compositions. It ensures the correct hydrogen interstitial sites within the hydrides and predicts the phase miscibility gap. Preliminary molecular dynamics simulations using this potential show the correct phase stability, hydrogen diffusion mechanism, and mechanical response of the Pd–H system.

LAMMPS pair_style eam/alloy (2008--Zhou-X-W--Pd-H--LAMMPS--ipr1)
See Computed Properties
Notes: This file was supplied by Xiaowang Zhou and Jonathan Zimmerman (Sandia National Laboratories) and posted with their approval on 24 March 2011.
File(s):
See Computed Properties
Notes: Listing found at https://openkim.org. This KIM potential is based on the files from 2008--Zhou-X-W--Pd-H--LAMMPS--ipr1.
Link(s):

In-P

2009--Branicio-P-S-Rino-J-P-Gan-C-K-Tsuzuki-H--In-P
P.S. Branicio, J.P. Rino, C.K. Gan, and H. Tsuzuki (2009), "Interaction potential for indium phosphide: a molecular dynamics and first-principles study of the elastic constants, generalized stacking fault and surface energies", Journal of Physics: Condensed Matter, 21(9), 095002. DOI: 10.1088/0953-8984/21/9/095002.
Abstract: Indium phosphide is investigated using molecular dynamics (MD) simulations and density-functional theory calculations. MD simulations use a proposed effective interaction potential for InP fitted to a selected experimental dataset of properties. The potential consists of two- and three-body terms that represent atomic-size effects, charge–charge, charge–dipole and dipole–dipole interactions as well as covalent bond bending and stretching. Predictions are made for the elastic constants as a function of density and temperature, the generalized stacking fault energy and the low-index surface energies.

LAMMPS pair_style vashishta (2009--Branicio-P-S--In-P--LAMMPS--ipr1)
See Computed Properties
Notes: This file was taken from the August 22, 2018 LAMMPS distribution.
File(s):

K

2016--Nichol-A-Ackland-G-J--K
A. Nichol, and G.J. Ackland (2016), "Property trends in simple metals: An empirical potential approach", Physical Review B, 93(18), 184101. DOI: 10.1103/physrevb.93.184101.
Abstract: We demonstrate that the melting points and other thermodynamic quantities of the alkali metals can be calculated based on static crystalline properties. To do this we derive analytic interatomic potentials for the alkali metals fitted precisely to cohesive and vacancy energies, elastic moduli, the lattice parameter, and crystal stability. These potentials are then used to calculate melting points by simulating the equilibration of solid and liquid samples in thermal contact at ambient pressure. With the exception of lithium, remarkably good agreement is found with experimental values. The instability of the bcc structure in Li and Na at low temperatures is also reproduced and, unusually, is not due to a soft T1N phonon mode. No forces or finite-temperature properties are included in the fit, so this demonstrates a surprisingly high level of intrinsic transferability in the simple potentials. Currently, there are few potentials available for the alkali metals, so in addition to demonstrating trends in behavior, we expect that the potentials will be of broad general use.

Notes: G.J. Ackland noted that lattice parameters, elastic constants and cohesive energies were used in the fitting process, so the values produced by this conversion should match known values. He noted that bcc crystal structure should be stable and produce a melting temperature of 336 K. Publication information was updated on 12 Oct. 2017. Prior publication listing for this potential was Han, S., Zepeda-Ruiz, L. A., Ackland, G. J., Car, R., and Srolovitz, D. J. (2003). Interatomic potential for vanadium suitable for radiation damage simulations. Journal of Applied Physics, 93(6), 3328. DOI: 10.1063/1.1555275

Moldy FS (2016--Nichol-A--K--MOLDY--ipr1)
Notes: The parameters in K.moldy were obtained from http://homepages.ed.ac.uk/graeme/moldy/moldy.html and posted with the permission of G.J. Ackland.
File(s):
LAMMPS pair_style eam/fs (2016--Nichol-A--K--LAMMPS--ipr1)
See Computed Properties
Notes: This conversion was performed by G.J. Ackland and submitted on 8 Dec. 2015.
File(s): superseded


LAMMPS pair_style eam/fs (2016--Nichol-A--K--LAMMPS--ipr2)
See Computed Properties
Notes: A new conversion to LAMMPS performed by G.J. Ackland was submitted on 10 Oct. 2017. The previous setfl version above had a spurious oscillation period in the tabulated r*phi function that influenced measurements, most notably static elastic constant evaluations.
File(s):

Li

2016--Nichol-A-Ackland-G-J--Li
A. Nichol, and G.J. Ackland (2016), "Property trends in simple metals: An empirical potential approach", Physical Review B, 93(18), 184101. DOI: 10.1103/physrevb.93.184101.
Abstract: We demonstrate that the melting points and other thermodynamic quantities of the alkali metals can be calculated based on static crystalline properties. To do this we derive analytic interatomic potentials for the alkali metals fitted precisely to cohesive and vacancy energies, elastic moduli, the lattice parameter, and crystal stability. These potentials are then used to calculate melting points by simulating the equilibration of solid and liquid samples in thermal contact at ambient pressure. With the exception of lithium, remarkably good agreement is found with experimental values. The instability of the bcc structure in Li and Na at low temperatures is also reproduced and, unusually, is not due to a soft T1N phonon mode. No forces or finite-temperature properties are included in the fit, so this demonstrates a surprisingly high level of intrinsic transferability in the simple potentials. Currently, there are few potentials available for the alkali metals, so in addition to demonstrating trends in behavior, we expect that the potentials will be of broad general use.

Notes: G.J. Ackland noted that lattice parameters, elastic constants and cohesive energies were used in the fitting process, so the values produced by this conversion should match known values. He noted that bcc crystal structure should be stable and produce a melting temperature of 551 K. Publication information was updated on 12 Oct. 2017. Prior publication listing for this potential was Han, S., Zepeda-Ruiz, L. A., Ackland, G. J., Car, R., and Srolovitz, D. J. (2003). Interatomic potential for vanadium suitable for radiation damage simulations. Journal of Applied Physics, 93(6), 3328. DOI: 10.1063/1.1555275

Moldy FS (2016--Nichol-A--Li--MOLDY--ipr1)
Notes: The parameters in Li.moldy were obtained from http://homepages.ed.ac.uk/graeme/moldy/moldy.html and posted with the permission of G.J. Ackland.
File(s):
LAMMPS pair_style eam/fs (2016--Nichol-A--Li--LAMMPS--ipr1)
See Computed Properties
Notes: This conversion was performed by G.J. Ackland and submitted on 8 Dec. 2015.
File(s): superseded


LAMMPS pair_style eam/fs (2016--Nichol-A--Li--LAMMPS--ipr2)
See Computed Properties
Notes: A new conversion to LAMMPS performed by G.J. Ackland was submitted on 10 Oct. 2017. The previous setfl version above had a spurious oscillation period in the tabulated r*phi function that influenced measurements, most notably static elastic constant evaluations.
File(s):

Li-S

2015--Islam-M-M-Ostadhossein-A-Borodin-O-et-al--Li-S
M.M. Islam, A. Ostadhossein, O. Borodin, A. Todd Yeates, W.W. Tipton, R.G. Hennig, N. Kumar, and A.C.T. van Duin (2015), "ReaxFF molecular dynamics simulations on lithiated sulfur cathode materials", Physical Chemistry Chemical Physics, 17(5), 3383-3393. DOI: 10.1039/c4cp04532g.
Abstract: Sulfur is a very promising cathode material for rechargeable energy storage devices. However, sulfur cathodes undergo a noticeable volume variation upon cycling, which induces mechanical stress. In spite of intensive investigation of the electrochemical behavior of the lithiated sulfur compounds, their mechanical properties are not very well understood. In order to fill this gap, we developed a ReaxFF interatomic potential to describe Li–S interactions and performed molecular dynamics (MD) simulations to study the structural, mechanical, and kinetic behavior of the amorphous lithiated sulfur (a-LixS) compounds. We examined the effect of lithiation on material properties such as ultimate strength, yield strength, and Young's modulus. Our results suggest that with increasing lithium content, the strength of lithiated sulfur compounds improves, although this increment is not linear with lithiation. The diffusion coefficients of both lithium and sulfur were computed for the a-LixS system at various stages of Li-loading. A grand canonical Monte Carlo (GCMC) scheme was used to calculate the open circuit voltage profile during cell discharge. The Li–S binary phase diagram was constructed using genetic algorithm based tools. Overall, these simulation results provide insight into the behavior of sulfur based cathode materials that are needed for developing lithium–sulfur batteries.

See Computed Properties
Notes: This file was sent by Dr. Md Mahbubul Islam (Purdue University) on 2 August 2017 and posted with his permission.
File(s):

MOx

2011--Tiwary-P-Walle-A-Jeon-B-Gronbech-Jensen-N--MOx
P. Tiwary, A. Walle, B. Jeon, and N. Grønbech-Jensen (2011), "Interatomic potentials for mixed oxide and advanced nuclear fuels", Physical Review B, 83(9), 094104. DOI: 10.1103/physrevb.83.094104.
Abstract: We extend our recently developed interatomic potentials for UO2 to the fuel system (U,Pu,Np)O2. We do so by fitting against an extensive database of ab initio results as well as to experimental measurements. The applicability of these interactions to a variety of mixed environments beyond the fitting domain is also assessed. The employed formalism makes these potentials applicable across all interatomic distances without the need for any ambiguous splining to the well-established short-range Ziegler-Biersack-Littmark universal pair potential. We therefore expect these to be reliable potentials for carrying out damage simulations (and molecular dynamics simulations in general) in nuclear fuels of varying compositions for all relevant atomic collision energies.
P. Tiwary, A. van de Walle, and N. Grønbech-Jensen (2009), "Ab initio construction of interatomic potentials for uranium dioxide across all interatomic distances", Physical Review B, 80(17), 174302. DOI: 10.1103/physrevb.80.174302.
Abstract: We provide a methodology for generating interatomic potentials for use in classical molecular-dynamics simulations of atomistic phenomena occurring at energy scales ranging from lattice vibrations to crystal defects to high-energy collisions. A rigorous method to objectively determine the shape of an interatomic potential over all length scales is introduced by building upon a charged-ion generalization of the well-known Ziegler-Biersack-Littmark universal potential that provides the short- and long-range limiting behavior of the potential. At intermediate ranges the potential is smoothly adjusted by fitting to ab initio data. Our formalism provides a complete description of the interatomic potentials that can be used at any energy scale, and thus, eliminates the inherent ambiguity of splining different potentials generated to study different kinds of atomic-materials behavior. We exemplify the method by developing rigid-ion potentials for uranium dioxide interactions under conditions ranging from thermodynamic equilibrium to very high atomic-energy collisions relevant for fission events.

GULP (2011--Tiwary-P--MOx--GULP--ipr1)
Notes: These files were posted on 17 June 2011 with the approval of Pratyush Tiwary and Axel van de Walle (California Institute of Technology). 30 Jan. 2012 Update: These files are identified as having problems with thermal expansion in UO2 and are superseded by the next GULP implementation below.
File(s): superseded


GULP (2011--Tiwary-P--MOx--GULP--ipr2)
Notes: 30 Jan. 2012 Update: These files (version 2.0) were provided by Pratyush Tiwary (California Institute of Technology) and posted with his permission. According to him, this version corrects the "U-U interaction term (truncated at 4 Angstroms) to resolve problems with thermal expansion in UO2." Additional information is located in readme_v2.txt
File(s):
P. Tiwary, A. van de Walle, and N. Grønbech-Jensen (2009), "Ab initio construction of interatomic potentials for uranium dioxide across all interatomic distances", Physical Review B, 80(17), 174302. DOI: 10.1103/physrevb.80.174302.
Abstract: We provide a methodology for generating interatomic potentials for use in classical molecular-dynamics simulations of atomistic phenomena occurring at energy scales ranging from lattice vibrations to crystal defects to high-energy collisions. A rigorous method to objectively determine the shape of an interatomic potential over all length scales is introduced by building upon a charged-ion generalization of the well-known Ziegler-Biersack-Littmark universal potential that provides the short- and long-range limiting behavior of the potential. At intermediate ranges the potential is smoothly adjusted by fitting to ab initio data. Our formalism provides a complete description of the interatomic potentials that can be used at any energy scale, and thus, eliminates the inherent ambiguity of splining different potentials generated to study different kinds of atomic-materials behavior. We exemplify the method by developing rigid-ion potentials for uranium dioxide interactions under conditions ranging from thermodynamic equilibrium to very high atomic-energy collisions relevant for fission events.

GULP (2011--Tiwary-P--MOx--GULP--ipr1)
Notes: These files were posted on 17 June 2011 with the approval of Pratyush Tiwary and Axel van de Walle (California Institute of Technology). 30 Jan. 2012 Update: These files are identified as having problems with thermal expansion in UO2 and are superseded by the next GULP implementation below.
File(s): superseded


GULP (2011--Tiwary-P--MOx--GULP--ipr2)
Notes: 30 Jan. 2012 Update: These files (version 2.0) were provided by Pratyush Tiwary (California Institute of Technology) and posted with his permission. According to him, this version corrects the "U-U interaction term (truncated at 4 Angstroms) to resolve problems with thermal expansion in UO2." Additional information is located in readme_v2.txt
File(s):

Mg

2016--Wilson-S-R-Mendelev-M-I--Mg
S.R. Wilson, and M.I. Mendelev (2016), "A unified relation for the solid-liquid interface free energy of pure FCC, BCC, and HCP metals", The Journal of Chemical Physics, 144(14), 144707. DOI: 10.1063/1.4946032.
Abstract: We study correlations between the solid-liquid interface (SLI) free energy and bulk material properties (melting temperature, latent heat, and liquid structure) through the determination of SLI free energies for bcc and hcp metals from molecular dynamics (MD) simulation. Values obtained for the bcc metals in this study were compared to values predicted by the Turnbull, Laird, and Ewing relations on the basis of previously published MD simulation data. We found that of these three empirical relations, the Ewing relation better describes the MD simulation data. Moreover, whereas the original Ewing relation contains two constants for a particular crystal structure, we found that the first coefficient in the Ewing relation does not depend on crystal structure, taking a common value for all three phases, at least for the class of the systems described by embedded-atom method potentials (which are considered to provide a reasonable approximation for metals).

Notes: This potential is a variant of D.Y. Sun, M.I. Mendelev, C.A. Becker, K. Kudin, T. Haxhimali, M. Asta, J.J. Hoyt, A. Karma, and D.J. Srolovitz, "Crystal-melt interfacial free energies in hcp metals: A molecular dynamics study of Mg," Phys. Rev. B, 73, 024116 (2006), except that the free surface energy was increased (it was too small in the original potential which led to spontaneous cavitation in molecular dynamics simulations of the liquid phase). The reference was updated on 12 Mar. 2018.

LAMMPS pair_style eam/fs (2016--Wilson-S-R--Mg--LAMMPS--ipr1)
See Computed Properties
Notes: These files were sent by M.I. Mendelev (Ames Laboratory) on 7 Dec. 2015 and posted with his permission. Update 19 July 2021: The contact email in the file's header has been changed.
File(s):
See Computed Properties
Notes: Listing found at https://openkim.org. This KIM potential is based on the files from 2016--Wilson-S-R--Mg--LAMMPS--ipr1.
Link(s):

2006--Sun-D-Y-Mendelev-M-I-Becker-C-A-et-al--Mg
D.Y. Sun, M.I. Mendelev, C.A. Becker, K. Kudin, T. Haxhimali, M. Asta, J.J. Hoyt, A. Karma, and D.J. Srolovitz (2006), "Crystal-melt interfacial free energies in hcp metals: A molecular dynamics study of Mg", Physical Review B, 73(2), 024116. DOI: 10.1103/physrevb.73.024116.
Abstract: Crystal-melt interfacial free energies (γ) are computed for hcp Mg by employing equilibrium molecular-dynamics (MD) simulations and the capillary-fluctuation method (CFM). This work makes use of a newly developed embedded-atom-method (EAM) interatomic potential for Mg fit to crystal, liquid, and melting properties. We describe how the CFM, which has previously been applied to cubic systems only, can be generalized for studies of hcp metals by employing a parametrization for the orientation dependence of γ in terms of hexagonal harmonics. The method is applied in the calculation of the Turnbull coefficient (α) and crystalline anisotropies of γ. We obtain a value of α=0.48, with interfacial free energies for different high-symmetry orientations differing by approximately 1%. These results are compared to those obtained in previous MD-CFM studies for cubic EAM metals as well as experimental studies of solid-liquid interfaces in hcp alloys. In addition, the implications of our results for the prediction of dendrite growth directions in hcp metals are discussed.

LAMMPS pair_style eam/fs (2006--Sun-D-Y--Mg--LAMMPS--ipr1)
See Computed Properties
Notes: This file was provided by Mikhail Mendelev. Except for comments, this file is identical to "Mg_mm.eam.fs" in the August 22, 2018 LAMMPS distribution. Update 19 July 2021: The contact email in the file's header has been changed.
File(s):
OpenKIM (MO_848345414202)
See Computed Properties
Notes: Listing found at https://openkim.org. This KIM potential is based on the files from 2006--Sun-D-Y--Mg--LAMMPS--ipr1.
Link(s):

2004--Zhou-X-W-Johnson-R-A-Wadley-H-N-G--Mg
X.W. Zhou, R.A. Johnson, and H.N.G. Wadley (2004), "Misfit-energy-increasing dislocations in vapor-deposited CoFe/NiFe multilayers", Physical Review B, 69(14), 144113. DOI: 10.1103/physrevb.69.144113.
Abstract: Recent molecular dynamics simulations of the growth of [Ni0.8Fe0.2/Au] multilayers have revealed the formation of misfit-strain-reducing dislocation structures very similar to those observed experimentally. Here we report similar simulations showing the formation of edge dislocations near the interfaces of vapor-deposited (111) [NiFe/CoFe/Cu] multilayers. Unlike misfit dislocations that accommodate lattice mismatch, the dislocation structures observed here increase the mismatch strain energy. Stop-action observations of the dynamically evolving atomic structures indicate that during deposition on the (111) surface of a fcc lattice, adatoms may occupy either fcc sites or hcp sites. This results in the random formation of fcc and hcp domains, with dislocations at the domain boundaries. These dislocations enable atoms to undergo a shift from fcc to hcp sites, or vice versa. These shifts lead to missing atoms, and therefore a later deposited layer can have missing planes compared to a previously deposited layer. This dislocation formation mechanism can create tensile stress in fcc films. The probability that such dislocations are formed was found to quickly diminish under energetic deposition conditions.

FORTRAN (2004--Zhou-X-W--Mg--FORTRAN--ipr1)
Notes: These are the original files sent by X.W. Zhou (Sandia National Laboratory) and posted with his permission. C.A. Becker (NIST) modified create.f to include the reference in the generated potential files and the EAM.input file for this composition. These files can be used to generate alloy potentials for Cu, Ag, Au, Ni, Pd, Pt, Al, Pb, Fe, Mo, Ta, W, Mg, Co, Ti, and Zr by editing EAM.input. However, as addressed in the reference, these potentials were not designed for use with metal compounds.
File(s): superseded


LAMMPS pair_style eam/alloy (2004--Zhou-X-W--Mg--LAMMPS--ipr1)
See Computed Properties
Notes: This file was generated by C.A. Becker (NIST) from create.f and posted with X.W. Zhou's (Sandia National Laboratory) permission.
File(s): superseded


FORTRAN (2004--Zhou-X-W--Mg--FORTRAN--ipr2)
Notes: The file Zhou04_create_v2.f is an updated version of create.f modified by L.M. Hale (NIST) following advice from X.W. Zhou (Sandia National Laboratory). This version removes spurious fluctuations in the tabulated functions of the original potential files caused by single/double precision floating point number conflicts.
File(s):
README_v2
Zhou04_create_v2.f
EAM.input.Mg
EAM_code

LAMMPS pair_style eam/alloy (2004--Zhou-X-W--Mg--LAMMPS--ipr2)
See Computed Properties
Notes: This file was generated by L.M. Hale from Zhou04_create_v2.f on 13 April 2018 and posted with X.W. Zhou's (Sandia National Laboratory) permission. This version corrects an issue with spurious fluctuations in the tabulated functions.
File(s):
Mg_Zhou04.eam.alloy

OpenKIM (MO_137404467969)
See Computed Properties
Notes: Listing found at https://openkim.org. This KIM potential is based on the files from 2004--Zhou-X-W--Mg--LAMMPS--ipr1.
Link(s):
KIM page EAM_Dynamo_ZhouJohnsonWadley_2004_Mg__MO_137404467969_005

OpenKIM (MO_894868634445)
See Computed Properties
Notes: Listing found at https://openkim.org. This KIM potential is based on the files from 2004--Zhou-X-W--Mg--LAMMPS--ipr2.
Link(s):
KIM page EAM_Dynamo_ZhouJohnsonWadley_2004NISTretabulation_Mg__MO_894868634445_000


Mo

2012--Park-H-Fellinger-M-R-Lenosky-T-J-et-al--Mo
H. Park, M.R. Fellinger, T.J. Lenosky, W.W. Tipton, D.R. Trinkle, S.P. Rudin, C. Woodward, J.W. Wilkins, and R.G. Hennig (2012), "Ab initio based empirical potential used to study the mechanical properties of molybdenum", Physical Review B, 85(21), 214121. DOI: 10.1103/physrevb.85.214121.
Abstract: Density-functional theory energies, forces, and elastic constants determine the parametrization of an empirical, modified embedded-atom method potential for molybdenum. The accuracy and transferability of the potential are verified by comparison to experimental and density-functional data for point defects, phonons, thermal expansion, surface and stacking fault energies, and ideal shear strength. Searching the energy landscape predicted by the potential using a genetic algorithm verifies that it reproduces not only the correct bcc ground state of molybdenum but also all low-energy metastable phases. The potential is also applicable to the study of plastic deformation and used to compute energies, core structures, and Peierls stresses of screw and edge dislocations.

LAMMPS pair_style meam/spline (2012--Park-H--Mo--LAMMPS--ipr1)
See Computed Properties
Notes: These files were contributed by Dr. Michael Fellinger (The Ohio State Univ.) and posted with his permission. The file Park_Mo_2012_bcc.in contains a simple script to demonstrate the use of this interatomic potential with LAMMPS. It was tested on the 1Feb2014 version of LAMMPS with USER-MISC enabled.
File(s):

2004--Zhou-X-W-Johnson-R-A-Wadley-H-N-G--Mo
X.W. Zhou, R.A. Johnson, and H.N.G. Wadley (2004), "Misfit-energy-increasing dislocations in vapor-deposited CoFe/NiFe multilayers", Physical Review B, 69(14), 144113. DOI: 10.1103/physrevb.69.144113.
Abstract: Recent molecular dynamics simulations of the growth of [Ni0.8Fe0.2/Au] multilayers have revealed the formation of misfit-strain-reducing dislocation structures very similar to those observed experimentally. Here we report similar simulations showing the formation of edge dislocations near the interfaces of vapor-deposited (111) [NiFe/CoFe/Cu] multilayers. Unlike misfit dislocations that accommodate lattice mismatch, the dislocation structures observed here increase the mismatch strain energy. Stop-action observations of the dynamically evolving atomic structures indicate that during deposition on the (111) surface of a fcc lattice, adatoms may occupy either fcc sites or hcp sites. This results in the random formation of fcc and hcp domains, with dislocations at the domain boundaries. These dislocations enable atoms to undergo a shift from fcc to hcp sites, or vice versa. These shifts lead to missing atoms, and therefore a later deposited layer can have missing planes compared to a previously deposited layer. This dislocation formation mechanism can create tensile stress in fcc films. The probability that such dislocations are formed was found to quickly diminish under energetic deposition conditions.

FORTRAN (2004--Zhou-X-W--Mo--FORTRAN--ipr1)
Notes: These are the original files sent by X.W. Zhou (Sandia National Laboratory) and posted with his permission. C.A. Becker (NIST) modified create.f to include the reference in the generated potential files and the EAM.input file for this composition. These files can be used to generate alloy potentials for Cu, Ag, Au, Ni, Pd, Pt, Al, Pb, Fe, Mo, Ta, W, Mg, Co, Ti, and Zr by editing EAM.input. However, as addressed in the reference, these potentials were not designed for use with metal compounds.
File(s): superseded


LAMMPS pair_style eam/alloy (2004--Zhou-X-W--Mo--LAMMPS--ipr1)
See Computed Properties
Notes: This file was generated by C.A. Becker (NIST) from create.f and posted with X.W. Zhou's (Sandia National Laboratory) permission.
File(s): superseded


FORTRAN (2004--Zhou-X-W--Mo--FORTRAN--ipr2)
Notes: The file Zhou04_create_v2.f is an updated version of create.f modified by L.M. Hale (NIST) following advice from X.W. Zhou (Sandia National Laboratory). This version removes spurious fluctuations in the tabulated functions of the original potential files caused by single/double precision floating point number conflicts.
File(s):
LAMMPS pair_style eam/alloy (2004--Zhou-X-W--Mo--LAMMPS--ipr2)
See Computed Properties
Notes: This file was generated by L.M. Hale from Zhou04_create_v2.f on 13 April 2018 and posted with X.W. Zhou's (Sandia National Laboratory) permission. This version corrects an issue with spurious fluctuations in the tabulated functions.
File(s):
OpenKIM (MO_271256517527)
See Computed Properties
Notes: Listing found at https://openkim.org. This KIM potential is based on the files from 2004--Zhou-X-W--Mo--LAMMPS--ipr1.
Link(s):
OpenKIM (MO_230319944007)
See Computed Properties
Notes: Listing found at https://openkim.org. This KIM potential is based on the files from 2004--Zhou-X-W--Mo--LAMMPS--ipr2.
Link(s):

2003--Han-S-Zepeda-Ruiz-L-A-Ackland-G-J-et-al--Mo
S. Han, L.A. Zepeda-Ruiz, G.J. Ackland, R. Car, and D.J. Srolovitz (2003), "Interatomic potential for vanadium suitable for radiation damage simulations", Journal of Applied Physics, 93(6), 3328-3335. DOI: 10.1063/1.1555275.
Abstract: The ability to predict the behavior of point defects in metals, particularly interstitial defects, is central to accurate modeling of the microstructural evolution in environments with high radiation fluxes. Existing interatomic potentials of embedded atom method type predict disparate stable interstitial defect configurations in vanadium. This is not surprising since accurate first-principles interstitial data were not available when these potentials were fitted. In order to provide the input information required to fit a vanadium potential appropriate for radiation damage studies, we perform a series of first-principles calculations on six different interstitial geometries and vacancies. These calculations identify the 〈111〉 dumbbell as the most stable interstitial with a formation energy of approximately 3.1 eV, at variance with predictions based upon existing potentials. Our potential is of Finnis–Sinclair type and is fitted exactly to the experimental equilibrium lattice parameter, cohesive energy, elastic constants and a calculated unrelaxed vacancy formation energy. Two additional potential parameters were used to obtain the best fit to the set of interstitial formation energies determined from the first-principles calculations. The resulting potential was found to accurately predict both the magnitude and ordering of the formation energies of six interstitial configurations and the unrelaxed vacancy ground state, in addition to accurately describing the migration characteristics of the stable interstitial and vacancy. This vanadium potential is capable of describing the point defect properties appropriate for radiation damage simulations as well as for simulations of more common crystal and simple defect properties.

Moldy FS (2003--Han-S--Mo--MOLDY--ipr1)
Notes: The parameters in Mo.moldy were obtained from http://homepages.ed.ac.uk/graeme/moldy/moldy.html and posted with the permission of G.J. Ackland.
File(s):
Mo.moldy


1987--Ackland-G-J-Thetford-R--Mo
G.J. Ackland, and R. Thetford (1987), "An improved N-body semi-empirical model for body-centred cubic transition metals", Philosophical Magazine A, 56(1), 15-30. DOI: 10.1080/01418618708204464.
Abstract: The recently published semi-empirical potentials of Finnis and Sinclair for the metals V, Nb, Ta, Mo and W appear to give unphysical results for properties involving small interatomic separation. This is remedied by adding to the potentials cores fitted to electron gas calculations on dimers. The adjusted potentials are shown to predict a more realistic pressure-volume relationship. Interstitial formation energies are calculated for various configurations, using quenched molecular dynamics and static relaxation. Some preliminary results on interstitial migration are presented.

Equations (1987--Ackland-G-J--Mo--parameters--ipr1)
Notes: The file AckThet.pdf was obtained from http://homepages.ed.ac.uk/graeme/moldy/moldy.html and posted with the permission of G.J. Ackland.
File(s):
AckThet.pdf

LAMMPS pair_style eam/fs (1987--Ackland-G-J--Mo--LAMMPS--ipr1)
See Computed Properties
Notes: This implementation has been retracted as it was identified as having an incorrect functional form. It is made available solely for archival purposes.
File(s): retracted


LAMMPS pair_style eam/alloy (1987--Ackland-G-J--Mo--LAMMPS--ipr2)
See Computed Properties
Notes: This file was provided by Sergei Starikov (Ruhr-Universität Bochum, Germany) on 5 May 2019. It has been carefully tested and gives the expected property predictions. Update March 15, 2020: This version was identified to not be compatible with LAMMPS versions after 7 Aug 2019 due to more rigorous format checks.
File(s): superseded


LAMMPS pair_style eam/alloy (1987--Ackland-G-J--Mo--LAMMPS--ipr3)
See Computed Properties
Notes: This file was created by Lucas Hale and posted on 15 March 2020. It is a modification of the parameter file in the above version to be compatible with LAMMPS versions after 7 Aug 2019. It contains the same parameter tables and should behave identically to the last version, and work with any version of LAMMPS.
File(s):
mo.fs.eam.alloy


Mo-U

2018--Starikov-S-V-Kolotova-L-N-Kuksin-A-Y-et-al--U-Mo
S.V. Starikov, L.N. Kolotova, A.Y. Kuksin, D.E. Smirnova, and V.I. Tseplyaev (2018), "Atomistic simulation of cubic and tetragonal phases of U-Mo alloy: Structure and thermodynamic properties", Journal of Nuclear Materials, 499, 451-463. DOI: 10.1016/j.jnucmat.2017.11.047.
Abstract: We studied structure and thermodynamic properties of cubic and tetragonal phases of pure uranium and U-Mo alloys using atomistic simulations: molecular dynamics and density functional theory. The main attention was paid to the metastable γ0-phase that is formed in U-Mo alloys at low temperature. Structure of γ0-phase is similar to body-centered tetragonal (bct) lattice with displacement of a central atom in the basic cell along [001] direction. Such displacements have opposite orientations for part of the neighbouring basic cells. In this case, such ordering of the displacements can be designated as antiferro-displacement. Formation of such complex structure may be interpreted through forming of short U-U bonds. At heating, the tetragonal structure transforms into cubic γs-phase, still showing ordering of central atom displacements. With rise in temperature, γs-phase transforms to γ-phase with a quasi body-centered cubic (q-bcc) lattice. The local positions of uranium atoms in γ-phase correspond to γs-phase, however, orientations of the central atom displacements become disordered. Transition from γ0 to γ can be considered as antiferro-to paraelastic transition of order-disorder type. \n\nThis approach to the structure description of uranium alloy allows to explain a number of unusual features found in the experiments: anisotropy of lattice at low temperature; remarkably high self-diffusion mobility in γ-phase; decreasing of electrical resistivity at heating for some alloys. In addition, important part of this work is the development of new interatomic potential for U-Mo system made with taking into account details of studied structures.

See Computed Properties
Notes: These files were sent by S.V. Starikov (Joint Institute for High Temperatures, Russian Academy of Sciences) on 3 Dec. 2017 and posted with his permission.
File(s): superseded


See Computed Properties
Notes: This file was recieved by Sergei Starikov on August 2, 2018. He noted: "In the previous version, one function for Mo-Mo interaction had poor smoothing with r=r_cut. This "bug" led to the sake of the energy conservation during high-temperature (or long) calculations for pure Mo or U-Mo alloy. I made an additional check and found a small potential compilation issue leading to this energy drift. I fixed the file, so now it can be safely used with the time-step = 0.5 fs, even for long runs at high temperatures (the test was made for 1500K)."
File(s):

Mo-U-Xe

2013--Smirnova-D-E-Kuksin-A-Y-Starikov-S-V-et-al--U-Mo-Xe
D.E. Smirnova, A.Y. Kuksin, S.V. Starikov, V.V. Stegailov, Z. Insepov, J. Rest, and A.M. Yacout (2013), "A ternary EAM interatomic potential for U-Mo alloys with xenon", Modelling and Simulation in Materials Science and Engineering, 21(3), 035011. DOI: 10.1088/0965-0393/21/3/035011.
Abstract: A new interatomic potential for a uranium–molybdenum system with xenon is developed in the framework of an embedded atom model using a force-matching technique and a dataset of ab initio atomic forces. The verification of the potential proves that it is suitable for the investigation of various compounds existing in the system as well as for simulation of pure elements: U, Mo and Xe. Computed lattice constants, thermal expansion coefficients, elastic properties and melting temperatures of U, Mo and Xe are consistent with the experimentally measured values. The energies of the point defect formation in pure U and Mo are proved to be comparable to the density-functional theory calculations. We compare this new U–Mo–Xe potential with the previously developed U and Mo–Xe potentials. A comparative study between the different potential functions is provided. The key purpose of the new model is to study the atomistic processes of defect evolution taking place in the U–Mo nuclear fuel. Here we use the potential to simulate bcc alloys containing 10 wt% of intermetallic Mo and U2Mo.

See Computed Properties
Notes: This file was sent by Daria Smirnova (Joint Institute for High Temperatures, Russian Academy of Sciences) and posted on 14 March 2013 with her permission. Update March 15, 2020: This version was identified to not be compatible with LAMMPS versions after 7 Aug 2019 due to more rigorous format checks.
File(s): superseded


LAMMPS pair_style hybrid/overlay eam/alloy eam/fs (2013--Smirnova-D-E--U-Mo-Xe--LAMMPS--ipr2)
See Computed Properties
Notes: This corrected file was posted on March 15, 2020. In particular, a single 0.0 value was added to the end to make it compatible with versions of LAMMPS after 7 Aug 2019.
File(s):
See Computed Properties
Notes: Listing found at https://openkim.org. This KIM potential is based on the files from 2013--Smirnova-D-E--U-Mo-Xe--LAMMPS--ipr1.
Link(s):

N-U

2016--Tseplyaev-V-I-Starikov-S-V--U-N
V.I. Tseplyaev, and S.V. Starikov (2016), "The atomistic simulation of pressure-induced phase transition in uranium mononitride", Journal of Nuclear Materials, 480, 7-14. DOI: 10.1016/j.jnucmat.2016.07.048.
Abstract: In this work we studied the pressure-induced phase transition between different structures of uranium mononitride: cubic Fm-3m-structure and rhombohedral R-3m-structure. We used molecular dynamics together with a new interatomic potential developed for this purpose. We estimated phase diagram of uranium mononitrde in a wide range of temperature and pressure using thermodynamic and mechanical criteria of stability. From simulations we see that at zero temperature the phase transition Fm-3m -> R-3m takes place at pressure about 35 GPa, which agrees well with the available experimental and theoretical data. Results of the calculations show that the lattice of rhombohedral phase becomes close to cubic structure with increase in temperature.

See Computed Properties
Notes: These files were sent by S.V. Starikov (Joint Institute for High Temperatures, Russian Academy of Sciences) on 3 Nov. 2016 and posted with his permission.
File(s):

Na

2016--Nichol-A-Ackland-G-J--Na
A. Nichol, and G.J. Ackland (2016), "Property trends in simple metals: An empirical potential approach", Physical Review B, 93(18), 184101. DOI: 10.1103/physrevb.93.184101.
Abstract: We demonstrate that the melting points and other thermodynamic quantities of the alkali metals can be calculated based on static crystalline properties. To do this we derive analytic interatomic potentials for the alkali metals fitted precisely to cohesive and vacancy energies, elastic moduli, the lattice parameter, and crystal stability. These potentials are then used to calculate melting points by simulating the equilibration of solid and liquid samples in thermal contact at ambient pressure. With the exception of lithium, remarkably good agreement is found with experimental values. The instability of the bcc structure in Li and Na at low temperatures is also reproduced and, unusually, is not due to a soft T1N phonon mode. No forces or finite-temperature properties are included in the fit, so this demonstrates a surprisingly high level of intrinsic transferability in the simple potentials. Currently, there are few potentials available for the alkali metals, so in addition to demonstrating trends in behavior, we expect that the potentials will be of broad general use.

Notes: G.J. Ackland noted that lattice parameters, elastic constants and cohesive energies were used in the fitting process, so the values produced by this conversion should match known values. He noted that bcc crystal structure should be stable and produce a melting temperature of 370 K. Publication information was updated on 12 Oct. 2017. Prior publication listing for this potential was Han, S., Zepeda-Ruiz, L. A., Ackland, G. J., Car, R., and Srolovitz, D. J. (2003). Interatomic potential for vanadium suitable for radiation damage simulations. Journal of Applied Physics, 93(6), 3328. DOI: 10.1063/1.1555275

Moldy FS (2016--Nichol-A--Na--MOLDY--ipr1)
Notes: The parameters in Na.moldy were obtained from http://homepages.ed.ac.uk/graeme/moldy/moldy.html and posted with the permission of G.J. Ackland.
File(s):
LAMMPS pair_style eam/fs (2016--Nichol-A--Na--LAMMPS--ipr1)
See Computed Properties
Notes: This conversion was performed by G.J. Ackland and submitted on 8 Dec. 2015.
File(s): superseded


LAMMPS pair_style eam/fs (2016--Nichol-A--Na--LAMMPS--ipr2)
See Computed Properties
Notes: A new conversion to LAMMPS performed by G.J. Ackland was submitted on 10 Oct. 2017. The previous setfl version above had a spurious oscillation period in the tabulated r*phi function that influenced measurements, most notably static elastic constant evaluations.
File(s):
See Computed Properties
Notes: Listing found at https://openkim.org. This KIM potential is based on the files from 2016--Nichol-A--Na--LAMMPS--ipr2.
Link(s):

2015--Wilson-S-R-Gunawardana-K-G-S-H-Mendelev-M-I--Na
S.R. Wilson, K.G.S.H. Gunawardana, and M.I. Mendelev (2015), "Solid-liquid interface free energies of pure bcc metals and B2 phases", The Journal of Chemical Physics, 142(13), 134705. DOI: 10.1063/1.4916741.
Abstract: The solid-liquid interface (SLI) free energy was determined from molecular dynamics (MD) simulation for several body centered cubic (bcc) metals and B2 metallic compounds (space group: Pm-3m; prototype: CsCl). In order to include a bcc metal with a low melting temperature in our study, a semi-empirical potential was developed for Na. Two additional synthetic "Na" potentials were also developed to explore the effect of liquid structure and latent heat on the SLI free energy. The obtained MD data were compared with the empirical Turnbull, Laird, and Ewing relations. All three relations are found to predict the general trend observed in the MD data for bcc metals obtained within the present study. However, only the Laird and Ewing relations are able to predict the trend obtained within the sequence of "Na" potentials. The Laird relation provides the best prediction for our MD data and other MD data for bcc metals taken from the literature. Overall, the Laird relation also agrees well with our B2 data but requires a proportionality constant that is substantially different from the bcc case. It also fails to explain a considerable difference between the SLI free energies of some B2 phases which have nearly the same melting temperature. In contrast, this difference is satisfactorily described by the Ewing relation. Moreover, the Ewing relation obtained from the bcc dataset also provides a reasonable description of the B2 data.

Notes: Mikhail Mendelev (Ames Laboratory) noted that his potential was designed to simulate solid-liquid interface properties in sodium. Updated 27 Apr 2015 to include publication information.

LAMMPS pair_style eam/fs (2015--Wilson-S-R--Na--LAMMPS--ipr1)
See Computed Properties
Notes: This file was provided by Mikhail Mendelev (Ames Laboratory) and posted with his permission on 14 Nov. 2014. He noted that his potential was designed to simulate solid-liquid interface properties in sodium.
Updated 27 Apr 2015 to include publication information. Update 19 July 2021: The contact email in the file's header has been changed.
File(s):
OpenKIM (MO_094065024556)
See Computed Properties
Notes: Listing found at https://openkim.org. This KIM potential is based on the files from 2015--Wilson-S-R--Na--LAMMPS--ipr1.
Link(s):

Nb

2010--Fellinger-M-R-Park-H-Wilkins-J-W--Nb
M.R. Fellinger, H. Park, and J.W. Wilkins (2010), "Force-matched embedded-atom method potential for niobium", Physical Review B, 81(14), 144119. DOI: 10.1103/physrevb.81.144119.
Abstract: Large-scale simulations of plastic deformation and phase transformations in alloys require reliable classical interatomic potentials. We construct an embedded-atom method potential for niobium as the first step in alloy potential development. Optimization of the potential parameters to a well-converged set of density-functional theory (DFT) forces, energies, and stresses produces a reliable and transferable potential for molecular-dynamics simulations. The potential accurately describes properties related to the fitting data and also produces excellent results for quantities outside the fitting range. Structural and elastic properties, defect energetics, and thermal behavior compare well with DFT results and experimental data, e.g., DFT surface energies are reproduced with less than 4% error, generalized stacking-fault energies differ from DFT values by less than 15%, and the melting temperature is within 2% of the experimental value.

IMD option EAM (2010--Fellinger-M-R--Nb--IMD--ipr1)
Notes: These files were provided by Michael Fellinger, Hyoungki Park, and John Wilkins (The Ohio State University) and posted with their permission on 14 July 2010. Details of the fitting procedure and testing can be found in the reference listed above.
File(s):
LAMMPS pair_style eam/alloy (2010--Fellinger-M-R--Nb--LAMMPS--ipr1)
See Computed Properties
Notes: These files were provided by Michael Fellinger, Hyoungki Park, and John Wilkins (The Ohio State University) and posted with their permission on 14 July 2010. Mike Fellinger also provided the additional note: "The Nb.eam.alloy file is in the setfl format suitable for the LAMMPS MD code. This format requires r*phi and rho to be tabulated from r = 0 to r = r_cut. The domain of phi and rho in the published potential is 1.738 ≤ r ≤ 4.75 A. For phi, we extend the cubic polynomial for 1.738 ≤ r ≤ 2.073 A to r = 0. For rho, we linearly extrapolate from r = 1.738 A to r = 0. The potential in the IMD format is tabulated with 5,001 points for each function. The potential in the LAMMPS setfl format is tabulated with 10,001 points for each function. Comparisons of the two tabulations show very slight differences in some defect energies, probably due to the different numbers of tabulation points."
File(s):
See Computed Properties
Notes: Listing found at https://openkim.org. This KIM potential is based on the files from 2010--Fellinger-M-R--Nb--LAMMPS--ipr1.
Link(s):

2003--Han-S-Zepeda-Ruiz-L-A-Ackland-G-J-et-al--Nb
S. Han, L.A. Zepeda-Ruiz, G.J. Ackland, R. Car, and D.J. Srolovitz (2003), "Interatomic potential for vanadium suitable for radiation damage simulations", Journal of Applied Physics, 93(6), 3328-3335. DOI: 10.1063/1.1555275.
Abstract: The ability to predict the behavior of point defects in metals, particularly interstitial defects, is central to accurate modeling of the microstructural evolution in environments with high radiation fluxes. Existing interatomic potentials of embedded atom method type predict disparate stable interstitial defect configurations in vanadium. This is not surprising since accurate first-principles interstitial data were not available when these potentials were fitted. In order to provide the input information required to fit a vanadium potential appropriate for radiation damage studies, we perform a series of first-principles calculations on six different interstitial geometries and vacancies. These calculations identify the 〈111〉 dumbbell as the most stable interstitial with a formation energy of approximately 3.1 eV, at variance with predictions based upon existing potentials. Our potential is of Finnis–Sinclair type and is fitted exactly to the experimental equilibrium lattice parameter, cohesive energy, elastic constants and a calculated unrelaxed vacancy formation energy. Two additional potential parameters were used to obtain the best fit to the set of interstitial formation energies determined from the first-principles calculations. The resulting potential was found to accurately predict both the magnitude and ordering of the formation energies of six interstitial configurations and the unrelaxed vacancy ground state, in addition to accurately describing the migration characteristics of the stable interstitial and vacancy. This vanadium potential is capable of describing the point defect properties appropriate for radiation damage simulations as well as for simulations of more common crystal and simple defect properties.

Moldy FS (2003--Han-S--Nb--MOLDY--ipr1)
Notes: The parameters in Nb.moldy were obtained from http://homepages.ed.ac.uk/graeme/moldy/moldy.html and posted with the permission of G.J. Ackland.
File(s):

1987--Ackland-G-J-Thetford-R--Nb
G.J. Ackland, and R. Thetford (1987), "An improved N-body semi-empirical model for body-centred cubic transition metals", Philosophical Magazine A, 56(1), 15-30. DOI: 10.1080/01418618708204464.
Abstract: The recently published semi-empirical potentials of Finnis and Sinclair for the metals V, Nb, Ta, Mo and W appear to give unphysical results for properties involving small interatomic separation. This is remedied by adding to the potentials cores fitted to electron gas calculations on dimers. The adjusted potentials are shown to predict a more realistic pressure-volume relationship. Interstitial formation energies are calculated for various configurations, using quenched molecular dynamics and static relaxation. Some preliminary results on interstitial migration are presented.

Equations (1987--Ackland-G-J--Nb--parameters--ipr1)
Notes: The file AckThet.pdf was obtained from http://homepages.ed.ac.uk/graeme/moldy/moldy.html and posted with the permission of G.J. Ackland.
File(s):
AckThet.pdf


Nb-Ni

2016--Zhang-Y-Ashcraft-R-Mendelev-M-I-et-al--Ni-Nb
Y. Zhang, R. Ashcraft, M.I. Mendelev, C.Z. Wang, and K.F. Kelton (2016), "Experimental and molecular dynamics simulation study of structure of liquid and amorphous Ni62Nb38 alloy", The Journal of Chemical Physics, 145(20), 204505. DOI: 10.1063/1.4968212.
Abstract: The state-of-the-art experimental and atomistic simulation techniques were utilized to study the structure of the liquid and amorphous Ni62Nb38 alloy. First, the ab initio molecular dynamics (AIMD) simulation was performed at rather high temperature where the time limitations of the AIMD do not prevent to reach the equilibrium liquid structure. A semi-empirical potential of the Finnis-Sinclair (FS) type was developed to almost exactly reproduce the AIMD partial pair correlation functions (PPCFs) in a classical molecular dynamics simulation. This simulation also showed that the FS potential well reproduces the bond angle distributions. The FS potential was then employed to elongate the AIMD PPCFs and determine the total structure factor (TSF) which was found to be in excellent agreement with X-ray TSF obtained within the present study demonstrating the reliability of the AIMD for the simulation of the structure of the liquid Ni–Nb alloys as well as the reliability of the developed FS potential. The glass structure obtained with the developed potential was also found to be in excellent agreement with the X-ray data. The analysis of the structure revealed that a network of the icosahedra clusters centered on Ni atoms is forming during cooling the liquid alloy down to Tg and the Nb Z14, Z15, and Z16 clusters are attached to this network. This network is the main feature of the Ni62Nb38 alloy and further investigations of the properties of this alloy should be based on study of the behavior of this network.

LAMMPS pair_style eam/fs (2016--Zhang-Y--Ni-Nb--LAMMPS--ipr1)
See Computed Properties
Notes: This file was sent by M.I. Mendelev (Ames Laboratory) on 13 December 2016 and posted with his permission. Update 19 July 2021: The contact email in the file's header has been changed.
File(s):
See Computed Properties
Notes: Listing found at https://openkim.org. This KIM potential is based on the files from 2016--Zhang-Y--Ni-Nb--LAMMPS--ipr1.
Link(s):

Nb-Zr

2017--Smirnova-D-E-Starikov-S-V--Zr-Nb
D.E. Smirnova, and S.V. Starikov (2017), "An interatomic potential for simulation of Zr-Nb system", Computational Materials Science, 129, 259-272. DOI: 10.1016/j.commatsci.2016.12.016.
Abstract: We report a new attempt to study properties of Zr-Nb structural alloys. For this purpose we constructed an angular-dependent many-body interatomic potential. The potential functions were fitted towards the ab initio data computed for a large set of reference structures. The fitting procedure is described, and its accuracy is discussed. We show that the structure and properties of all Nb and Zr phases existing in the Zr-Nb binary system are reproduced with good accuracy. The interatomic potential is appropriate for study of the high-pressure hexagonal ω-phase of Zr. We also estimated characteristics of the point defects in α-Zr, β-Zr and Nb; results are proven to correlate with the existing experimental and theoretical data. In case of α-Zr the model reveals anisotropy of the vacancy diffusion, in agreement with previous calculations and experiments. The potential provides an opportunity for simulation of Zr-Nb alloys based on α-Zr and β-Zr. This conclusion is illustrated by the results obtained for the alloys with different niobium concentrations: up to 7% in case of hcp alloys and up to 50% for bcc alloys.

Notes: The reference was updated on 17 January 2017. Update: This potential is known to have issues with pure zirconium phases. See 2021--Starikov-S-Smirnova-D--Zr-Nb for an updated parameterization.

See Computed Properties
Notes: These files were sent by D. Smirnova (Joint Institute for High Temperatures, Russian Academy of Sciences) on 15 December 2016 and posted with her permission.
File(s):

Ni

2018--Etesami-S-A-Asadi-E--Ni
S.A. Etesami, and E. Asadi (2018), "Molecular dynamics for near melting temperatures simulations of metals using modified embedded-atom method", Journal of Physics and Chemistry of Solids, 112, 61-72. DOI: 10.1016/j.jpcs.2017.09.001.
Abstract: Availability of a reliable interatomic potential is one of the major challenges in utilizing molecular dynamics (MD) for simulations of metals at near the melting temperatures and melting point (MP). Here, we propose a novel approach to address this challenge in the concept of modified-embedded-atom (MEAM) interatomic potential; also, we apply the approach on iron, nickel, copper, and aluminum as case studies. We propose adding experimentally available high temperature elastic constants and MP of the element to the list of typical low temperature properties used for the development of MD interatomic potential parameters. We show that the proposed approach results in a reasonable agreement between the MD calculations of melting properties such as latent heat, expansion in melting, liquid structure factor, and solid-liquid interface stiffness and their experimental/computational counterparts. Then, we present the physical properties of mentioned elements near melting temperatures using the new MEAM parameters. We observe that the behavior of elastic constants, heat capacity and thermal linear expansion coefficient at room temperature compared to MP follows an empirical linear relation (α±β × MP) for transition metals. Furthermore, a linear relation between the tetragonal shear modulus and the enthalpy change from room temperature to MP is observed for face-centered cubic materials.

Notes: S. A. Etesami (University of Memphis) noted that "We added both melting point and high temperature elastic constants into material properties database for MEAM parameter development process."

See Computed Properties
Notes: These files were sent by S. A. Etesami (University of Memphis) on 23 April 2018 and posted with his permission. This version is compatible with LAMMPS.
File(s):

2016--Stoller-R-E-Tamm-A-Beland-L-K-et-al--Ni
R.E. Stoller, A. Tamm, L.K. Béland, G.D. Samolyuk, G.M. Stocks, A. Caro, L.V. Slipchenko, Y.N. Osetsky, A. Aabloo, M. Klintenberg, and Y. Wang (2016), "Impact of Short-Range Forces on Defect Production from High-Energy Collisions", Journal of Chemical Theory and Computation, 12(6), 2871-2879. DOI: 10.1021/acs.jctc.5b01194.
Abstract: Primary radiation damage formation in solid materials typically involves collisions between atoms that have up to a few hundred keV of kinetic energy. During these collisions, the distance between two colliding atoms can approach 0.05 nm. At such small atomic separations, force fields fitted to equilibrium properties tend to significantly underestimate the potential energy of the colliding dimer. To enable molecular dynamics simulations of high-energy collisions, it is common practice to use a screened Coulomb force field to describe the interactions and to smoothly join this to the equilibrium force field at a suitable interatomic spacing. However, there is no accepted standard method for choosing the parameters used in the joining process, and our results prove that defect production is sensitive to how the force fields are linked. A new procedure is presented that involves the use of ab initio calculations to determine the magnitude and spatial dependence of the pair interactions at intermediate distances, along with systematic criteria for choosing the joining parameters. Results are presented for the case of nickel, which demonstrate the use and validity of the procedure.

Notes: This potential is a re-parameterization of the Ni interaction from 2004--Mishin-Y--Ni-Al which focuses on improving short-range interactions. Prof. Beland notes that "The re-parametrization is useful for simulations of collision cascades."

LAMMPS pair_style eam/alloy (2016--Stoller-R-E--Ni--LAMMPS--ipr1)
See Computed Properties
Notes: This file was provided by Laurent Béland on 7 Nov 2019 and posted with his permission.
File(s):

2015--Asadi-E-Zaeem-M-A-Nouranian-S-Baskes-M-I--Ni
E. Asadi, M.A. Zaeem, S. Nouranian, and M.I. Baskes (2015), "Two-phase solid-liquid coexistence of Ni, Cu, and Al by molecular dynamics simulations using the modified embedded-atom method", Acta Materialia, 86, 169-181. DOI: 10.1016/j.actamat.2014.12.010.
Abstract: The two-phase solid–liquid coexisting structures of Ni, Cu, and Al are studied by molecular dynamics (MD) simulations using the second nearest-neighbor (2NN) modified-embedded atom method (MEAM) potential. For this purpose, the existing 2NN-MEAM parameters for Ni and Cu were modified to make them suitable for the MD simulations of the problems related to the two-phase solid–liquid coexistence of these elements. Using these potentials, we compare calculated low-temperature properties of Ni, Cu, and Al, such as elastic constants, structural energy differences, vacancy formation energy, stacking fault energies, surface energies, specific heat and thermal expansion coefficient with experimental data. The solid–liquid coexistence approach is utilized to accurately calculate the melting points of Ni, Cu, and Al. The MD calculations of the expansion in melting, latent heat and the liquid structure factor are also compared with experimental data. In addition, the solid–liquid interface free energy and surface anisotropy of the elements are determined from the interface fluctuations, and the predictions are compared to the experimental and computational data in the literature.

Notes: Prof. Mohsen Zaeem said that this potential was designed for accurately representing properties from 0K up to the melting point.

LAMMPS pair_style meam (2015--Asadi-E--Ni--LAMMPS--ipr1)
See Computed Properties
Notes: This file was sent by Prof. Mohsen Zaeem (Missouri S&T) on 12 April 2017 and posted on 5 May 2017. Update 5 Sept 2019: The 31 July 2018 update of the repository inadvertantly replaced the parameter files with those from the 2018--Etesami-S-A--Fe--LAMMPS--ipr1 potential. The links below now point to the correct files.
File(s):
Ni.meam
library.Ni.meam


2012--Mendelev-M-I-Kramer-M-J-Hao-S-G-et-al--Ni
M.I. Mendelev, M.J. Kramer, S.G. Hao, K.M. Ho, and C.Z. Wang (2012), "Development of interatomic potentials appropriate for simulation of liquid and glass properties of NiZr2 alloy", Philosophical Magazine, 92(35), 4454-4469. DOI: 10.1080/14786435.2012.712220.
Abstract: A new interatomic potential for the Ni–Zr system is presented. This potential was developed specifically to match experimental scattering data from Ni, Zr and NiZr2 liquids. Both ab initio and published thermodynamic data were used to optimise the potential to study the liquid and amorphous structure of the NiZr2 alloy. This potential has the C16 phase, being more stable than C11b phase in the NiZr2 alloy, consistent with experiments. The potential leads to the correct glass structure in the molecular dynamics simulation and, therefore, can be used to study the liquid–glass transformation in the NiZr2 alloy.

Notes: Mikhail Mendelev (Ames Laboratory) noted that the potential is designed to simulate liquid properties and melting. 31 May 2013: This reference was updated to reflect the publication status.

LAMMPS pair_style eam/fs (2012--Mendelev-M-I--Ni--LAMMPS--ipr1)
See Computed Properties
Notes: This file was provided by Mikhail Mendelev (Ames Laboratory) and posted with his permission on 26 Oct. 2010. He noted that the potential is designed to simulate liquid properties and melting. 31 May 2013: The parameter file was renamed from Ni1_Mendelev_2010.eam.fs to Ni1_Mendelev_2012.eam.fs and the first line in the file's header was updated to reflect the publication status. Mikhail Mendelev approved this change. Update 19 July 2021: The contact email in the file's header has been changed.
File(s):
Ni1_Mendelev_2012.eam.fs

OpenKIM (MO_832600236922)
See Computed Properties
Notes: Listing found at https://openkim.org. This KIM potential is based on the files from 2012--Mendelev-M-I--Ni--LAMMPS--ipr1.
Link(s):
KIM page EAM_Dynamo_MendelevKramerHao_2012_Ni__MO_832600236922_005


2004--Zhou-X-W-Johnson-R-A-Wadley-H-N-G--Ni
X.W. Zhou, R.A. Johnson, and H.N.G. Wadley (2004), "Misfit-energy-increasing dislocations in vapor-deposited CoFe/NiFe multilayers", Physical Review B, 69(14), 144113. DOI: 10.1103/physrevb.69.144113.
Abstract: Recent molecular dynamics simulations of the growth of [Ni0.8Fe0.2/Au] multilayers have revealed the formation of misfit-strain-reducing dislocation structures very similar to those observed experimentally. Here we report similar simulations showing the formation of edge dislocations near the interfaces of vapor-deposited (111) [NiFe/CoFe/Cu] multilayers. Unlike misfit dislocations that accommodate lattice mismatch, the dislocation structures observed here increase the mismatch strain energy. Stop-action observations of the dynamically evolving atomic structures indicate that during deposition on the (111) surface of a fcc lattice, adatoms may occupy either fcc sites or hcp sites. This results in the random formation of fcc and hcp domains, with dislocations at the domain boundaries. These dislocations enable atoms to undergo a shift from fcc to hcp sites, or vice versa. These shifts lead to missing atoms, and therefore a later deposited layer can have missing planes compared to a previously deposited layer. This dislocation formation mechanism can create tensile stress in fcc films. The probability that such dislocations are formed was found to quickly diminish under energetic deposition conditions.

FORTRAN (2004--Zhou-X-W--Ni--FORTRAN--ipr1)
Notes: These are the original files sent by X.W. Zhou (Sandia National Laboratory) and posted with his permission. C.A. Becker (NIST) modified create.f to include the reference in the generated potential files and the EAM.input file for this composition. These files can be used to generate alloy potentials for Cu, Ag, Au, Ni, Pd, Pt, Al, Pb, Fe, Mo, Ta, W, Mg, Co, Ti, and Zr by editing EAM.input. However, as addressed in the reference, these potentials were not designed for use with metal compounds.
File(s): superseded


LAMMPS pair_style eam/alloy (2004--Zhou-X-W--Ni--LAMMPS--ipr1)
See Computed Properties
Notes: This file was generated by C.A. Becker (NIST) from create.f and posted with X.W. Zhou's (Sandia National Laboratory) permission.
File(s): superseded


FORTRAN (2004--Zhou-X-W--Ni--FORTRAN--ipr2)
Notes: The file Zhou04_create_v2.f is an updated version of create.f modified by L.M. Hale (NIST) following advice from X.W. Zhou (Sandia National Laboratory). This version removes spurious fluctuations in the tabulated functions of the original potential files caused by single/double precision floating point number conflicts.
File(s):
README_v2
Zhou04_create_v2.f
EAM.input.Ni
EAM_code

LAMMPS pair_style eam/alloy (2004--Zhou-X-W--Ni--LAMMPS--ipr2)
See Computed Properties
Notes: This file was generated by L.M. Hale from Zhou04_create_v2.f on 13 April 2018 and posted with X.W. Zhou's (Sandia National Laboratory) permission. This version corrects an issue with spurious fluctuations in the tabulated functions.
File(s):
Ni_Zhou04.eam.alloy

OpenKIM (MO_110256178378)
See Computed Properties
Notes: Listing found at https://openkim.org. This KIM potential is based on the files from 2004--Zhou-X-W--Ni--LAMMPS--ipr1.
Link(s):
KIM page EAM_Dynamo_ZhouJohnsonWadley_2004_Ni__MO_110256178378_005

OpenKIM (MO_593762436933)
See Computed Properties
Notes: Listing found at https://openkim.org. This KIM potential is based on the files from 2004--Zhou-X-W--Ni--LAMMPS--ipr2.
Link(s):
KIM page EAM_Dynamo_ZhouJohnsonWadley_2004NISTretabulation_Ni__MO_593762436933_000


1999--Mishin-Y-Farkas-D-Mehl-M-J-Papaconstantopoulos-D-A--Ni
Y. Mishin, D. Farkas, M.J. Mehl, and D.A. Papaconstantopoulos (1999), "Interatomic potentials for monoatomic metals from experimental data and ab initio calculations", Physical Review B, 59(5), 3393-3407. DOI: 10.1103/physrevb.59.3393.
Abstract: We demonstrate an approach to the development of many-body interatomic potentials for monoatomic metals with improved accuracy and reliability. The functional form of the potentials is that of the embedded-atom method, but the interesting features are as follows: (1) The database used for the development of a potential includes both experimental data and a large set of energies of different alternative crystalline structures of the material generated by ab initio calculations. We introduce a rescaling of interatomic distances in an attempt to improve the compatibility between experimental and ab initio data. (2) The optimum parametrization of the potential for the given database is obtained by alternating the fitting and testing steps. The testing step includes a comparison between the ab initio structural energies and those predicted by the potential. This strategy allows us to achieve the best accuracy of fitting within the intrinsic limitations of the potential model. Using this approach we develop reliable interatomic potentials for Al and Ni. The potentials accurately reproduce basic equilibrium properties of these metals, the elastic constants, the phonon-dispersion curves, the vacancy formation and migration energies, the stacking fault energies, and the surface energies. They also predict the right relative stability of different alternative structures with coordination numbers ranging from 12 to 4. The potentials are expected to be easily transferable to different local environments encountered in atomistic simulations of lattice defects.

EAM tabulated functions (1999--Mishin-Y--Ni--table--ipr1)
Notes: These files were provided by Yuri Mishin.
File(s):
F(ρ): F_ni.plt
ρ(r): fni.plt
φ(r): pni.plt

LAMMPS pair_style eam/alloy (1999--Mishin-Y--Ni--LAMMPS--ipr1)
See Computed Properties
Notes: This conversion was produced by Chandler Becker on 14 February 2009 from the plt files listed above. This version is compatible with LAMMPS. Validation and usage information can be found in Ni99_releaseNotes_1.pdf. If you use this setfl file, please credit the website in addition to the original reference.
File(s):
Ni99.eam.alloy
Ni99_releaseNotes_1.pdf

OpenKIM (MO_400591584784)
See Computed Properties
Notes: Listing found at https://openkim.org. This KIM potential is based on the files from 1999--Mishin-Y--Ni--LAMMPS--ipr1.
Link(s):
KIM page EAM_Dynamo_MishinFarkasMehl_1999_Ni__MO_400591584784_005


1989--Adams-J-B-Foiles-S-M-Wolfer-W-G--Ni
J.B. Adams, S.M. Foiles, and W.G. Wolfer (1989), "Self-diffusion and impurity diffusion of fcc metals using the five-frequency model and the Embedded Atom Method", Journal of Materials Research, 4(1), 102-112. DOI: 10.1557/jmr.1989.0102.
Abstract: The activation energies for self-diffusion of transition metals (Au, Ag, Cu, Ni, Pd, Pt) have been calculated with the Embedded Atom Method (EAM); the results agree well with available experimental data for both mono-vacancy and di-vacancy mechanisms. The EAM was also used to calculate activation energies for vacancy migration near dilute impurities. These energies determine the atomic jump frequencies of the classic "five-frequency formula," which yields the diffusion rates of impurities by a mono-vacancy mechanism. These calculations were found to agree fairly well with experiment and with Neumann and Hirschwald's "Tm" model.

LAMMPS pair_style eam (1989--Adams-J-B--Ni--LAMMPS--ipr1)
See Computed Properties
Notes: niu6.txt was obtained from http://enpub.fulton.asu.edu/cms/ potentials/main/main.htm and posted with the permission of J.B. Adams. The name of the file was retained, even though the header information lists the potential as 'universal 4.' This file is compatible with the "pair_style eam" format in LAMMPS (19Feb09 version).
File(s):
niu6.txt

OpenKIM (MO_258836200237)
See Computed Properties
Notes: Listing found at https://openkim.org. This KIM potential is based on the files from 1989--Adams-J-B--Ni--LAMMPS--ipr1.
Link(s):
KIM page EAM_Dynamo_AdamsFoilesWolfer_1989Universal6_Ni__MO_258836200237_000


1987--Ackland-G-J-Tichy-G-Vitek-V-Finnis-M-W--Ni
G.J. Ackland, G. Tichy, V. Vitek, and M.W. Finnis (1987), "Simple N-body potentials for the noble metals and nickel", Philosophical Magazine A, 56(6), 735-756. DOI: 10.1080/01418618708204485.
Abstract: Using the approach of Finnis and Sinclair, N-body potentials for copper, silver, gold and nickel have been constructed. The total energy is regarded as consisting of a pair-potential part and a many body cohesive part. Both these parts are functions of the atomic separations only and are represented by cubic splines, fitted to various bulk properties. For the noble metals, the pair-potentials were fitted at short range to pressure-volume relationships calculated by Christensen and Heine so that interactions at separations smaller than that of the first-nearest neighbours can be treated in this scheme. Using these potentials, point defects, surfaces (including the surface reconstructions) and grain boundaries have been studied and satisfactory agreement with available experimental data has been found.

Moldy FS (1987--Ackland-G-J--Ni--MOLDY--ipr1)
Notes: The parameters in ni.moldy were obtained from http://homepages.ed.ac.uk/graeme/moldy/moldy.html and posted with the permission of G.J. Ackland.
File(s):
ni.moldy

LAMMPS pair_style eam/fs (1987--Ackland-G-J--Ni--LAMMPS--ipr1)
See Computed Properties
Notes: This conversion was performed from G.J. Ackland's parameters by M.I. Mendelev. Conversion checks from M.I. Mendelev can be found in the conversion_check.pdf. These files were posted on 30 June 2009 with the permission of G.J. Ackland and M.I. Mendelev. These potentials are not designed for simulations of radiation damage. Update 19 July 2021: The contact email in the file's header has been changed.
File(s):
Ni.eam.fs
conversion_check.pdf

LAMMPS pair_style eam/fs (1987--Ackland-G-J--Ni--LAMMPS--ipr2)
See Computed Properties
Notes: A new conversion to LAMMPS performed by G.J. Ackland was submitted on 10 Oct. 2017. This version adds close-range repulsion for radiation studies.
File(s):
Ni_v2.eam.fs

OpenKIM (MO_977363131043)
See Computed Properties
Notes: Listing found at https://openkim.org. This KIM potential is based on the files from 1987--Ackland-G-J--Ni--LAMMPS--ipr1.
Link(s):
KIM page EAM_Dynamo_AcklandTichyVitek_1987_Ni__MO_977363131043_005

OpenKIM (MO_769632475533)
See Computed Properties
Notes: Listing found at https://openkim.org. This KIM potential is based on the files from 1987--Ackland-G-J--Ni--LAMMPS--ipr2.
Link(s):
KIM page EAM_Dynamo_AcklandTichyVitek_1987v2_Ni__MO_769632475533_000


1986--Foiles-S-M-Baskes-M-I-Daw-M-S--Ni
S.M. Foiles, M.I. Baskes, and M.S. Daw (1986), "Embedded-atom-method functions for the fcc metals Cu, Ag, Au, Ni, Pd, Pt, and their alloys", Physical Review B, 33(12), 7983-7991. DOI: 10.1103/physrevb.33.7983.
Abstract: A consistent set of embedding functions and pair interactions for use with the embedded-atom method [M.S. Daw and M. I. Baskes, Phys. Rev. B 29, 6443 (1984)] have been determined empirically to describe the fcc metals Cu, Ag, Au, Ni, Pd, and Pt as well as alloys containing these metals. The functions are determined empirically by fitting to the sublimation energy, equilibrium lattice constant, elastic constants, and vacancy-formation energies of the pure metals and the heats of solution of the binary alloys. The validity of the functions is tested by computing a wide range of properties: the formation volume and migration energy of vacancies, the formation energy, formation volume, and migration energy of divacancies and self-interstitials, the surface energy and geometries of the low-index surfaces of the pure metals, and the segregation energy of substitutional impurities to (100) surfaces.

LAMMPS pair_style eam (1986--Foiles-S-M--Ni--LAMMPS--ipr1)
See Computed Properties
Notes: This file was taken from the August 22, 2018 LAMMPS distribution.
File(s):
Ni_u3.eam

OpenKIM (MO_580571659842)
See Computed Properties
Notes: Listing found at https://openkim.org. This KIM potential is based on the same files as 1986--Foiles-S-M--Ni--LAMMPS--ipr1.
Link(s):
KIM page EAM_Dynamo_FoilesBaskesDaw_1986Universal3_Ni__MO_580571659842_000


Ni-Pd

2016--Samolyuk-G-D-Beland-L-K-Stocks-G-M-Stoller-R-E--Ni-Pd
G.D. Samolyuk, L.K. Béland, G.M. Stocks, and R.E. Stoller (2016), "Electron–phonon coupling in Ni-based binary alloys with application to displacement cascade modeling", Journal of Physics: Condensed Matter, 28(17), 175501. DOI: 10.1088/0953-8984/28/17/175501.
Abstract: Energy transfer between lattice atoms and electrons is an important channel of energy dissipation during displacement cascade evolution in irradiated materials. On the assumption of small atomic displacements, the intensity of this transfer is controlled by the strength of electron–phonon (el–ph) coupling. The el–ph coupling in concentrated Ni-based alloys was calculated using electronic structure results obtained within the coherent potential approximation. It was found that Ni0.5Fe0.5, Ni0.5Co0.5 and Ni0.5Pd0.5 are ordered ferromagnetically, whereas Ni0.5Cr0.5 is nonmagnetic. Since the magnetism in these alloys has a Stoner-type origin, the magnetic ordering is accompanied by a decrease of electronic density of states at the Fermi level, which in turn reduces the el–ph coupling. Thus, the el–ph coupling values for all alloys are approximately 50% smaller in the magnetic state than for the same alloy in a nonmagnetic state. As the temperature increases, the calculated coupling initially increases. After passing the Curie temperature, the coupling decreases. The rate of decrease is controlled by the shape of the density of states above the Fermi level. Introducing a two-temperature model based on these parameters in 10 keV molecular dynamics cascade simulation increases defect production by 10–20% in the alloys under consideration.

Notes: Prof. Beland notes that "The potential takes elemental Ni from 2004--Mishin-Y--Ni-Al and Pd from 2011 Sheng and mixes them. We first applied the effective gauge transformation, and then fitted the cross-term as to reproduce the heat of mixing of Ni(x)-Pd(1-x). The potential is stiffened at short distances by following the procedure detailed in https://doi.org/10.1016/j.cpc.2017.05.001 and https://doi.org/10.1021/acs.jctc.5b01194".

LAMMPS pair_style eam/alloy (2016--Samolyuk-G-D--Ni-Pd--LAMMPS--ipr1)
See Computed Properties
Notes: This file was provided by Laurent Béland on 7 Nov 2019 and posted with his permission.
File(s):

Ni-Ti

2015--Ko-W-S-Grabowski-B-Neugebauer-J--Ni-Ti
W.-S. Ko, B. Grabowski, and J. Neugebauer (2015), "Development and application of a Ni-Ti interatomic potential with high predictive accuracy of the martensitic phase transition", Physical Review B, 92(13), 134107. DOI: 10.1103/physrevb.92.134107.
Abstract: Phase transitions in nickel-titanium shape-memory alloys are investigated by means of atomistic simulations. A second nearest-neighbor modified embedded-atom method interatomic potential for the binary nickel-titanium system is determined by improving the unary descriptions of pure nickel and pure titanium, especially regarding the physical properties at finite temperatures. The resulting potential reproduces accurately the hexagonal-close-packed to body-centered-cubic phase transition in Ti and the martensitic B2−B19′ transformation in equiatomic NiTi. Subsequent large-scale molecular-dynamics simulations validate that the developed potential can be successfully applied for studies on temperature- and stress-induced martensitic phase transitions related to core applications of shape-memory alloys. A simulation of the temperature-induced phase transition provides insights into the effect of sizes and constraints on the formation of nanotwinned martensite structures with multiple domains. A simulation of the stress-induced phase transition of a nanosized pillar indicates a full recovery of the initial structure after the loading and unloading processes, illustrating a superelastic behavior of the target system.

LAMMPS pair_style meam (2015--Ko-W-S--Ni-Ti--LAMMPS--ipr2)
See Computed Properties
Notes: These files were sent by Won-Seok Ko (University of Ulsan, South Korea) on 24 July 2016 and posted with his permission.
File(s):

Ni-Ti-V

2017--Maisel-S-B-Ko-W-S-Zhang-J-L-et-al--V-Ni-Ti
S.B. Maisel, W.-S. Ko, J.-L. Zhang, B. Grabowski, and J. Neugebauer (2017), "Thermomechanical response of NiTi shape-memory nanoprecipitates in TiV alloys", Physical Review Materials, 1(3), 033610. DOI: 10.1103/physrevmaterials.1.033610.
Abstract: We study the properties of NiTi shape-memory nanoparticles coherently embedded in TiV matrices using three-dimensional atomistic simulations based on the modified embedded-atom method. To this end, we develop and present a suitable NiTiV potential for our simulations. Employing this potential, we identify the conditions under which the martensitic phase transformation of such a nanoparticle is triggered—specifically, how these conditions can be tuned by modifying the size of the particle, the composition of the surrounding matrix, or the temperature and strain state of the system. Using these insights, we establish how the transformation temperature of such particles can be influenced and discuss the practical implications in the context of shape-memory strengthened alloys.

See Computed Properties
Notes: These files were sent by Won-Seok Ko (School of Materials Science and Engineering, University of Ulsan) on 9 Feb. 2018 and posted with his permission.
File(s):

Ni-Zr

2015--Wilson-S-R-Mendelev-M-I--Ni-Zr
S.R. Wilson, and M.I. Mendelev (2015), "Anisotropy of the solid-liquid interface properties of the Ni-Zr B33 phase from molecular dynamics simulation", Philosophical Magazine, 95(2), 224-241. DOI: 10.1080/14786435.2014.995742.
Abstract: Solid–liquid interface (SLI) properties of the Ni–Zr B33 phase were determined from molecular dynamics simulations. In order to perform these measurements, a new semi-empirical potential for Ni–Zr alloy was developed that well reproduces the material properties required to model SLIs in the Ni50.0Zr50.0 alloy. In particular, the developed potential is shown to provide that the solid phase emerging from the liquid Ni50.0Zr50.0 alloy is B33 (apart from a small fraction of point defects), in agreement with the experimental phase diagram. The SLI properties obtained using the developed potential exhibit an extraordinary degree of anisotropy. It is observed that anisotropies in both the interfacial free energy and mobility are an order of magnitude larger than those measured to date in any other metallic compound. Moreover, the [0 1 0] interface is shown to play a significant role in the observed anisotropy. Our data suggest that the [0 1 0] interface simultaneously corresponds to the lowest mobility, the lowest free energy and the highest stiffness of all inclinations in B33 Ni–Zr. This finding can be understood by taking into account a rather complicated crystal structure in this crystallographic direction.

Notes: Mikhail Mendelev (Ames Laboratory) noted that the potential is an updated version of the 2012 potential, and it was designed to simulate solidification of B2, B33, and C16 phases in Ni-Zr alloys. Updated previous note on 13 Nov. 2014 to replace "NiZr2 alloy" with "Ni-Zr alloys". Updated 27 Apr 2015 to include publication information.

See Computed Properties
Notes: This file was provided by Mikhail Mendelev (Ames Laboratory) and posted with his permission on 2 Jul. 2014. Update 19 July 2021: The contact email in the file's header has been changed.
File(s):
See Computed Properties
Notes: Listing found at https://openkim.org. This KIM potential is based on the files from 2015--Wilson-S-R--Ni-Zr--LAMMPS--ipr1.
Link(s):

2012--Mendelev-M-I-Kramer-M-J-Hao-S-G-et-al--Ni-Zr
M.I. Mendelev, M.J. Kramer, S.G. Hao, K.M. Ho, and C.Z. Wang (2012), "Development of interatomic potentials appropriate for simulation of liquid and glass properties of NiZr2 alloy", Philosophical Magazine, 92(35), 4454-4469. DOI: 10.1080/14786435.2012.712220.
Abstract: A new interatomic potential for the Ni–Zr system is presented. This potential was developed specifically to match experimental scattering data from Ni, Zr and NiZr2 liquids. Both ab initio and published thermodynamic data were used to optimise the potential to study the liquid and amorphous structure of the NiZr2 alloy. This potential has the C16 phase, being more stable than C11b phase in the NiZr2 alloy, consistent with experiments. The potential leads to the correct glass structure in the molecular dynamics simulation and, therefore, can be used to study the liquid–glass transformation in the NiZr2 alloy.

Notes: Mikhail Mendelev (Ames Laboratory) noted that the potential is designed to simulate liquid/glass properties and solidification in the NiZr2 alloy. The potential utilizes the following interactions from other potentials: Ni = 2012--Mendelev-M-I-Kramer-M-J-Hao-S-G-et-al--Ni and Zr = 2007--Mendelev-M-I-Ackland-G-J--Zr-2. 31 May 2013: The reference was updated to reflect the publication status.

LAMMPS pair_style eam/fs (2012--Mendelev-M-I--Ni-Zr--LAMMPS--ipr1)
See Computed Properties
Notes: This file was provided by Mikhail Mendelev (Ames Laboratory) and posted with his permission on 26 Oct. 2010. 31 May 2013: The parameter file was renamed from Ni-Zr_Mendelev_2010.eam.fs to Ni-Zr_Mendelev_2012.eam.fs and the first line in the file's header was updated to reflect the publication status. Mikhail Mendelev approved this change. Update 19 July 2021: The contact email in the file's header has been changed.
File(s):
OpenKIM (MO_149104665840)
See Computed Properties
Notes: Listing found at https://openkim.org. This KIM potential is based on the files from 2012--Mendelev-M-I--Ni-Zr--LAMMPS--ipr1.
Link(s):

O-Si

2007--Munetoh-S-Motooka-T-Moriguchi-K-Shintani-A--Si-O
S. Munetoh, T. Motooka, K. Moriguchi, and A. Shintani (2007), "Interatomic potential for Si-O systems using Tersoff parameterization", Computational Materials Science, 39(2), 334-339. DOI: 10.1016/j.commatsci.2006.06.010.
Abstract: A parameter set for Tersoff potential has been developed to investigate the structural properties of Si-O systems. The potential parameters have been determined based on ab initio calculations of small molecules and the experimental data of α-quartz. The structural properties of various silica polymorphs calculated by using the new potential were in good agreement with their experimental data and ab initio calculation results. Furthermore, we have prepared SiO2 glass using molecular dynamics (MD) simulations by rapid quenching of melted SiO2. The radial distribution function and phonon density of states of SiO2 glass generated by MD simulation were in excellent agreement with those of SiO2 glass obtained experimentally.

LAMMPS pair_style tersoff (2007--Munetoh-S--Si-O--LAMMPS--ipr1)
See Computed Properties
Notes: This file was created and verified by Lucas Hale. The parameter values are comparable to the SiO.tersoff file in the August 22, 2018 LAMMPS distribution, with this file having higher numerical precision for the derived mixing parameters.
File(s):

1997--Broughton-J-Q-Meli-C-A-Vashishta-P-Kalia-R-K--Si-O
J.Q. Broughton, C.A. Meli, P. Vashishta, and R.K. Kalia (1997), "Direct atomistic simulation of quartz crystal oscillators: Bulk properties and nanoscale devices", Physical Review B, 56(2), 611-618. DOI: 10.1103/physrevb.56.611.
Abstract: Current experimental research aims to reduce the size of quartz crystal oscillators into the submicrometer range. Devices then comprise multimillion atoms and operating frequencies will be in the gigahertz regime. Such characteristics make direct atomic scale simulation feasible using large scale parallel computing. Here, we describe molecular-dynamics simulations on bulk and nanoscale device systems focusing on elastic constants and flexural frequencies. Here we find (a) in order to achieve elastic constants within 1% of those of the bulk requires approximately one million atoms; precisely the experimental regime of interest; (b) differences from continuum mechanical frequency predictions are observable for 17 nm devices; (c) devices with 1% defects exhibit dramatic anharmonicity. A subsequent paper describes the direct atomistic simulation of operating characteristics of a micrometer scale device. A PAPS cosubmission gives algorithmic details.

LAMMPS pair_style vashishta (1997--Broughton-J-Q--Si-O--LAMMPS--ipr1)
See Computed Properties
Notes: This file was taken from the August 22, 2018 LAMMPS distribution.
File(s):

1994--Nakano-A-Kalia-R-K-Vashishta-P--Si-O
A. Nakano, R.K. Kalia, and P. Vashishta (1994), "First sharp diffraction peak and intermediate-range order in amorphous silica: finite-size effects in molecular dynamics simulations", Journal of Non-Crystalline Solids, 171(2), 157-163. DOI: 10.1016/0022-3093(94)90351-4.
Abstract: Large-scale molecular dynamics simulations of amorphous silica are carried out on systems containing up to 41472 particles using an effective interatomic potential consisting of two-body and three-body covalent interactions. The intermediate-range order represented by the first sharp diffraction peak (FSDP) in the neutron static structure factor shows a significant dependence on the system size. Correlations in the range 0.4–1.1 nm are found to play a vital role in determining the shape of the FSDP correctly. The calculated structure factor for the largest system is in excellent agreement with neutron diffraction experiments, including the height of the FSDP.

LAMMPS pair_style vashishta (1994--Nakano-A--Si-O--LAMMPS--ipr1)
See Computed Properties
Notes: This file was taken from the August 22, 2018 LAMMPS distribution.
File(s):
SiO.1994.vashishta


1990--Vashishta-P-Kalia-R-K-Rino-J-P-Ebbsjo-I--Si-O
P. Vashishta, R.K. Kalia, J.P. Rino, and I. Ebbsjö (1990), "Interaction potential for SiO2: A molecular-dynamics study of structural correlations", Physical Review B, 41(17), 12197-12209. DOI: 10.1103/physrevb.41.12197.
Abstract: An interaction potential consisting of two-body and three-body covalent interactions is proposed for SiO2. The interaction potential is used in molecular-dynamics studies of structural and dynamical correlations of crystalline, molten, and vitreous states under various conditions of densities and temperatures. The two-body contribution to the interaction potential consists of steric repulsion due to atomic sizes, Coulomb interactions resulting from charge transfer, and charge-dipole interaction to include the effects of large electronic polarizability of anions. The three-body covalent contributions include O-Si-O and Si-O-Si interactions which are angle dependent and functions of Si-O distance. In lattice-structure calculations with the total potential function, α-cristobalite and α-quartz are found to have the lowest and almost degenerate energies, in agreement with experiments. The energies for β-cristobalite, β-quartz, and keatite are found to be higher than those for α-cristobalite and α-quartz. Molecular-dynamics calculations with this potential function correctly describe the short- and intermediate-range order in molten and vitreous states.\nIn the latter, partial pair-distribution functions give Si-O, O-O, and Si-Si bond lengths of 1.62, 2.65, and 3.05 Å, respectively. The vitreous state consists of nearly ideal Si(O1/2)4 tetrahedra in corner-sharing configurations. The Si-O-Si bond-angle distribution has a peak at 142° and a full width at half maximum (FWHM) of 25° in good agreement with nuclear magnetic resonance experiments. The calculated static structure factor is also in agreement with neutron-diffraction experiments. Partial static structure factors reveal that intermediate-range Si-Si, O-O, and Si-O correlations between 4 and 8 Å give rise to the first sharp diffraction peak (FSDP). The FSDP is absent in charge-charge structure factor, which indicates that charge neutrality prevails over length scales between 4 and 8 Å. Dynamical correlations in vitreous and molten states, phonon densities of states of crystalline and vitreous SiO2, infrared spectra of crystalline, vitreous and molten states, isotope effect, distribution of rings and their structure in molten and vitreous states, and structural transformations at high pressures will be discussed in subsequent papers.

LAMMPS pair_style vashishta (1990--Vashishta-P--Si-O--LAMMPS--ipr1)
See Computed Properties
Notes: This file was taken from the August 22, 2018 LAMMPS distribution.
File(s):
SiO.1990.vashishta


O-Ti

2016--Zhang-P-Trinkle-D-R--Ti-O
P. Zhang, and D.R. Trinkle (2016), "A modified embedded atom method potential for interstitial oxygen in titanium", Computational Materials Science, 124, 204-210. DOI: 10.1016/j.commatsci.2016.07.039.
Abstract: Modeling oxygen interstitials in titanium requires a new empirical potential. We optimize potential parameters using a fitting database of first-principle oxygen interstitial energies and forces. A new database optimization algorithm based on Bayesian sampling is applied to obtain an optimal potential for a specific testing set of density functional data. A parallel genetic algorithm minimizes the sum of logistic function evaluations of the testing set predictions. We test the transferability of the potential model against oxygen interstitials in HCP titanium, transition barriers between oxygen interstitial sites, and oxygen in the titanium prismatic stacking fault. The potential predicts that the interaction between oxygen and a screw dislocation core is weak and short-ranged.

Notes: Prof. Trinkle said that this potential is specifically intended for dilute oxygen in titanium as there's no oxygen-oxygen interaction. 9 Aug. 2016: the reference information was updated.

MEAM splines (2016--Zhang-P--Ti-O--table--ipr1)
Notes: This file was sent by Prof. Dallas Trinkle (Univ. of Illinois) on 6 Aug. 2016 and posted with his permission. Update 2018-11-06: file format changed to reflect that it does not work with LAMMPS.
File(s): superseded


MEAM splines (2016--Zhang-P--Ti-O--table--ipr2)
Notes: This file was sent by Prof. Dallas Trinkle (Univ. of Illinois) on 9 Aug. 2016 and posted with his permission. This version removes an extra comment line that was not compatible with the LAMMPS MEAM/spline code. Update 2018-11-06: file format changed to reflect that it does not work with LAMMPS (see version below).
File(s): superseded


LAMMPS pair_style meam/spline (2016--Zhang-P--Ti-O--LAMMPS--ipr1)
See Computed Properties
Notes: This file was taken from the August 22, 2018 LAMMPS distribution. It has a slightly different header section from the above versions allowing it to work in the official multi-element meam/spline implementation. This version successfully ran with the stable March 16, 2018 and August 22, 2018 LAMMPS versions.
File(s):

Pb

2018--Wang-K-Zhu-W-Xiang-M-et-al--Pb-II
K. Wang, W. Zhu, M. Xiang, Y. Xu, G. Li, and J. Chen (2018), "Improved embedded-atom model potentials of Pb at high pressure: application to investigations of plasticity and phase transition under extreme conditions", Modelling and Simulation in Materials Science and Engineering, 27(1), 015001. DOI: 10.1088/1361-651x/aaea55.
Abstract: Local stress relaxation mechanisms of crystals are a long-standing interest in the field of materials physics. Constantly encountered inelastic deformation mechanisms in metals under dynamic loadings, such as dislocation, deformation twinning and phase transition, have been extensively discussed separately or as some of their combinations. Recently, virtual melting is found to be a dominant local stress relaxation mechanism under extreme strain rates. However, these deformation mechanisms have never been investigated in the same metal at an atomic level due to the lack of high pressure interatomic potentials. In this work, an embedded-atom model potential of Pb is developed and tested for high pressure applications. The developed potential of Pb could not only reproduce many energetic, elastic and defective properties at ambient conditions well, but also correctly describe face-centered cubic (fcc)-hexagonal close packed (hcp) and hcp-body-centered cubic phase transition of Pb under high pressures. Shock Hugoniot,as well as equation of states for fcc and hcp phase, also agrees well with the literature ones up to more than 100 GPa. With the developed potential, non-equilibrium molecular dynamic simulations are conducted to investigate dynamic behaviors of Pb single crystal under ramp-shock compressions. Depending on applied strain rates, dislocation-mediated plasticity, phase transition and virtual melting, constantly reported by experiments or theoretical investigations, are observed in our results. Additionally, a new phase transition mechanism of Pb subjected to the ramp compressions is uncovered.

Notes: This listing is for the reference's EAM-II model.

LAMMPS pair_style eam/alloy (2018--Wang-K--Pb-II--LAMMPS--ipr1)
See Computed Properties
Notes: This file was provided by Kun Wang (Institute of Applied Physics and Computational Mathematics, Beijing 100088, China) on 11 November 2018 and posted with his permission. He notes that: "This file is generated and tested using CMOFP (v18.04.30). Detailed descriptions about the CMOFP can be found in ref: K. Wang, W. Zhu, S. Xiao, J. Chen, W. Hu, Journal of Physics: Condensed Matter, 28 (2016) 505201."
File(s):

2004--Zhou-X-W-Johnson-R-A-Wadley-H-N-G--Pb
X.W. Zhou, R.A. Johnson, and H.N.G. Wadley (2004), "Misfit-energy-increasing dislocations in vapor-deposited CoFe/NiFe multilayers", Physical Review B, 69(14), 144113. DOI: 10.1103/physrevb.69.144113.
Abstract: Recent molecular dynamics simulations of the growth of [Ni0.8Fe0.2/Au] multilayers have revealed the formation of misfit-strain-reducing dislocation structures very similar to those observed experimentally. Here we report similar simulations showing the formation of edge dislocations near the interfaces of vapor-deposited (111) [NiFe/CoFe/Cu] multilayers. Unlike misfit dislocations that accommodate lattice mismatch, the dislocation structures observed here increase the mismatch strain energy. Stop-action observations of the dynamically evolving atomic structures indicate that during deposition on the (111) surface of a fcc lattice, adatoms may occupy either fcc sites or hcp sites. This results in the random formation of fcc and hcp domains, with dislocations at the domain boundaries. These dislocations enable atoms to undergo a shift from fcc to hcp sites, or vice versa. These shifts lead to missing atoms, and therefore a later deposited layer can have missing planes compared to a previously deposited layer. This dislocation formation mechanism can create tensile stress in fcc films. The probability that such dislocations are formed was found to quickly diminish under energetic deposition conditions.

FORTRAN (2004--Zhou-X-W--Pb--FORTRAN--ipr1)
Notes: These are the original files sent by X.W. Zhou (Sandia National Laboratory) and posted with his permission. C.A. Becker (NIST) modified create.f to include the reference in the generated potential files and the EAM.input file for this composition. These files can be used to generate alloy potentials for Cu, Ag, Au, Ni, Pd, Pt, Al, Pb, Fe, Mo, Ta, W, Mg, Co, Ti, and Zr by editing EAM.input. However, as addressed in the reference, these potentials were not designed for use with metal compounds.
File(s): superseded


LAMMPS pair_style eam/alloy (2004--Zhou-X-W--Pb--LAMMPS--ipr1)
See Computed Properties
Notes: This file was generated by C.A. Becker (NIST) from create.f and posted with X.W. Zhou's (Sandia National Laboratory) permission.
File(s): superseded


FORTRAN (2004--Zhou-X-W--Pb--FORTRAN--ipr2)
Notes: The file Zhou04_create_v2.f is an updated version of create.f modified by L.M. Hale (NIST) following advice from X.W. Zhou (Sandia National Laboratory). This version removes spurious fluctuations in the tabulated functions of the original potential files caused by single/double precision floating point number conflicts.
File(s):
LAMMPS pair_style eam/alloy (2004--Zhou-X-W--Pb--LAMMPS--ipr2)
See Computed Properties
Notes: This file was generated by L.M. Hale from Zhou04_create_v2.f on 13 April 2018 and posted with X.W. Zhou's (Sandia National Laboratory) permission. This version corrects an issue with spurious fluctuations in the tabulated functions.
File(s):
OpenKIM (MO_116920074573)
See Computed Properties
Notes: Listing found at https://openkim.org. This KIM potential is based on the files from 2004--Zhou-X-W--Pb--LAMMPS--ipr1.
Link(s):
OpenKIM (MO_988703794028)
See Computed Properties
Notes: Listing found at https://openkim.org. This KIM potential is based on the files from 2004--Zhou-X-W--Pb--LAMMPS--ipr2.
Link(s):

Pb-Sn

2018--Etesami-S-A-Baskes-M-I-Laradji-M-Asadi-E--Pb-Sn
S.A. Etesami, M.I. Baskes, M. Laradji, and E. Asadi (2018), "Thermodynamics of solid Sn and Pb-Sn liquid mixtures using molecular dynamics simulations", Acta Materialia, 161, 320-330. DOI: 10.1016/j.actamat.2018.09.036.
Abstract: We present a new set of modified embedded-atom method parameters for the Pb-Sn system that describes many 0 K and high temperature properties including melting point, elastic constants, and enthalpy of mixing for solid and liquid Pb-Sn alloys in agreement with experiments. Then, we calculate the phase diagram of the Sn-rich side of Pb-Sn alloys utilizing a hybrid Molecular Dynamics/Monte Carlo simulation that agrees with experimental solidus and liquidus curves as well as stability of α-Sn and β-Sn. In addition, we present structure factors of Pb-Sn liquid alloys as well as temperature-dependent thermal expansion coefficients and heat capacity. Our simulations show that the ratios of the heights of the second and third peaks over the first peak for Pb-Sn liquid mixtures are maximum at Pb-0.6Sn concentration.

Notes: Update 2018-09-28: Reference information updated.

See Computed Properties
Notes: This file was sent by S. A. Etesami (University of Memphis) on 17 September 2018 and posted with his permission. Update 2018-09-28: files renamed at the request of the authors. Old names were library.PbSn.meam and PbSn.meam
File(s):

Pd

2004--Zhou-X-W-Johnson-R-A-Wadley-H-N-G--Pd
X.W. Zhou, R.A. Johnson, and H.N.G. Wadley (2004), "Misfit-energy-increasing dislocations in vapor-deposited CoFe/NiFe multilayers", Physical Review B, 69(14), 144113. DOI: 10.1103/physrevb.69.144113.
Abstract: Recent molecular dynamics simulations of the growth of [Ni0.8Fe0.2/Au] multilayers have revealed the formation of misfit-strain-reducing dislocation structures very similar to those observed experimentally. Here we report similar simulations showing the formation of edge dislocations near the interfaces of vapor-deposited (111) [NiFe/CoFe/Cu] multilayers. Unlike misfit dislocations that accommodate lattice mismatch, the dislocation structures observed here increase the mismatch strain energy. Stop-action observations of the dynamically evolving atomic structures indicate that during deposition on the (111) surface of a fcc lattice, adatoms may occupy either fcc sites or hcp sites. This results in the random formation of fcc and hcp domains, with dislocations at the domain boundaries. These dislocations enable atoms to undergo a shift from fcc to hcp sites, or vice versa. These shifts lead to missing atoms, and therefore a later deposited layer can have missing planes compared to a previously deposited layer. This dislocation formation mechanism can create tensile stress in fcc films. The probability that such dislocations are formed was found to quickly diminish under energetic deposition conditions.

FORTRAN (2004--Zhou-X-W--Pd--FORTRAN--ipr1)
Notes: These are the original files sent by X.W. Zhou (Sandia National Laboratory) and posted with his permission. C.A. Becker (NIST) modified create.f to include the reference in the generated potential files and the EAM.input file for this composition. These files can be used to generate alloy potentials for Cu, Ag, Au, Ni, Pd, Pt, Al, Pb, Fe, Mo, Ta, W, Mg, Co, Ti, and Zr by editing EAM.input. However, as addressed in the reference, these potentials were not designed for use with metal compounds.
File(s): superseded


LAMMPS pair_style eam/alloy (2004--Zhou-X-W--Pd--LAMMPS--ipr1)
See Computed Properties
Notes: This file was generated by C.A. Becker (NIST) from create.f and posted with X.W. Zhou's (Sandia National Laboratory) permission.
File(s): superseded


FORTRAN (2004--Zhou-X-W--Pd--FORTRAN--ipr2)
Notes: The file Zhou04_create_v2.f is an updated version of create.f modified by L.M. Hale (NIST) following advice from X.W. Zhou (Sandia National Laboratory). This version removes spurious fluctuations in the tabulated functions of the original potential files caused by single/double precision floating point number conflicts.
File(s):
LAMMPS pair_style eam/alloy (2004--Zhou-X-W--Pd--LAMMPS--ipr2)
See Computed Properties
Notes: This file was generated by L.M. Hale from Zhou04_create_v2.f on 13 April 2018 and posted with X.W. Zhou's (Sandia National Laboratory) permission. This version corrects an issue with spurious fluctuations in the tabulated functions.
File(s):
See Computed Properties
Notes: Listing found at https://openkim.org. This KIM potential is based on the files from 2004--Zhou-X-W--Pd--LAMMPS--ipr2.
Link(s):

1989--Adams-J-B-Foiles-S-M-Wolfer-W-G--Pd
J.B. Adams, S.M. Foiles, and W.G. Wolfer (1989), "Self-diffusion and impurity diffusion of fcc metals using the five-frequency model and the Embedded Atom Method", Journal of Materials Research, 4(1), 102-112. DOI: 10.1557/jmr.1989.0102.
Abstract: The activation energies for self-diffusion of transition metals (Au, Ag, Cu, Ni, Pd, Pt) have been calculated with the Embedded Atom Method (EAM); the results agree well with available experimental data for both mono-vacancy and di-vacancy mechanisms. The EAM was also used to calculate activation energies for vacancy migration near dilute impurities. These energies determine the atomic jump frequencies of the classic "five-frequency formula," which yields the diffusion rates of impurities by a mono-vacancy mechanism. These calculations were found to agree fairly well with experiment and with Neumann and Hirschwald's "Tm" model.

LAMMPS pair_style eam (1989--Adams-J-B--Pd--LAMMPS--ipr1)
See Computed Properties
Notes: pdu6.txt was obtained from http://enpub.fulton.asu.edu/cms/ potentials/main/main.htm and posted with the permission of J.B. Adams. The name of the file was retained, even though the header information lists the potential as 'universal 4.' This file is compatible with the "pair_style eam" format in LAMMPS (19Feb09 version).
File(s):
OpenKIM (MO_169076431435)
See Computed Properties
Notes: Listing found at https://openkim.org. This KIM potential is based on the files from 1989--Adams-J-B--Pd--LAMMPS--ipr1.
Link(s):

1986--Foiles-S-M-Baskes-M-I-Daw-M-S--Pd
S.M. Foiles, M.I. Baskes, and M.S. Daw (1986), "Embedded-atom-method functions for the fcc metals Cu, Ag, Au, Ni, Pd, Pt, and their alloys", Physical Review B, 33(12), 7983-7991. DOI: 10.1103/physrevb.33.7983.
Abstract: A consistent set of embedding functions and pair interactions for use with the embedded-atom method [M.S. Daw and M. I. Baskes, Phys. Rev. B 29, 6443 (1984)] have been determined empirically to describe the fcc metals Cu, Ag, Au, Ni, Pd, and Pt as well as alloys containing these metals. The functions are determined empirically by fitting to the sublimation energy, equilibrium lattice constant, elastic constants, and vacancy-formation energies of the pure metals and the heats of solution of the binary alloys. The validity of the functions is tested by computing a wide range of properties: the formation volume and migration energy of vacancies, the formation energy, formation volume, and migration energy of divacancies and self-interstitials, the surface energy and geometries of the low-index surfaces of the pure metals, and the segregation energy of substitutional impurities to (100) surfaces.

LAMMPS pair_style eam (1986--Foiles-S-M--Pd--LAMMPS--ipr1)
See Computed Properties
Notes: This file was taken from the August 22, 2018 LAMMPS distribution.
File(s):
Pd_u3.eam

OpenKIM (MO_786012902615)
See Computed Properties
Notes: Listing found at https://openkim.org. This KIM potential is based on the same files as 1986--Foiles-S-M--Pd--LAMMPS--ipr1.
Link(s):
KIM page EAM_Dynamo_FoilesBaskesDaw_1986Universal3_Pd__MO_786012902615_000


Pt

2004--Zhou-X-W-Johnson-R-A-Wadley-H-N-G--Pt
X.W. Zhou, R.A. Johnson, and H.N.G. Wadley (2004), "Misfit-energy-increasing dislocations in vapor-deposited CoFe/NiFe multilayers", Physical Review B, 69(14), 144113. DOI: 10.1103/physrevb.69.144113.
Abstract: Recent molecular dynamics simulations of the growth of [Ni0.8Fe0.2/Au] multilayers have revealed the formation of misfit-strain-reducing dislocation structures very similar to those observed experimentally. Here we report similar simulations showing the formation of edge dislocations near the interfaces of vapor-deposited (111) [NiFe/CoFe/Cu] multilayers. Unlike misfit dislocations that accommodate lattice mismatch, the dislocation structures observed here increase the mismatch strain energy. Stop-action observations of the dynamically evolving atomic structures indicate that during deposition on the (111) surface of a fcc lattice, adatoms may occupy either fcc sites or hcp sites. This results in the random formation of fcc and hcp domains, with dislocations at the domain boundaries. These dislocations enable atoms to undergo a shift from fcc to hcp sites, or vice versa. These shifts lead to missing atoms, and therefore a later deposited layer can have missing planes compared to a previously deposited layer. This dislocation formation mechanism can create tensile stress in fcc films. The probability that such dislocations are formed was found to quickly diminish under energetic deposition conditions.

FORTRAN (2004--Zhou-X-W--Pt--FORTRAN--ipr1)
Notes: These are the original files sent by X.W. Zhou (Sandia National Laboratory) and posted with his permission. C.A. Becker (NIST) modified create.f to include the reference in the generated potential files and the EAM.input file for this composition. These files can be used to generate alloy potentials for Cu, Ag, Au, Ni, Pd, Pt, Al, Pb, Fe, Mo, Ta, W, Mg, Co, Ti, and Zr by editing EAM.input. However, as addressed in the reference, these potentials were not designed for use with metal compounds.
File(s): superseded


LAMMPS pair_style eam/alloy (2004--Zhou-X-W--Pt--LAMMPS--ipr1)
See Computed Properties
Notes: This file was generated by C.A. Becker (NIST) from create.f and posted with X.W. Zhou's (Sandia National Laboratory) permission.
File(s): superseded


FORTRAN (2004--Zhou-X-W--Pt--FORTRAN--ipr2)
Notes: The file Zhou04_create_v2.f is an updated version of create.f modified by L.M. Hale (NIST) following advice from X.W. Zhou (Sandia National Laboratory). This version removes spurious fluctuations in the tabulated functions of the original potential files caused by single/double precision floating point number conflicts.
File(s):
LAMMPS pair_style eam/alloy (2004--Zhou-X-W--Pt--LAMMPS--ipr2)
See Computed Properties
Notes: This file was generated by L.M. Hale from Zhou04_create_v2.f on 13 April 2018 and posted with X.W. Zhou's (Sandia National Laboratory) permission. This version corrects an issue with spurious fluctuations in the tabulated functions.
File(s):
See Computed Properties
Notes: Listing found at https://openkim.org. This KIM potential is based on the files from 2004--Zhou-X-W--Pt--LAMMPS--ipr1.
Link(s):
See Computed Properties
Notes: Listing found at https://openkim.org. This KIM potential is based on the files from 2004--Zhou-X-W--Pt--LAMMPS--ipr2.
Link(s):

1990--Ackland-G-J--Pt
G.J. Ackland (1990), "unpublished".

Moldy FS (1990--Ackland-G-J--Pt--MOLDY--ipr1)
Notes: The parameters in pt.moldy were obtained from http://homepages.ed.ac.uk/graeme/moldy/moldy.html and posted with the permission of G.J. Ackland.
File(s):

1989--Adams-J-B-Foiles-S-M-Wolfer-W-G--Pt
J.B. Adams, S.M. Foiles, and W.G. Wolfer (1989), "Self-diffusion and impurity diffusion of fcc metals using the five-frequency model and the Embedded Atom Method", Journal of Materials Research, 4(1), 102-112. DOI: 10.1557/jmr.1989.0102.
Abstract: The activation energies for self-diffusion of transition metals (Au, Ag, Cu, Ni, Pd, Pt) have been calculated with the Embedded Atom Method (EAM); the results agree well with available experimental data for both mono-vacancy and di-vacancy mechanisms. The EAM was also used to calculate activation energies for vacancy migration near dilute impurities. These energies determine the atomic jump frequencies of the classic "five-frequency formula," which yields the diffusion rates of impurities by a mono-vacancy mechanism. These calculations were found to agree fairly well with experiment and with Neumann and Hirschwald's "Tm" model.

LAMMPS pair_style eam (1989--Adams-J-B--Pt--LAMMPS--ipr1)
See Computed Properties
Notes: ptu6.txt was obtained from http://enpub.fulton.asu.edu/cms/ potentials/main/main.htm and posted with the permission of J.B. Adams. The name of the file was retained, even though the header information lists the potential as 'universal 4.' This file is compatible with the "pair_style eam" format in LAMMPS (19Feb09 version).
File(s):
ptu6.txt

OpenKIM (MO_388062184209)
See Computed Properties
Notes: Listing found at https://openkim.org. This KIM potential is based on the files from 1989--Adams-J-B--Pt--LAMMPS--ipr1.
Link(s):
KIM page EAM_Dynamo_AdamsFoilesWolfer_1989Universal6_Pt__MO_388062184209_000


1986--Foiles-S-M-Baskes-M-I-Daw-M-S--Pt
S.M. Foiles, M.I. Baskes, and M.S. Daw (1986), "Embedded-atom-method functions for the fcc metals Cu, Ag, Au, Ni, Pd, Pt, and their alloys", Physical Review B, 33(12), 7983-7991. DOI: 10.1103/physrevb.33.7983.
Abstract: A consistent set of embedding functions and pair interactions for use with the embedded-atom method [M.S. Daw and M. I. Baskes, Phys. Rev. B 29, 6443 (1984)] have been determined empirically to describe the fcc metals Cu, Ag, Au, Ni, Pd, and Pt as well as alloys containing these metals. The functions are determined empirically by fitting to the sublimation energy, equilibrium lattice constant, elastic constants, and vacancy-formation energies of the pure metals and the heats of solution of the binary alloys. The validity of the functions is tested by computing a wide range of properties: the formation volume and migration energy of vacancies, the formation energy, formation volume, and migration energy of divacancies and self-interstitials, the surface energy and geometries of the low-index surfaces of the pure metals, and the segregation energy of substitutional impurities to (100) surfaces.

LAMMPS pair_style eam (1986--Foiles-S-M--Pt--LAMMPS--ipr1)
See Computed Properties
Notes: This file was taken from the August 22, 2018 LAMMPS distribution.
File(s):
Pt_u3.eam

OpenKIM (MO_757342646688)
See Computed Properties
Notes: Listing found at https://openkim.org. This KIM potential is based on the same files as 1986--Foiles-S-M--Pt--LAMMPS--ipr1.
Link(s):
KIM page EAM_Dynamo_FoilesBaskesDaw_1986Universal3_Pt__MO_757342646688_000


Rb

2016--Nichol-A-Ackland-G-J--Rb
A. Nichol, and G.J. Ackland (2016), "Property trends in simple metals: An empirical potential approach", Physical Review B, 93(18), 184101. DOI: 10.1103/physrevb.93.184101.
Abstract: We demonstrate that the melting points and other thermodynamic quantities of the alkali metals can be calculated based on static crystalline properties. To do this we derive analytic interatomic potentials for the alkali metals fitted precisely to cohesive and vacancy energies, elastic moduli, the lattice parameter, and crystal stability. These potentials are then used to calculate melting points by simulating the equilibration of solid and liquid samples in thermal contact at ambient pressure. With the exception of lithium, remarkably good agreement is found with experimental values. The instability of the bcc structure in Li and Na at low temperatures is also reproduced and, unusually, is not due to a soft T1N phonon mode. No forces or finite-temperature properties are included in the fit, so this demonstrates a surprisingly high level of intrinsic transferability in the simple potentials. Currently, there are few potentials available for the alkali metals, so in addition to demonstrating trends in behavior, we expect that the potentials will be of broad general use.

Notes: G.J. Ackland noted that lattice parameters, elastic constants and cohesive energies were used in the fitting process, so the values produced by this conversion should match known values. He noted that bcc crystal structure should be stable and produce a melting temperature of 312 K. Publication information was updated on 12 Oct. 2017. Prior publication listing for this potential was Han, S., Zepeda-Ruiz, L. A., Ackland, G. J., Car, R., and Srolovitz, D. J. (2003). Interatomic potential for vanadium suitable for radiation damage simulations. Journal of Applied Physics, 93(6), 3328. DOI: 10.1063/1.1555275

Moldy FS (2016--Nichol-A--Rb--MOLDY--ipr1)
Notes: The parameters in Rb.moldy were obtained from http://homepages.ed.ac.uk/graeme/moldy/moldy.html and posted with the permission of G.J. Ackland.
File(s):
LAMMPS pair_style eam/fs (2016--Nichol-A--Rb--LAMMPS--ipr1)
See Computed Properties
Notes: This conversion was performed by G.J. Ackland and submitted on 8 Dec. 2015.
File(s): superseded


LAMMPS pair_style eam/fs (2016--Nichol-A--Rb--LAMMPS--ipr2)
See Computed Properties
Notes: A new conversion to LAMMPS performed by G.J. Ackland was submitted on 10 Oct. 2017. The previous setfl version above had a spurious oscillation period in the tabulated r*phi function that influenced measurements, most notably static elastic constant evaluations.
File(s):
See Computed Properties
Notes: Listing found at https://openkim.org. This KIM potential is based on the files from 2016--Nichol-A--Rb--LAMMPS--ipr2.
Link(s):

Re-W

2018--Setyawan-W-Gao-N-Kurtz-R-J--W-Re
W. Setyawan, N. Gao, and R.J. Kurtz (2018), "A tungsten-rhenium interatomic potential for point defect studies", Journal of Applied Physics, 123(20), 205102. DOI: 10.1063/1.5030113.
Abstract: A tungsten-rhenium (W-Re) classical interatomic potential is developed within the embedded atom method interaction framework. A force-matching method is employed to fit the potential to ab initio forces, energies, and stresses. Simulated annealing is combined with the conjugate gradient technique to search for an optimum potential from over 1000 initial trial sets. The potential is designed for studying point defects in W-Re systems. It gives good predictions of the formation energies of Re defects in W and the binding energies of W self-interstitial clusters with Re. The potential is further evaluated for describing the formation energy of structures in the σ and χ intermetallic phases. The predicted convex-hulls of formation energy are in excellent agreement with ab initio data. In pure Re, the potential can reproduce the formation energies of vacancies and self-interstitial defects sufficiently accurately and gives the correct ground state self-interstitial configuration. Furthermore, by including liquid structures in the fit, the potential yields a Re melting temperature (3130 K) that is close to the experimental value (3459 K).

LAMMPS pair_style eam/alloy (2018--Setyawan-W--W-Re--LAMMPS--ipr1)
See Computed Properties
Notes: This file was provided by Wahyu Setyawan (Pacific Northwest National Laboratory) on 2 February 2019 and posted with his permission.
File(s):

2017--Bonny-G-Bakaev-A-Terentyev-D-Mastrikov-Y-A--W-Re
G. Bonny, A. Bakaev, D. Terentyev, and Y.A. Mastrikov (2017), "Interatomic potential to study plastic deformation in tungsten-rhenium alloys", Journal of Applied Physics, 121(16), 165107. DOI: 10.1063/1.4982361.
Abstract: In this work, an interatomic potential for the W-Re system is fitted and benchmarked against experimental and density functional theory (DFT) data, of which part are generated in this work. Having in mind studies related to the plasticity of W-Re alloys under irradiation, emphasis is put on fitting point-defect properties, elastic constants, and dislocation properties. The developed potential can reproduce the mechanisms responsible for the experimentally observed softening, i.e., decreasing shear moduli, decreasing Peierls barrier, and asymmetric screw dislocation core structure with increasing Re content in W-Re solid solutions. In addition, the potential predicts elastic constants in reasonable agreement with DFT data for the phases forming non-coherent precipitates (σ- and χ-phases) in W-Re alloys. In addition, the mechanical stability of the different experimentally observed phases is verified in the temperature range of interest (700–1500 K). As a conclusion, the presented potential provides an excellent tool to study plasticity in W-Re alloys at the atomic level.

EAM tabulated functions (2017--Bonny-G--W-Re--table--ipr1)
Notes: These files were sent by Dr. Giovanni Bonny (Nuclear Materials Science Institute of SCK-CEN, Belgium) on 2 November 2017 and posted with his permission.
File(s):
W F(ρ): F_W.spt
Re F(ρ): F_Re.spt
W ρ(r): rhoW.spt
Re ρ(r): rhoRe.spt
W-W φ(r): pWW.spt
Re-Re φ(r): pReRe.spt
W-Re φ(r): pWRe.spt

LAMMPS pair_style eam/alloy (2017--Bonny-G--W-Re--LAMMPS--ipr1)
See Computed Properties
Notes: LAMMPS-compatible file sent by Dr. Giovanni Bonny (Nuclear Materials Science Institute of SCK-CEN, Belgium) on 2 November 2017 and posted with his permission.
File(s):
OpenKIM (MO_234187151804)
See Computed Properties
Notes: Listing found at https://openkim.org. This KIM potential is based on the files from 2017--Bonny-G--W-Re--LAMMPS--ipr1.
Link(s):

Ru

2008--Fortini-A-Mendelev-M-I-Buldyrev-S-Srolovitz-D--Ru
A. Fortini, M.I. Mendelev, S. Buldyrev, and D. Srolovitz (2008), "Asperity contacts at the nanoscale: Comparison of Ru and Au", Journal of Applied Physics, 104(7), 074320. DOI: 10.1063/1.2991301.
Abstract: We develop and validate an interatomic potential for ruthenium based on the embedded atom method framework with the Finnis/Sinclair representation. We confirm that the potential yields a stable hcp lattice with reasonable lattice and elastic constants and surface and stacking fault energies. We employ molecular dynamics simulations to bring two surfaces together, one flat and the other with a single asperity. We compare the process of asperity contact formation and breaking in Au and Ru, two materials currently in use in microelectromechanical system switches. While Au is very ductile at 150 and 300 K, Ru shows considerably less plasticity at 300 and 600 K (approximately the same homologous temperature). In Au, the asperity necks down to a single atom thick bridge at separation. While similar necking occurs in Ru at 600 K, it is much more limited than in Au. On the other hand, at 300 K, Ru breaks by a much more brittle process of fracture/decohesion with limited plastic deformation.

LAMMPS pair_style eam/fs (2008--Fortini-A--Ru--LAMMPS--ipr1)
See Computed Properties
Notes: This file was provided by Mikhail Mendelev on May 15, 2008. The reference was updated on 14 October 2008. Update 19 July 2021: The contact email in the file's header has been changed.
File(s):
See Computed Properties
Notes: Listing found at https://openkim.org. This KIM potential is based on the files from 2008--Fortini-A--Ru--LAMMPS--ipr1.
Link(s):

Si

2017--Purja-Pun-G-P-Mishin-Y--Si
G.P. Purja Pun, and Y. Mishin (2017), "Optimized interatomic potential for silicon and its application to thermal stability of silicene", Physical Review B, 95(22), 224103. DOI: 10.1103/physrevb.95.224103.
Abstract: An optimized interatomic potential has been constructed for silicon using a modified Tersoff model. The potential reproduces a wide range of properties of Si and improves over existing potentials with respect to point defect structures and energies, surface energies and reconstructions, thermal expansion, melting temperature, and other properties. The proposed potential is compared with three other potentials from the literature. The potentials demonstrate reasonable agreement with first-principles binding energies of small Si clusters as well as single-layer and bilayer silicenes. The four potentials are used to evaluate the thermal stability of free-standing silicenes in the form of nanoribbons, nanoflakes, and nanotubes. While single-layer silicene is found to be mechanically stable at zero Kelvin, it is predicted to become unstable and collapse at room temperature. By contrast, the bilayer silicene demonstrates a larger bending rigidity and remains stable at and even above room temperature. The results suggest that bilayer silicene might exist in a free-standing form at ambient conditions.

LAMMPS pair_style tersoff/mod/c (2017--Purja-Pun-G-P--Si--LAMMPS--ipr1)
See Computed Properties
Notes: This file was provided by Yuri Mishin (George Mason University) on 2 Nov. 2018. It is identical to the similarly named file in the August 22, 2018 LAMMPS distribution.
File(s):
See Computed Properties
Notes: Listing found at https://openkim.org. The parameter file that this KIM potential is based on has slightly different values due to precision rounding than 2017--Purja-Pun-G-P--Si--LAMMPS--ipr1.
Link(s):

2011--Du-Y-A-Lenosky-T-J-Hennig-R-G-et-al--Si
Y.A. Du, T.J. Lenosky, R.G. Hennig, S. Goedecker, and J.W. Wilkins (2011), "Energy landscape of silicon tetra-interstitials using an optimized classical potential", physica status solidi (b), 248(9), 2050-2055. DOI: 10.1002/pssb.201147137.
Abstract: Mobile single interstitials can grow into extended interstitial defect structures during thermal anneals following ion implantation. The silicon tetra‐interstitials present an important intermediate structure that can either provide a chain‐like nucleation site for extended structures or form a highly stable compact interstitial cluster preventing further growth. In this paper, dimer searches using the tight‐binding (TB) model by Lenosky et al. and density functional calculations show that the compact ground‐state Ia4 and the I4‐chain are surrounded by high‐lying neighboring local minima.\nTo furthermore explore the phase space of tetra‐interstitial structures an empirical potential is optimized to a database of silicon defect structures. The minima hopping method combined with this potential extensively searches the energy landscape of tetra‐interstitials and discovers several new low‐energy I4 structures. The second lowest‐energy I4 structure turns out to be a distorted ground‐state tri‐interstitial bound with a single interstitial, which confirms that the ground‐state tri‐interstitial may serve as a nucleation center for the extended defects in silicon.

LAMMPS pair_style meam/spline (2011--Du-Y-A--Si--LAMMPS--ipr1)
See Computed Properties
Notes: This file was taken from the August 22, 2018 LAMMPS distribution. It is listed as being contributed by Alexander Stukowski (Technische Universität Darmstadt)
File(s):

2007--Kumagai-T-Izumi-S-Hara-S-Sakai-S--Si
T. Kumagai, S. Izumi, S. Hara, and S. Sakai (2007), "Development of bond-order potentials that can reproduce the elastic constants and melting point of silicon for classical molecular dynamics simulation", Computational Materials Science, 39(2), 457-464. DOI: 10.1016/j.commatsci.2006.07.013.
Abstract: The Tersoff potential is one of the most widely used interatomic potentials for silicon. However, its poor description of the elastic constants and melting point of diamond silicon is well known. In this research, three bond-order type interatomic potentials have been developed: the first one is fitted to the elastic constants by employing the Tersoff potential function form, the second one is fitted to both the elastic constants and melting point by employing the Tersoff potential function form and the third one is fitted to both the elastic constants and melting point by employing the modified Tersoff potential function form in which the angular-dependent term is improved. All of developed potentials well reproduce the elastic constants of diamond silicon as well as the cohesive energies and equilibrium bond lengths of silicon polytypes. The third potential can reproduce the melting point, while the second one cannot reproduce that. The elastic constants and melting point calculated using the third potential turned out to be C11 = 166.4 GPa, C12 = 65.3 GPa, C44 = 77.1 GPa and Tm = 1681 K. It was also found that only elastic constants can be reproduced using the original Tersoff potential function, and that our proposed angular-dependent term is a key to reproducing the melting point.

LAMMPS pair_style tersoff/mod (2007--Kumagai-T--Si--LAMMPS--ipr1)
See Computed Properties
Notes: This file was taken from the August 22, 2018 LAMMPS distribution.
File(s):
Si.tersoff.mod


2000--Lenosky-T-J-Sadigh-B-Alonso-E-et-al--Si
T.J. Lenosky, B. Sadigh, E. Alonso, V.V. Bulatov, T.D. Rubia, J. Kim, A.F. Voter, and J.D. Kress (2000), "Highly optimized empirical potential model of silicon", Modelling and Simulation in Materials Science and Engineering, 8(6), 825-841. DOI: 10.1088/0965-0393/8/6/305.
Abstract: We fit an empirical potential for silicon using the modified embedded atom (MEAM) functional form, which contains a nonlinear function of a sum of pairwise and three-body terms. The three-body term is similar to the Stillinger-Weber form. We parametrized our model using five cubic splines, each with 10 fitting parameters, and fitted the parameters to a large database using the force-matching method. Our model provides a reasonable description of energetics for all atomic coordinations, Z, from the dimer (Z = 1) to fcc and hcp (Z = 12). It accurately reproduces phonons and elastic constants, as well as point defect energetics. It also provides a good description of reconstruction energetics for both the 30° and 90° partial dislocations. Unlike previous models, our model accurately predicts formation energies and geometries of interstitial complexes - small clusters, interstitial-chain and planar {311} defects.

LAMMPS pair_style meam/spline (2000--Lenosky-T-J--Si--LAMMPS--ipr1)
See Computed Properties
Notes: This file was taken from the August 22, 2018 LAMMPS distribution. It is listed as being contributed by Alexander Stukowski (Technische Universität Darmstadt)
File(s):
Si_1.meam.spline


1998--Justo-J-F-Bazant-M-Z-Kaxiras-E-et-al--Si
J.F. Justo, M.Z. Bazant, E. Kaxiras, V.V. Bulatov, and S. Yip (1998), "Interatomic potential for silicon defects and disordered phases", Physical Review B, 58(5), 2539-2550. DOI: 10.1103/physrevb.58.2539.
Abstract: We develop an empirical potential for silicon which represents a considerable improvement over existing models in describing local bonding for bulk defects and disordered phases. The model consists of two- and three-body interactions with theoretically motivated functional forms that capture chemical and physical trends as explained in a companion paper. The numerical parameters in the functional form are obtained by fitting to a set of ab initio results from quantum-mechanical calculations based on density-functional theory in the local-density approximation, which include various bulk phases and defect structures. We test the potential by applying it to the relaxation of point defects, core properties of partial dislocations and the structure of disordered phases, none of which are included in the fitting procedure. For dislocations, our model makes predictions in excellent agreement with ab initio and tight-binding calculations. It is the only potential known to describe both the 30°- and 90°-partial dislocations in the glide set {111}. The structural and thermodynamic properties of the liquid and amorphous phases are also in good agreement with experimental and ab initio results. Our potential is capable of simulating a quench directly from the liquid to the amorphous phase, and the resulting amorphous structure is more realistic than with existing empirical preparation methods. These advances in transferability come with no extra computational cost, since force evaluation with our model is faster than with the popular potential of Stillinger-Weber, thus allowing reliable atomistic simulations of very large atomic systems.

LAMMPS pair_style edip (1998--Justo-J-F--Si--LAMMPS--ipr1)
See Computed Properties
Notes: This file was taken from the August 22, 2018 LAMMPS distribution.
File(s):
Si.edip

OpenKIM (MO_958932894036)
See Computed Properties
Notes: Listing found at https://openkim.org.
Link(s):
KIM page EDIP_JustoBazantKaxiras_1998_Si__MO_958932894036_002


1992--Baskes-M-I--Si
M.I. Baskes (1992), "Modified embedded-atom potentials for cubic materials and impurities", Physical Review B, 46(5), 2727-2742. DOI: 10.1103/physrevb.46.2727.
Abstract: In a comprehensive study, the modified embedded-atom method is extended to a variety of cubic materials and impurities. In this extension, all functions are analytic and computationally simple. The basic equations of the method are developed and applied to 26 elements: ten fcc, ten bcc, three diamond cubic, and three gaseous materials. The materials modeled include metals, semiconductors, and diatomic gases, all of which exhibit different types of bonding. Properties of these materials, including equation of state, elastic moduli, structural energies and lattice constants, simple defects, and surfaces, are calculated. The formalism for applying the method to combinations of these elements is developed and applied to the calculation of dilute heats of solution. In all cases, comparison is made to experiment or higher-level calculations when possible.

MEAM parameters (1992--Baskes-M-I--Si--parameters--ipr1)
Notes: This file was sent by Mike Baskes (Los Alamos National Laboratory) and posted on 29 Jan. 2010. It includes the MEAM parameters, papers with additional information, and various property evaluations.
File(s):
MEAM_Si.pdf


1988--Tersoff-J--Si-b
J. Tersoff (1988), "New empirical approach for the structure and energy of covalent systems", Physical Review B, 37(12), 6991-7000. DOI: 10.1103/physrevb.37.6991.
Abstract: Empirical interatomic potentials permit the calculation of structural properties and energetics of complex systems. A new approach for constructing such potentials, by explicitly incorporating the dependence of bond order on local environment, permits an improved description of covalent materials. In particular, a new potential for silicon is presented, along with results of extensive tests which suggest that this potential provides a rather realistic description of silicon. The limitations of the potential are discussed in detail.

Notes: This is Tersoff's Si(B) potential, which is the original parameterization of silicon using what is commonly referred to as the "Tersoff"-potential form.

LAMMPS pair_style tersoff (1988--Tersoff-J--Si-b--LAMMPS--ipr1)
See Computed Properties
Notes: This file was created and verified by Lucas Hale. It has identical parameter values as the Si.tersoff file in the August 22, 2018 LAMMPS distribution.
File(s):
1988_Si(B).tersoff

OpenKIM (MO_245095684871)
See Computed Properties
Notes: Listing found at https://openkim.org. This KIM potential is based on a parameter file with identical parameter values as 1988--Tersoff-J--Si-b--LAMMPS--ipr1.
Link(s):
KIM page Tersoff_LAMMPS_Tersoff_1988T2_Si__MO_245095684871_002
DOI 10.25950/8d772f84


1988--Tersoff-J--Si-c
J. Tersoff (1988), "Empirical interatomic potential for silicon with improved elastic properties", Physical Review B, 38(14), 9902-9905. DOI: 10.1103/physrevb.38.9902.
Abstract: An alternative parametrization is given for a previous empirical interatomic potential for silicon. The new potential is designed to more accurately reproduce the elastic properties of silicon, which were poorly described in the earlier potential. The properties of liquid Si are also improved, but energies of surfaces are less accurate. Detailed tests of the new potential are described.

Notes: This is Tersoff's Si(C) potential, which was an alternative parameterization for improved elastic constants.

LAMMPS pair_style tersoff (1988--Tersoff-J--Si-c--LAMMPS--ipr1)
See Computed Properties
Notes: This file was created and verified by Lucas Hale. It has identical parameter values as the Si(C) model in the SiCGe.tersoff file in the August 22, 2018 LAMMPS distribution.
File(s):
1988_Si(C).tersoff

OpenKIM (MO_186459956893)
See Computed Properties
Notes: Listing found at https://openkim.org. This KIM potential is based on a parameter file with identical parameter values as 1988--Tersoff-J--Si-c--LAMMPS--ipr1.
Link(s):
KIM page Tersoff_LAMMPS_Tersoff_1988T3_Si__MO_186459956893_002
DOI 10.25950/84b248b6


1986--Tersoff-J--Si
J. Tersoff (1986), "New empirical model for the structural properties of silicon", Physical Review Letters, 56(6), 632-635. DOI: 10.1103/physrevlett.56.632.
Abstract: An empirical interatomic potential for covalent systems is proposed, incorporating bond order in an intuitive way. The potential has the form of a Morse pair potential, but with the bond-strength parameter depending upon local environment. A model for Si accurately describes bonding and geometry for may structures, including highly rebonded surfaces.

Notes: This is Tersoff's Si(A) potential, which used a slightly different functional form than the commonly known "Tersoff" potential form. It failed to predict diamond cubic as the ground state structure.


1985--Stillinger-F-H-Weber-T-A--Si
F.H. Stillinger, and T.A. Weber (1985), "Computer simulation of local order in condensed phases of silicon", Physical Review B, 31(8), 5262-5271. DOI: 10.1103/physrevb.31.5262.
Abstract: A model potential-energy function comprising both two- and three-atom contributions is proposed to describe interactions in solid and liquid forms of Si. Implications of this potential are then explored by molecular-dynamics computer simulation, using 216 atoms with periodic boundary conditions. Starting with the diamond-structure crystal at low temperature, heating causes spontaneous nucleation and melting. The resulting liquid structurally resembles the real Si melt. By carrying out steepest-descent mappings of system configurations onto potential-energy minima, two main conclusions emerge: (1) a temperature-independent inherent structure underlies the liquid phase, just as for "simple" liquids with only pair interactions; (2) the Lindemann melting criterion for the crystal apparently can be supplemented by a freezing criterion for the liquid, where both involve critical values of appropriately defined mean displacements from potential minima.
F.H. Stillinger, and T.A. Weber (1986), "Erratum: Computer simulation of local order in condensed phases of silicon [Phys. Rev. B 31, 5262 (1985)]", Physical Review B, 33(2), 1451-1451. DOI: 10.1103/physrevb.33.1451.

LAMMPS pair_style sw (1985--Stillinger-F-H--Si--LAMMPS--ipr1)
See Computed Properties
Notes: This file was taken from the August 22, 2018 LAMMPS distribution.
File(s):
Si.sw

OpenKIM (MO_405512056662)
See Computed Properties
Notes: Listing found at https://openkim.org. This Model corresponds to the Si.sw parameter file distributed with the LAMMPS package except that Si.sw uses epsilon=2.1683 and the KIM model uses 2.1682 (converted more precisely from 50 kcal/mol given in the SW paper). However, given the low accuracy of the source data, either is acceptable. Due to this difference, the Si.sw file from LAMMPS and the KIM model give slightly different results scaled by 2.1683/2.1682.
Link(s):
KIM page SW_StillingerWeber_1985_Si__MO_405512056662_005

F.H. Stillinger, and T.A. Weber (1986), "Erratum: Computer simulation of local order in condensed phases of silicon [Phys. Rev. B 31, 5262 (1985)]", Physical Review B, 33(2), 1451-1451. DOI: 10.1103/physrevb.33.1451.

LAMMPS pair_style sw (1985--Stillinger-F-H--Si--LAMMPS--ipr1)
See Computed Properties
Notes: This file was taken from the August 22, 2018 LAMMPS distribution.
File(s):
Si.sw

OpenKIM (MO_405512056662)
See Computed Properties
Notes: Listing found at https://openkim.org. This Model corresponds to the Si.sw parameter file distributed with the LAMMPS package except that Si.sw uses epsilon=2.1683 and the KIM model uses 2.1682 (converted more precisely from 50 kcal/mol given in the SW paper). However, given the low accuracy of the source data, either is acceptable. Due to this difference, the Si.sw file from LAMMPS and the KIM model give slightly different results scaled by 2.1683/2.1682.
Link(s):
KIM page SW_StillingerWeber_1985_Si__MO_405512056662_005


Si-U

2017--Beeler-B-Baskes-M-Andersson-D-et-al--U-Si
B. Beeler, M. Baskes, D. Andersson, M.W.D. Cooper, and Y. Zhang (2017), "A modified Embedded-Atom Method interatomic potential for uranium-silicide", Journal of Nuclear Materials, 495, 267-276. DOI: 10.1016/j.jnucmat.2017.08.025.
Abstract: Uranium-silicide (U-Si) fuels are being pursued as a possible accident tolerant fuel (ATF). This uranium alloy fuel benefits from higher thermal conductivity and higher fissile density compared to uranium dioxide (UO2). In order to perform engineering scale nuclear fuel performance simulations, the material properties of the fuel must be known. Currently, the experimental data available for U-Si fuels is rather limited. Thus, multiscale modeling efforts are underway to address this gap in knowledge. In this study, a semi-empirical modified Embedded-Atom Method (MEAM) potential is presented for the description of the U-Si system. The potential is fitted to the formation energy, defect energies and structural properties of U3Si2. The primary phase of interest (U3Si2) is accurately described over a wide temperature range and displays good behavior under irradiation and with free surfaces. The potential can also describe a variety of U-Si phases across the composition spectrum.

LAMMPS pair_style meam (modified) (2017--Beeler-B--U-Si--LAMMPS--ipr1)
See Computed Properties
Notes: These files were sent by B. Beeler (Idaho National Laboratory) on 21 Mar. 2018 and posted with his permission. Dr. Beeler noted that the provided MEAM parameter files also require the use of a MEAM modification file to be compiled with LAMMPS.
File(s):

Sn

2018--Ko-W-S-Kim-D-H-Kwon-Y-J-Lee-M--Sn
W.-S. Ko, D.-H. Kim, Y.-J. Kwon, and M. Lee (2018), "Atomistic Simulations of Pure Tin Based on a New Modified Embedded-Atom Method Interatomic Potential", Metals, 8(11), 900. DOI: 10.3390/met8110900.
Abstract: A new interatomic potential for the pure tin (Sn) system is developed on the basis of the second-nearest-neighbor modified embedded-atom-method formalism. The potential parameters were optimized based on the force-matching method utilizing the density functional theory (DFT) database of energies and forces of atomic configurations under various conditions. The developed potential significantly improves the reproducibility of many fundamental physical properties compared to previously reported modified embedded-atom method (MEAM) potentials, especially properties of the β phase that is stable at the ambient condition. Subsequent free energy calculations based on the quasiharmonic approximation and molecular-dynamics simulations verify that the developed potential can be successfully applied to study the allotropic phase transformation between α and β phases and diffusion phenomena of pure tin.

LAMMPS pair_style meam (2018--Ko-W-S--Sn--LAMMPS--ipr1)
See Computed Properties
Notes: These files were sent by Won-Seok Ko (School of Materials Science and Engineering, University of Ulsan) on 5 Nov. 2018 and posted with his permission.
File(s):

TWIP

2017--Wang-P-Xu-S-Liu-J-et-al--TWIP
P. Wang, S. Xu, J. Liu, X. Li, Y. Wei, H. Wang, H. Gao, and W. Yang (2017), "Atomistic simulation for deforming complex alloys with application toward TWIP steel and associated physical insights", Journal of the Mechanics and Physics of Solids, 98, 290-308. DOI: 10.1016/j.jmps.2016.09.008.
Abstract: The interest in promoting deformation twinning for plasticity is mounting for advanced materials. In contrast to disordered grain boundaries, highly organized twin boundaries are beneficial to promoting strength-ductility combination. Twinning deformation typically involves the kinetics of stacking faults, its interplay with dislocations, as well as the interactions between dislocations and twin boundaries. While the latter has been intensively studied, the dynamics of stacking faults has been rarely touched upon. In this work, we report new physical insights on the stacking fault dynamics in twin induced plasticity (TWIP) steels. The atomistic simulation is made possible by a newly introduced approach: meta-atom molecular dynamics simulation. The simulation suggests that the stacking fault interactions are dominated by dislocation reactions that take place spontaneously, different from the existing mechanisms. Whether to generate a single stacking fault, or a twinning partial and a trailing partial dislocation, depends upon a unique parameter, namely the stacking fault energy. The latter in turn determines the deformation twinning characteristics. The complex twin-slip and twin-dislocation interactions demonstrate the dual role of deformation twins as both the dislocation barrier and dislocation storage. This duality contributes to the high strength and high ductility of TWIP steels.

Notes: Dr. Peng Wang noted that this potential for TWIP steel was developed based on the concept "meta-atom method". The meta-atom method is developed based on the basic assumption that the mechanical properties of an alloy system are primarily governed by a finite set of material constants instead of specific atomic configurations. Once the completeness of this set of material constants is established, two systems with the same material constants should exhibit identical mechanical behaviors in experimental observations. In this way, a detailed distinction among various atomic species is discarded and an alloy system is represented by a set of meta-atoms with a single interatomic potential to fit all related material constants. This method is firstly published in Journal of the Mechanics and Physics of Solids (2017), 98, 290-308. It is not possible to model individual elements of Fe or Mn with this potential.

LAMMPS pair_style eam/fs (2017--Wang-P--TWIP--LAMMPS--ipr1)
See Computed Properties
Notes: This file was sent by P. Wang (Zhejiang University) on 24 Feb. 2017 and posted with the permission of Dr. Peng Wang and Prof. Hongtao Wang.
File(s): superseded


LAMMPS pair_style eam/fs (2017--Wang-P--TWIP--LAMMPS--ipr2)
See Computed Properties
Notes: Dr. P. Wang (Zhejiang University) sent a revised file on 25 Sept. 2017 to address significant confusion regarding the appropriate use of the potential. The file name was changed and the element label Fe was replaced with meta_TWIP. It is not possible to model individual elements of Fe or Mn with this potential.
File(s):

Ta

2015--Purja-Pun-G-P-Darling-K-A-Kecskes-L-J-Mishin-Y--Ta
G.P. Purja Pun, K.A. Darling, L.J. Kecskes, and Y. Mishin (2015), "Angular-dependent interatomic potential for the Cu-Ta system and its application to structural stability of nano-crystalline alloys", Acta Materialia, 100, 377-391. DOI: 10.1016/j.actamat.2015.08.052.
Abstract: Atomistic computer simulations are capable of providing insights into physical mechanisms responsible for the extraordinary structural stability and strength of immiscible Cu–Ta alloys. To enable reliable simulations of these alloys, we have developed an angular-dependent potential (ADP) for the Cu–Ta system by fitting to a large database of first-principles and experimental data. This, in turn, required the development of a new ADP potential for elemental Ta, which accurately reproduces a wide range of properties of Ta and is transferable to severely deformed states and diverse atomic environments. The new Cu–Ta potential is applied for studying the kinetics of grain growth in nano-crystalline Cu–Ta alloys with different chemical compositions. Ta atoms form nanometer-scale clusters preferentially located at grain boundaries (GBs) and triple junctions. These clusters pin some of the GBs in place and cause a drastic decrease in grain growth by the Zener pinning mechanism. The results of the simulations are well consistent with experimental observations and suggest possible mechanisms of the stabilization effect of Ta.

See Computed Properties
Notes: This file was provided by Yuri Mishin (George Mason University) on 2 Nov. 2018.
File(s):

2015--Thompson-A-P-Swiler-L-P-Trott-C-R-et-al--Ta
A.P. Thompson, L.P. Swiler, C.R. Trott, S.M. Foiles, and G.J. Tucker (2015), "Spectral neighbor analysis method for automated generation of quantum-accurate interatomic potentials", Journal of Computational Physics, 285, 316-330. DOI: 10.1016/j.jcp.2014.12.018.
Abstract: We present a new interatomic potential for solids and liquids called Spectral Neighbor Analysis Potential (SNAP). The SNAP potential has a very general form and uses machine-learning techniques to reproduce the energies, forces, and stress tensors of a large set of small configurations of atoms, which are obtained using high-accuracy quantum electronic structure (QM) calculations. The local environment of each atom is characterized by a set of bispectrum components of the local neighbor density projected onto a basis of hyperspherical harmonics in four dimensions. The bispectrum components are the same bond-orientational order parameters employed by the GAP potential [1]. The SNAP potential, unlike GAP, assumes a linear relationship between atom energy and bispectrum components. The linear SNAP coefficients are determined using weighted least-squares linear regression against the full QM training set. This allows the SNAP potential to be fit in a robust, automated manner to large QM data sets using many bispectrum components. The calculation of the bispectrum components and the SNAP potential are implemented in the LAMMPS parallel molecular dynamics code. We demonstrate that a previously unnoticed symmetry property can be exploited to reduce the computational cost of the force calculations by more than one order of magnitude. We present results for a SNAP potential for tantalum, showing that it accurately reproduces a range of commonly calculated properties of both the crystalline solid and the liquid phases. In addition, unlike simpler existing potentials, SNAP correctly predicts the energy barrier for screw dislocation migration in BCC tantalum.

LAMMPS pair_style hybrid/overlay zbl snap (2015--Thompson-A-P--Ta--LAMMPS--ipr1)
See Computed Properties
Notes: These files were taken from the 5 Sept 2018 LAMMPS distribution and are compatible with LAMMPS versions between 8 Oct 2014 and 30 May 2017. Ta06A.snap outlines the LAMMPS pair_style and pair_coeff lines to use.
File(s):
LAMMPS pair_style hybrid/overlay zbl snap (2015--Thompson-A-P--Ta--LAMMPS--ipr2)
See Computed Properties
Notes: These files were taken from the 8 Feb 2019 LAMMPS distribution. The parameter files Ta06A.snapcoeff and Ta06A.snapparam are compatible with LAMMPS versions between 30 May 2017 and 12 June 2019. Ta06A.snap outlines the LAMMPS pair_style and pair_coeff lines to use for LAMMPS versions after 3 Dec 2018. For earlier LAMMPS verions, use Ta06A.snap from the above potential version.
File(s):
LAMMPS pair_style hybrid/overlay zbl snap (2015--Thompson-A-P--Ta--LAMMPS--ipr3)
See Computed Properties
Notes: These files were taken from the 7 Aug 2019 LAMMPS distribution and are compatible with LAMMPS versions starting with 12 June 2019. Ta06A.snap outlines the LAMMPS pair_style and pair_coeff lines to use.
File(s):
OpenKIM (MO_359768485367)
See Computed Properties
Notes: Listing found at https://openkim.org. This KIM potential uses the same parameter files as 2015--Thompson-A-P--Ta--LAMMPS--ipr2, but the KIM implementation should still work with newer LAMMPS versions.
Link(s):

2013--Ravelo-R-Germann-T-C-Guerrero-O-et-al--Ta-1
R. Ravelo, T.C. Germann, O. Guerrero, Q. An, and B.L. Holian (2013), "Shock-induced plasticity in tantalum single crystals: Interatomic potentials and large-scale molecular-dynamics simulations", Physical Review B, 88(13), 134101. DOI: 10.1103/physrevb.88.134101.
Abstract: We report on large-scale nonequilibrium molecular dynamics simulations of shock wave compression in tantalum single crystals. Two new embedded atom method interatomic potentials of Ta have been developed and optimized by fitting to experimental and density functional theory data. The potentials reproduce the isothermal equation of state of Ta up to 300 GPa. We examined the nature of the plastic deformation and elastic limits as functions of crystal orientation. Shock waves along (100), (110), and (111) exhibit elastic-plastic two-wave structures. Plastic deformation in shock compression along (110) is due primarily to the formation of twins that nucleate at the shock front. The strain-rate dependence of the flow stress is found to be orientation dependent, with (110) shocks exhibiting the weaker dependence. Premelting at a temperature much below that of thermodynamic melting at the shock front is observed in all three directions for shock pressures above about 180 GPa.

Notes: This listing is for the reference's potential parameter set Ta1.

LAMMPS pair_style eam/alloy (2013--Ravelo-R--Ta-1--LAMMPS--ipr1)
See Computed Properties
Notes: Ta1 interaction in LAMMPS-compatible format. Approved by Prof. Ravelo (Univ. of Texas at El Paso) and posted on 15 Feb. 2014 with his permission.
File(s):
Ta1_Ravelo_2013.eam.alloy

SPaSM (2013--Ravelo-R--Ta-1--SPaSM--ipr1)
Notes: Ta1 interaction in SPaSM tables. Approved by Prof. Ravelo (Univ. of Texas at El Paso) and posted on 15 Feb. 2014 with his permission.
File(s):
Ta1_Ravelo_2013.SPaSM

OpenKIM (MO_816821594689)
See Computed Properties
Notes: Listing found at https://openkim.org. This KIM potential is based on the files from 2013--Ravelo-R--Ta-1--LAMMPS--ipr1.
Link(s):
KIM page EAM_Dynamo_RaveloGermannGuerrero_2013Ta1_Ta__MO_816821594689_000


2013--Ravelo-R-Germann-T-C-Guerrero-O-et-al--Ta-2
R. Ravelo, T.C. Germann, O. Guerrero, Q. An, and B.L. Holian (2013), "Shock-induced plasticity in tantalum single crystals: Interatomic potentials and large-scale molecular-dynamics simulations", Physical Review B, 88(13), 134101. DOI: 10.1103/physrevb.88.134101.
Abstract: We report on large-scale nonequilibrium molecular dynamics simulations of shock wave compression in tantalum single crystals. Two new embedded atom method interatomic potentials of Ta have been developed and optimized by fitting to experimental and density functional theory data. The potentials reproduce the isothermal equation of state of Ta up to 300 GPa. We examined the nature of the plastic deformation and elastic limits as functions of crystal orientation. Shock waves along (100), (110), and (111) exhibit elastic-plastic two-wave structures. Plastic deformation in shock compression along (110) is due primarily to the formation of twins that nucleate at the shock front. The strain-rate dependence of the flow stress is found to be orientation dependent, with (110) shocks exhibiting the weaker dependence. Premelting at a temperature much below that of thermodynamic melting at the shock front is observed in all three directions for shock pressures above about 180 GPa.

Notes: This listing is for the reference's potential parameter set Ta2.

LAMMPS pair_style eam/alloy (2013--Ravelo-R--Ta-2--LAMMPS--ipr1)
See Computed Properties
Notes: Ta2 interaction in LAMMPS-compatible format. Approved by Prof. Ravelo (Univ. of Texas at El Paso) and posted on 15 Feb. 2014 with his permission.
File(s):
Ta2_Ravelo_2013.eam.alloy

SPaSM (2013--Ravelo-R--Ta-2--SPaSM--ipr1)
Notes: Ta2 interaction in SPaSM tables. Approved by Prof. Ravelo (Univ. of Texas at El Paso) and posted on 15 Feb. 2014 with his permission.
File(s):
Ta2_Ravelo_2013.SPaSM

OpenKIM (MO_330376344314)
See Computed Properties
Notes: Listing found at https://openkim.org. This KIM potential is based on the files from 2013--Ravelo-R--Ta-2--LAMMPS--ipr1.
Link(s):
KIM page EAM_Dynamo_RaveloGermannGuerrero_2013Ta2_Ta__MO_330376344314_000


2004--Zhou-X-W-Johnson-R-A-Wadley-H-N-G--Ta
X.W. Zhou, R.A. Johnson, and H.N.G. Wadley (2004), "Misfit-energy-increasing dislocations in vapor-deposited CoFe/NiFe multilayers", Physical Review B, 69(14), 144113. DOI: 10.1103/physrevb.69.144113.
Abstract: Recent molecular dynamics simulations of the growth of [Ni0.8Fe0.2/Au] multilayers have revealed the formation of misfit-strain-reducing dislocation structures very similar to those observed experimentally. Here we report similar simulations showing the formation of edge dislocations near the interfaces of vapor-deposited (111) [NiFe/CoFe/Cu] multilayers. Unlike misfit dislocations that accommodate lattice mismatch, the dislocation structures observed here increase the mismatch strain energy. Stop-action observations of the dynamically evolving atomic structures indicate that during deposition on the (111) surface of a fcc lattice, adatoms may occupy either fcc sites or hcp sites. This results in the random formation of fcc and hcp domains, with dislocations at the domain boundaries. These dislocations enable atoms to undergo a shift from fcc to hcp sites, or vice versa. These shifts lead to missing atoms, and therefore a later deposited layer can have missing planes compared to a previously deposited layer. This dislocation formation mechanism can create tensile stress in fcc films. The probability that such dislocations are formed was found to quickly diminish under energetic deposition conditions.

FORTRAN (2004--Zhou-X-W--Ta--FORTRAN--ipr1)
Notes: These are the original files sent by X.W. Zhou (Sandia National Laboratory) and posted with his permission. C.A. Becker (NIST) modified create.f to include the reference in the generated potential files and the EAM.input file for this composition. These files can be used to generate alloy potentials for Cu, Ag, Au, Ni, Pd, Pt, Al, Pb, Fe, Mo, Ta, W, Mg, Co, Ti, and Zr by editing EAM.input. However, as addressed in the reference, these potentials were not designed for use with metal compounds.
File(s): superseded


LAMMPS pair_style eam/alloy (2004--Zhou-X-W--Ta--LAMMPS--ipr1)
See Computed Properties
Notes: This file was generated by C.A. Becker (NIST) from create.f and posted with X.W. Zhou's (Sandia National Laboratory) permission.
File(s): superseded


FORTRAN (2004--Zhou-X-W--Ta--FORTRAN--ipr2)
Notes: The file Zhou04_create_v2.f is an updated version of create.f modified by L.M. Hale (NIST) following advice from X.W. Zhou (Sandia National Laboratory). This version removes spurious fluctuations in the tabulated functions of the original potential files caused by single/double precision floating point number conflicts.
File(s):
README_v2
Zhou04_create_v2.f
EAM.input.Ta
EAM_code

LAMMPS pair_style eam/alloy (2004--Zhou-X-W--Ta--LAMMPS--ipr2)
See Computed Properties
Notes: This file was generated by L.M. Hale from Zhou04_create_v2.f on 13 April 2018 and posted with X.W. Zhou's (Sandia National Laboratory) permission. This version corrects an issue with spurious fluctuations in the tabulated functions.
File(s):
Ta_Zhou04.eam.alloy

OpenKIM (MO_130046220009)
See Computed Properties
Notes: Listing found at https://openkim.org. This KIM potential is based on the files from 2004--Zhou-X-W--Ta--LAMMPS--ipr1.
Link(s): superseded


OpenKIM (MO_568033730744)
See Computed Properties
Notes: Listing found at https://openkim.org. This KIM potential is based on the files from 2004--Zhou-X-W--Ta--LAMMPS--ipr2.
Link(s):
KIM page EAM_Dynamo_ZhouJohnsonWadley_2004NISTretabulation_Ta__MO_568033730744_000


2003--Han-S-Zepeda-Ruiz-L-A-Ackland-G-J-et-al--Ta
S. Han, L.A. Zepeda-Ruiz, G.J. Ackland, R. Car, and D.J. Srolovitz (2003), "Interatomic potential for vanadium suitable for radiation damage simulations", Journal of Applied Physics, 93(6), 3328-3335. DOI: 10.1063/1.1555275.
Abstract: The ability to predict the behavior of point defects in metals, particularly interstitial defects, is central to accurate modeling of the microstructural evolution in environments with high radiation fluxes. Existing interatomic potentials of embedded atom method type predict disparate stable interstitial defect configurations in vanadium. This is not surprising since accurate first-principles interstitial data were not available when these potentials were fitted. In order to provide the input information required to fit a vanadium potential appropriate for radiation damage studies, we perform a series of first-principles calculations on six different interstitial geometries and vacancies. These calculations identify the 〈111〉 dumbbell as the most stable interstitial with a formation energy of approximately 3.1 eV, at variance with predictions based upon existing potentials. Our potential is of Finnis–Sinclair type and is fitted exactly to the experimental equilibrium lattice parameter, cohesive energy, elastic constants and a calculated unrelaxed vacancy formation energy. Two additional potential parameters were used to obtain the best fit to the set of interstitial formation energies determined from the first-principles calculations. The resulting potential was found to accurately predict both the magnitude and ordering of the formation energies of six interstitial configurations and the unrelaxed vacancy ground state, in addition to accurately describing the migration characteristics of the stable interstitial and vacancy. This vanadium potential is capable of describing the point defect properties appropriate for radiation damage simulations as well as for simulations of more common crystal and simple defect properties.

Moldy FS (2003--Han-S--Ta--MOLDY--ipr1)
Notes: The parameters in Ta.moldy were obtained from http://homepages.ed.ac.uk/graeme/moldy/moldy.html and posted with the permission of G.J. Ackland.
File(s):