Ac

2015--Elliott-R-S-Akerson-A--Ac
R.S. Elliott, and A. Akerson (2015), "Efficient "universal" shifted Lennard-Jones model for all KIM API supported species".

Ag

2022--Alvi-S-M-A-A-Faiyad-A-Munshi-M-A-M-et-al--Ag
S.M.A.A. Alvi, A. Faiyad, M.A.M. Munshi, M. Motalab, M.M. Islam, and S. Saha (2022), "Cyclic and tensile deformations of Gold–Silver core shell systems using newly parameterized MEAM potential", Mechanics of Materials, 169, 104304. DOI: 10.1016/j.mechmat.2022.104304.

2015--Elliott-R-S-Akerson-A--Ag
R.S. Elliott, and A. Akerson (2015), "Efficient "universal" shifted Lennard-Jones model for all KIM API supported species".

2006--Williams-P-L-Mishin-Y-Hamilton-J-C--Ag
P.L. Williams, Y. Mishin, and J.C. Hamilton (2006), "An embedded-atom potential for the Cu-Ag system", Modelling and Simulation in Materials Science and Engineering, 14(5), 817-833. DOI: 10.1088/0965-0393/14/5/002.

2004--Zhou-X-W-Johnson-R-A-Wadley-H-N-G--Ag
X.W. Zhou, R.A. Johnson, and H.N.G. Wadley (2004), "Misfit-energy-increasing dislocations in vapor-deposited CoFe/NiFe multilayers", Physical Review B, 69(14), 144113. DOI: 10.1103/physrevb.69.144113.

2003--Lee-B-J-Shim-J-H-Baskes-M-I--Ag
B.-J. Lee, J.-H. Shim, and M.I. Baskes (2003), "Semiempirical atomic potentials for the fcc metals Cu, Ag, Au, Ni, Pd, Pt, Al, and Pb based on first and second nearest-neighbor modified embedded atom method", Physical Review B, 68(14), 144112. DOI: 10.1103/physrevb.68.144112.

1996--Jacobsen-K-W-Stoltze-P-Norskov-J-K--Ag
K.W. Jacobsen, P. Stoltze, and J.K. Nørskov (1996), "A semi-empirical effective medium theory for metals and alloys", Surface Science, 366(2), 394-402. DOI: 10.1016/0039-6028(96)00816-3.

1989--Adams-J-B-Foiles-S-M-Wolfer-W-G--Ag
J.B. Adams, S.M. Foiles, and W.G. Wolfer (1989), "Self-diffusion and impurity diffusion of fcc metals using the five-frequency model and the Embedded Atom Method", Journal of Materials Research, 4(1), 102-112. DOI: 10.1557/jmr.1989.0102.

1987--Ackland-G-J-Tichy-G-Vitek-V-Finnis-M-W--Ag
G.J. Ackland, G. Tichy, V. Vitek, and M.W. Finnis (1987), "Simple N-body potentials for the noble metals and nickel", Philosophical Magazine A, 56(6), 735-756. DOI: 10.1080/01418618708204485.

1986--Foiles-S-M-Baskes-M-I-Daw-M-S--Ag
S.M. Foiles, M.I. Baskes, and M.S. Daw (1986), "Embedded-atom-method functions for the fcc metals Cu, Ag, Au, Ni, Pd, Pt, and their alloys", Physical Review B, 33(12), 7983-7991. DOI: 10.1103/physrevb.33.7983.

1959--Girifalco-L-A-Weizer-V-G--Ag
L.A. Girifalco, and V.G. Weizer (1959), "Application of the Morse Potential Function to Cubic Metals", Physical Review, 114(3), 687-690. DOI: 10.1103/physrev.114.687.

1996--Jacobsen-K-W-Stoltze-P-Norskov-J-K--Al-Ag-Au-Cu-Ni-Pd-Pt
K.W. Jacobsen, P. Stoltze, and J.K. Nørskov (1996), "A semi-empirical effective medium theory for metals and alloys", Surface Science, 366(2), 394-402. DOI: 10.1016/0039-6028(96)00816-3.

2022--Alvi-S-M-A-A-Faiyad-A-Munshi-M-A-M-et-al--Ag-Au
S.M.A.A. Alvi, A. Faiyad, M.A.M. Munshi, M. Motalab, M.M. Islam, and S. Saha (2022), "Cyclic and tensile deformations of Gold–Silver core shell systems using newly parameterized MEAM potential", Mechanics of Materials, 169, 104304. DOI: 10.1016/j.mechmat.2022.104304.

2004--Zhou-X-W-Johnson-R-A-Wadley-H-N-G--Cu-Ag-Au
X.W. Zhou, R.A. Johnson, and H.N.G. Wadley (2004), "Misfit-energy-increasing dislocations in vapor-deposited CoFe/NiFe multilayers", Physical Review B, 69(14), 144113. DOI: 10.1103/physrevb.69.144113.

1989--Adams-J-B-Foiles-S-M-Wolfer-W-G--Ag-Au-Cu-Ni-Pd-Pt
J.B. Adams, S.M. Foiles, and W.G. Wolfer (1989), "Self-diffusion and impurity diffusion of fcc metals using the five-frequency model and the Embedded Atom Method", Journal of Materials Research, 4(1), 102-112. DOI: 10.1557/jmr.1989.0102.

1986--Foiles-S-M-Baskes-M-I-Daw-M-S--Ag-Au-Cu-Ni-Pd-Pt
S.M. Foiles, M.I. Baskes, and M.S. Daw (1986), "Embedded-atom-method functions for the fcc metals Cu, Ag, Au, Ni, Pd, Pt, and their alloys", Physical Review B, 33(12), 7983-7991. DOI: 10.1103/physrevb.33.7983.

2009--Kang-K-H-Sa-I-Lee-J-C-et-al--Cu-Ag
K.-H. Kang, I. Sa, J.-C. Lee, E. Fleury, and B.-J. Lee (2009), "Atomistic modeling of the Cu–Zr–Ag bulk metallic glass system", Scripta Materialia, 61(8), 801-804. DOI: 10.1016/j.scriptamat.2009.07.002.

2009--Wu-H-H-Trinkle-D-R--Cu-Ag
H.H. Wu, and D.R. Trinkle (2009), "Cu/Ag EAM potential optimized for heteroepitaxial diffusion from ab initio data", Computational Materials Science, 47(2), 577-583. DOI: 10.1016/j.commatsci.2009.09.026.

2006--Williams-P-L-Mishin-Y-Hamilton-J-C--Cu-Ag
P.L. Williams, Y. Mishin, and J.C. Hamilton (2006), "An embedded-atom potential for the Cu-Ag system", Modelling and Simulation in Materials Science and Engineering, 14(5), 817-833. DOI: 10.1088/0965-0393/14/5/002.

2009--Kang-K-H-Sa-I-Lee-J-C-et-al--Cu-Zr-Ag
K.-H. Kang, I. Sa, J.-C. Lee, E. Fleury, and B.-J. Lee (2009), "Atomistic modeling of the Cu–Zr–Ag bulk metallic glass system", Scripta Materialia, 61(8), 801-804. DOI: 10.1016/j.scriptamat.2009.07.002.

2013--Hale-L-M-Wong-B-M-Zimmerman-J-A-Zhou-X-W--Pd-Ag-H-Hybrid
L.M. Hale, B.M. Wong, J.A. Zimmerman, and X.W. Zhou (2013), "Atomistic potentials for palladium-silver hydrides", Modelling and Simulation in Materials Science and Engineering, 21(4), 045005. DOI: 10.1088/0965-0393/21/4/045005.

2013--Hale-L-M-Wong-B-M-Zimmerman-J-A-Zhou-X-W--Pd-Ag-H-Morse
L.M. Hale, B.M. Wong, J.A. Zimmerman, and X.W. Zhou (2013), "Atomistic potentials for palladium-silver hydrides", Modelling and Simulation in Materials Science and Engineering, 21(4), 045005. DOI: 10.1088/0965-0393/21/4/045005.

2018--Pan-Z-Borovikov-V-Mendelev-M-I-Sansoz-F--Ag-Ni
Z. Pan, V. Borovikov, M.I. Mendelev, and F. Sansoz (2018), "Development of a semi-empirical potential for simulation of Ni solute segregation into grain boundaries in Ag", Modelling and Simulation in Materials Science and Engineering, 26(7), 075004. DOI: 10.1088/1361-651x/aadea3.

2009--Kang-K-H-Sa-I-Lee-J-C-et-al--Zr-Ag
K.-H. Kang, I. Sa, J.-C. Lee, E. Fleury, and B.-J. Lee (2009), "Atomistic modeling of the Cu–Zr–Ag bulk metallic glass system", Scripta Materialia, 61(8), 801-804. DOI: 10.1016/j.scriptamat.2009.07.002.

2013--Gao-H-Otero-de-la-Roza-A-Aouadi-S-M-et-al--AgTaO3
H. Gao, A. Otero-de-la-Roza, S.M. Aouadi, E.R. Johnson, and A. Martini (2013), "An empirical model for silver tantalate", Modelling and Simulation in Materials Science and Engineering, 21(5), 055002. DOI: 10.1088/0965-0393/21/5/055002.

Al

2020--Purja-Pun-G-P-Yamakov-V-Hickman-J-et-al--Al
G.P. Purja Pun, V. Yamakov, J. Hickman, E.H. Glaessgen, and Y. Mishin (2020), "Development of a general-purpose machine-learning interatomic potential for aluminum by the physically informed neural network method", Physical Review Materials, 4(11), 113807. DOI: 10.1103/physrevmaterials.4.113807.
G.P. Purja Pun, R. Batra, R. Ramprasad, and Y. Mishin (2019), "Physically-informed artificial neural networks for atomistic modeling of materials", Nature Communications, 10(1), 2339. DOI: 10.1038/s41467-019-10343-5.

2017--Botu-V-Batra-R-Chapman-J-Ramprasad-R--Al
V. Botu, R. Batra, J. Chapman, and R. Ramprasad (2017), "Machine Learning Force Fields: Construction, Validation, and Outlook", The Journal of Physical Chemistry C, 121(1), 511-522. DOI: 10.1021/acs.jpcc.6b10908.

2015--Botu-V-Ramprasad-R--Al
V. Botu, and R. Ramprasad (2015), "Learning scheme to predict atomic forces and accelerate materials simulations", Physical Review B, 92(9), 094306. DOI: 10.1103/physrevb.92.094306.

2015--Choudhary-K-Liang-T-Chernatynskiy-A-et-al--Al
K. Choudhary, T. Liang, A. Chernatynskiy, Z. Lu, A. Goyal, S.R. Phillpot, and S.B. Sinnott (2015), "Charge optimized many-body potential for aluminum", Journal of Physics: Condensed Matter, 27(1), 015003. DOI: 10.1088/0953-8984/27/1/015003.

2015--Elliott-R-S-Akerson-A--Al
R.S. Elliott, and A. Akerson (2015), "Efficient "universal" shifted Lennard-Jones model for all KIM API supported species".

2015--Pascuet-M-I-Fernandez-J-R--Al
M.I. Pascuet, and J.R. Fernández (2015), "Atomic interaction of the MEAM type for the study of intermetallics in the Al-U alloy", Journal of Nuclear Materials, 467, 229-239. DOI: 10.1016/j.jnucmat.2015.09.030.

2009--Winey-J-M-Kubota-A-Gupta-Y-M--Al
J.M. Winey, A. Kubota, and Y.M. Gupta (2009), "A thermodynamic approach to determine accurate potentials for molecular dynamics simulations: thermoelastic response of aluminum", Modelling and Simulation in Materials Science and Engineering, 17(5), 055004. DOI: 10.1088/0965-0393/17/5/055004.
J.M. Winey, A. Kubota, and Y.M. Gupta (2010), "Thermodynamic approach to determine accurate potentials for molecular dynamics simulations: thermoelastic response of aluminum", Modelling and Simulation in Materials Science and Engineering, 18(2), 029801. DOI: 10.1088/0965-0393/18/2/029801.

2009--Zhakhovskii-V-V-Inogamov-N-A-Petrov-Y-V-et-al--Al
V.V. Zhakhovskii, N.A. Inogamov, Y.V. Petrov, S.I. Ashitkov, and K. Nishihara (2009), "Molecular dynamics simulation of femtosecond ablation and spallation with different interatomic potentials", Applied Surface Science, 255(24), 9592-9596. DOI: 10.1016/j.apsusc.2009.04.082.

2008--Mendelev-M-I-Kramer-M-J-Becker-C-A-Asta-M--Al
M.I. Mendelev, M.J. Kramer, C.A. Becker, and M. Asta (2008), "Analysis of semi-empirical interatomic potentials appropriate for simulation of crystalline and liquid Al and Cu", Philosophical Magazine, 88(12), 1723-1750. DOI: 10.1080/14786430802206482.

2004--Liu-X-Y-Ercolessi-F-Adams-J-B--Al
X.-Y. Liu, F. Ercolessi, and J.B. Adams (2004), "Aluminium interatomic potential from density functional theory calculations with improved stacking fault energy", Modelling and Simulation in Materials Science and Engineering, 12(4), 665-670. DOI: 10.1088/0965-0393/12/4/007.

2004--Zhou-X-W-Johnson-R-A-Wadley-H-N-G--Al
X.W. Zhou, R.A. Johnson, and H.N.G. Wadley (2004), "Misfit-energy-increasing dislocations in vapor-deposited CoFe/NiFe multilayers", Physical Review B, 69(14), 144113. DOI: 10.1103/physrevb.69.144113.

2003--Lee-B-J-Shim-J-H-Baskes-M-I--Al
B.-J. Lee, J.-H. Shim, and M.I. Baskes (2003), "Semiempirical atomic potentials for the fcc metals Cu, Ag, Au, Ni, Pd, Pt, Al, and Pb based on first and second nearest-neighbor modified embedded atom method", Physical Review B, 68(14), 144112. DOI: 10.1103/physrevb.68.144112.

2003--Zope-R-R-Mishin-Y--Al
R.R. Zope, and Y. Mishin (2003), "Interatomic potentials for atomistic simulations of the Ti-Al system", Physical Review B, 68(2), 024102. DOI: 10.1103/physrevb.68.024102.

2001--Zhou-X-W-Wadley-H-N-G-Johnson-R-A-et-al--Al
X.W. Zhou, H.N.G. Wadley, R.A. Johnson, D.J. Larson, N. Tabat, A. Cerezo, A.K. Petford-Long, G.D.W. Smith, P.H. Clifton, R.L. Martens, and T.F. Kelly (2001), "Atomic scale structure of sputtered metal multilayers", Acta Materialia, 49(19), 4005-4015. DOI: 10.1016/s1359-6454(01)00287-7.

2000--Sturgeon-J-B-Laird-B-B--Al
J.B. Sturgeon, and B.B. Laird (2000), "Adjusting the melting point of a model system via Gibbs-Duhem integration: Application to a model of aluminum", Physical Review B, 62(22), 14720-14727. DOI: 10.1103/physrevb.62.14720.

1999--Mishin-Y-Farkas-D-Mehl-M-J-Papaconstantopoulos-D-A--Al
Y. Mishin, D. Farkas, M.J. Mehl, and D.A. Papaconstantopoulos (1999), "Interatomic potentials for monoatomic metals from experimental data and ab initio calculations", Physical Review B, 59(5), 3393-3407. DOI: 10.1103/physrevb.59.3393.

1996--Jacobsen-K-W-Stoltze-P-Norskov-J-K--Al
K.W. Jacobsen, P. Stoltze, and J.K. Nørskov (1996), "A semi-empirical effective medium theory for metals and alloys", Surface Science, 366(2), 394-402. DOI: 10.1016/0039-6028(96)00816-3.

1994--Ercolessi-F-B-Adams-J--Al
F. Ercolessi, and J. B Adams (1994), "Interatomic Potentials from First-Principles Calculations: The Force-Matching Method", Europhysics Letters (EPL), 26(8), 583-588. DOI: 10.1209/0295-5075/26/8/005.

1987--Jacobsen-K-W-Norskov-J-K-Puska-M-J--Al
K.W. Jacobsen, J.K. Norskov, and M.J. Puska (1987), "Interatomic interactions in the effective-medium theory", Physical Review B, 35(14), 7423-7442. DOI: 10.1103/physrevb.35.7423.

1959--Girifalco-L-A-Weizer-V-G--Al
L.A. Girifalco, and V.G. Weizer (1959), "Application of the Morse Potential Function to Cubic Metals", Physical Review, 114(3), 687-690. DOI: 10.1103/physrev.114.687.

2020--Starikov-S-Gordeev-I-Lysogorskiy-Y-et-al--Si-Au-Al
S. Starikov, I. Gordeev, Y. Lysogorskiy, L. Kolotova, and S. Makarov (2020), "Optimized interatomic potential for study of structure and phase transitions in Si-Au and Si-Al systems", Computational Materials Science, 184, 109891. DOI: 10.1016/j.commatsci.2020.109891.

2021--Plummer-G-Rathod-H-Srivastava-A-et-al--Ti-Al-C
G. Plummer, H. Rathod, A. Srivastava, M. Radovic, T. Ouisse, M. Yildizhan, P.O. Persson, K. Lambrinou, M.W. Barsoum, and G.J. Tucker (2021), "On the origin of kinking in layered crystalline solids", Materials Today, 43, 45-52. DOI: 10.1016/j.mattod.2020.11.014.

2019--Plummer-G-Tucker-G-J--Ti-Al-C
G. Plummer, and G.J. Tucker (2019), "Bond-order potentials for the Ti3AlC2 and Ti3SiC2 MAX phases", Physical Review B, 100(21), 214114. DOI: 10.1103/physrevb.100.214114.

2015--Purja-Pun-G-P-Yamakov-V-Mishin-Y--Al-Co
G.P. Purja Pun, V. Yamakov, and Y. Mishin (2015), "Interatomic potential for the ternary Ni–Al–Co system and application to atomistic modeling of the B2–L10 martensitic transformation", Modelling and Simulation in Materials Science and Engineering, 23(6), 065006. DOI: 10.1088/0965-0393/23/6/065006.

2012--Dong-W-P-Kim-H-K-Ko-W-S-et-al--Co-Al
W.-P. Dong, H.-K. Kim, W.-S. Ko, B.-M. Lee, and B.-J. Lee (2012), "Atomistic modeling of pure Co and Co–Al system", Calphad, 38, 7-16. DOI: 10.1016/j.calphad.2012.04.001.

1997--Vailhe-C-Farkas-D--Co-Al
C. Vailhé, and D. Farkas (1997), "Shear faults and dislocation core structures in B2 CoAl", Journal of Materials Research, 12(10), 2559-2570. DOI: 10.1557/jmr.1997.0340.

2020--Farkas-D-Caro-A--Fe-Ni-Cr-Co-Al
D. Farkas, and A. Caro (2020), "Model interatomic potentials for Fe–Ni–Cr–Co–Al high-entropy alloys", Journal of Materials Research, 35, 3031-3040. DOI: 10.1557/jmr.2020.294.

2015--Kim-Y-K-Jung-W-S-Lee-B-J--Ni-Al-Co
Y.-K. Kim, W.-S. Jung, and B.-J. Lee (2015), "Modified embedded-atom method interatomic potentials for the Ni-Co binary and the Ni-Al-Co ternary systems", Modelling and Simulation in Materials Science and Engineering, 23(5), 055004. DOI: 10.1088/0965-0393/23/5/055004.

2015--Purja-Pun-G-P-Yamakov-V-Mishin-Y--Ni-Al-Co
G.P. Purja Pun, V. Yamakov, and Y. Mishin (2015), "Interatomic potential for the ternary Ni–Al–Co system and application to atomistic modeling of the B2–L10 martensitic transformation", Modelling and Simulation in Materials Science and Engineering, 23(6), 065006. DOI: 10.1088/0965-0393/23/6/065006.

2006--Brommer-P-Gahler-F--Al-Ni-Co-a
P. Brommer, and F. Gähler (2006), "Effective potentials for quasicrystals fromab-initiodata", Philosophical Magazine, 86(6-8), 753-758. DOI: 10.1080/14786430500333349.

2006--Brommer-P-Gahler-F--Al-Ni-Co-b
P. Brommer, and F. Gähler (2006), "Effective potentials for quasicrystals fromab-initiodata", Philosophical Magazine, 86(6-8), 753-758. DOI: 10.1080/14786430500333349.

2022--Mahata-A-Mukhopadhyay-T-Asle-Zaeem-M--Al-Cu
A. Mahata, T. Mukhopadhyay, and M. Asle Zaeem (2022), "Modified embedded-atom method interatomic potentials for Al-Cu, Al-Fe and Al-Ni binary alloys: From room temperature to melting point", Computational Materials Science, 201, 110902. DOI: 10.1016/j.commatsci.2021.110902.

2016--Zhou-X-W-Ward-D-K-Foster-M-E--Al-Cu
X.W. Zhou, D.K. Ward, and M.E. Foster (2016), "An analytical bond-order potential for the aluminum copper binary system", Journal of Alloys and Compounds, 680, 752-767. DOI: 10.1016/j.jallcom.2016.04.055.

2011--Apostol-F-Mishin-Y--Al-Cu
F. Apostol, and Y. Mishin (2011), "Interatomic potential for the Al-Cu system", Physical Review B, 83(5), 054116. DOI: 10.1103/physrevb.83.054116.

1999--Liu-X-Y-Liu-C-L-Borucki-L-J--Al-Cu
X.-Y. Liu, C.-L. Liu, and L.J. Borucki (1999), "A new investigation of copper's role in enhancing Al-Cu interconnect electromigration resistance from an atomistic view", Acta Materialia, 47(11), 3227-3231. DOI: 10.1016/s1359-6454(99)00186-x.

1996--Cai-J-Ye-Y-Y--Al-Cu
J. Cai, and Y.Y. Ye (1996), "Simple analytical embedded-atom-potential model including a long-range force for fcc metals and their alloys", Physical Review B, 54(12), 8398-8410. DOI: 10.1103/physrevb.54.8398.

2012--Jelinek-B-Groh-S-Horstemeyer-M-F-et-al--Al-Si-Mg-Cu-Fe
B. Jelinek, S. Groh, M.F. Horstemeyer, J. Houze, S.G. Kim, G.J. Wagner, A. Moitra, and M.I. Baskes (2012), "Modified embedded atom method potential for Al, Si, Mg, Cu, and Fe alloys", Physical Review B, 85(24), 245102. DOI: 10.1103/physrevb.85.245102.

2018--Zhou-X-W-Ward-D-K-Foster-M-E--Al-Cu-H
X.W. Zhou, D.K. Ward, and M.E. Foster (2018), "A bond-order potential for the Al–Cu–H ternary system", New Journal of Chemistry, 42(7), 5215-5228. DOI: 10.1039/c8nj00513c.

2022--Mahata-A-Mukhopadhyay-T-Asle-Zaeem-M--Al-Fe
A. Mahata, T. Mukhopadhyay, and M. Asle Zaeem (2022), "Modified embedded-atom method interatomic potentials for Al-Cu, Al-Fe and Al-Ni binary alloys: From room temperature to melting point", Computational Materials Science, 201, 110902. DOI: 10.1016/j.commatsci.2021.110902.

2010--Lee-E-Lee-B-J--Fe-Al
E. Lee, and B.-J. Lee (2010), "Modified embedded-atom method interatomic potential for the Fe–Al system", Journal of Physics: Condensed Matter, 22(17), 175702. DOI: 10.1088/0953-8984/22/17/175702.

2005--Mendelev-M-I-Srolovitz-D-J-Ackland-G-J-Han-S--Al-Fe
M.I. Mendelev, D.J. Srolovitz, G.J. Ackland, and S. Han (2005), "Effect of Fe Segregation on the Migration of a Non-Symmetric Σ5 Tilt Grain Boundary in Al", Journal of Materials Research, 20(1), 208-218. DOI: 10.1557/jmr.2005.0024.

2011--Ko-W-S-Shim-J-H-Lee-B-J--Al-H
W.-S. Ko, J.-H. Shim, and B.-J. Lee (2011), "Atomistic modeling of the Al-H and Ni-H systems", Journal of Materials Research, 26(12), 1552-1560. DOI: 10.1557/jmr.2011.95.

2010--Apostol-F-Mishin-Y--Al-H
F. Apostol, and Y. Mishin (2010), "Angular-dependent interatomic potential for the aluminum-hydrogen system", Physical Review B, 82(14), 144115. DOI: 10.1103/physrevb.82.144115.

1995--Angelo-J-E-Moody-N-R-Baskes-M-I--Ni-Al-H
J.E. Angelo, N.R. Moody, and M.I. Baskes (1995), "Trapping of hydrogen to lattice defects in nickel", Modelling and Simulation in Materials Science and Engineering, 3(3), 289-307. DOI: 10.1088/0965-0393/3/3/001.

2013--Shim-J-H-Ko-W-S-Kim-K-H-et-al--V-Al-H
J.-H. Shim, W.-S. Ko, K.-H. Kim, H.-S. Lee, Y.-S. Lee, J.-Y. Suh, Y.W. Cho, and B.-J. Lee (2013), "Prediction of hydrogen permeability in V–Al and V–Ni alloys", Journal of Membrane Science, 430, 234-241. DOI: 10.1016/j.memsci.2012.12.019.

2009--Kim-Y-M-Kim-N-J-Lee-B-J--Mg-Al
Y.-M. Kim, N.J. Kim, and B.-J. Lee (2009), "Atomistic Modeling of pure Mg and Mg-Al systems", Calphad, 33(4), 650-657. DOI: 10.1016/j.calphad.2009.07.004.

2009--Mendelev-M-I-Asta-M-Rahman-M-J-Hoyt-J-J--Al-Mg
M.I. Mendelev, M. Asta, M.J. Rahman, and J.J. Hoyt (2009), "Development of interatomic potentials appropriate for simulation of solid-liquid interface properties in Al-Mg alloys", Philosophical Magazine, 89(34-36), 3269-3285. DOI: 10.1080/14786430903260727.

1998--Liu-X-Y-Adams-J-B--Al-Mg
X.-Y. Liu, and J.B. Adams (1998), "Grain-boundary segregation in Al-10%Mg alloys at hot working temperatures", Acta Materialia, 46(10), 3467-3476. DOI: 10.1016/s1359-6454(98)00038-x.

1997--Liu-X-Y-Ohotnicky-P-P-Adams-J-B-et-al--Al-Mg
X.-Y. Liu, P.P. Ohotnicky, J.B. Adams, C. Lane Rohrer, and R.W. Hyland (1997), "Anisotropic surface segregation in Al-Mg alloys", Surface Science, 373(2-3), 357-370. DOI: 10.1016/s0039-6028(96)01154-5.

2018--Dickel-D-E-Baskes-M-I-Aslam-I-Barrett-C-D--Mg-Al-Zn
D.E. Dickel, M.I. Baskes, I. Aslam, and C.D. Barrett (2018), "New interatomic potential for Mg-Al-Zn alloys with specific application to dilute Mg-based alloys", Modelling and Simulation in Materials Science and Engineering, 26(4), 045010. DOI: 10.1088/1361-651x/aabaad.

2012--Schopf-D-Brommer-P-Frigan-B-Trebin-H-R--Al-Mn-Pd
D. Schopf, P. Brommer, B. Frigan, and H.-R. Trebin (2012), "Embedded atom method potentials for Al-Pd-Mn phases", Physical Review B, 85(5), 054201. DOI: 10.1103/physrevb.85.054201.

1996--Farkas-D-Jones-C--Nb-Ti-Al
D. Farkas, and C. Jones (1996), "Interatomic potentials for ternary Nb - Ti - Al alloys", Modelling and Simulation in Materials Science and Engineering, 4(1), 23-32. DOI: 10.1088/0965-0393/4/1/004.

2022--Mahata-A-Mukhopadhyay-T-Asle-Zaeem-M--Al-Ni
A. Mahata, T. Mukhopadhyay, and M. Asle Zaeem (2022), "Modified embedded-atom method interatomic potentials for Al-Cu, Al-Fe and Al-Ni binary alloys: From room temperature to melting point", Computational Materials Science, 201, 110902. DOI: 10.1016/j.commatsci.2021.110902.

2015--Kumar-A-Chernatynskiy-A-Liang-T-et-al--Al-Ni
A. Kumar, A. Chernatynskiy, T. Liang, K. Choudhary, M.J. Noordhoek, Y.-T. Cheng, S.R. Phillpot, and S.B. Sinnott (2015), "Charge optimized many-body (COMB) potential for dynamical simulation of Ni-Al phases", Journal of Physics: Condensed Matter, 27(33), 336302. DOI: 10.1088/0953-8984/27/33/336302.

2009--Purja-Pun-G-P-Mishin-Y--Ni-Al
G.P. Purja Pun, and Y. Mishin (2009), "Development of an interatomic potential for the Ni-Al system", Philosophical Magazine, 89(34-36), 3245-3267. DOI: 10.1080/14786430903258184.

2007--Silva-A-C-Agren-J-Clavaguera-Mora-M-T-et-al--Al-Ni
A.C. Silva, J. Ågren, M.T. Clavaguera-Mora, D. Djurovic, T. Gomez-Acebo, B.-J. Lee, Z.-K. Liu, P. Miodownik, and H.J. Seifert (2007), "Applications of computational thermodynamics - the extension from phase equilibrium to phase transformations and other properties", Calphad, 31(1), 53-74. DOI: 10.1016/j.calphad.2006.02.006.

2004--Mishin-Y--Ni-Al
Y. Mishin (2004), "Atomistic modeling of the γ and γ'-phases of the Ni-Al system", Acta Materialia, 52(6), 1451-1467. DOI: 10.1016/j.actamat.2003.11.026.

2002--Mishin-Y-Mehl-M-J-Papaconstantopoulos-D-A--Ni-Al
Y. Mishin, M.J. Mehl, and D.A. Papaconstantopoulos (2002), "Embedded-atom potential for B2-NiAl", Physical Review B, 65(22), 224114. DOI: 10.1103/physrevb.65.224114.

2015--Kumar-A-Chernatynskiy-A-Liang-T-et-al--Al-Ni-O
A. Kumar, A. Chernatynskiy, T. Liang, K. Choudhary, M.J. Noordhoek, Y.-T. Cheng, S.R. Phillpot, and S.B. Sinnott (2015), "Charge optimized many-body (COMB) potential for dynamical simulation of Ni-Al phases", Journal of Physics: Condensed Matter, 27(33), 336302. DOI: 10.1088/0953-8984/27/33/336302.

2017--Kim-Y-K-Kim-H-K-Jung-W-S-Lee-B-J--Ni-Al-Ti
Y.-K. Kim, H.-K. Kim, W.-S. Jung, and B.-J. Lee (2017), "Development and application of Ni-Ti and Ni-Al-Ti 2NN-MEAM interatomic potentials for Ni-base superalloys", Computational Materials Science, 139, 225-233. DOI: 10.1016/j.commatsci.2017.08.002.

2015--Choudhary-K-Liang-T-Chernatynskiy-A-et-al--Al-O
K. Choudhary, T. Liang, A. Chernatynskiy, S.R. Phillpot, and S.B. Sinnott (2015), "Charge optimized many-body (COMB) potential for Al2O3 materials, interfaces, and nanostructures", Journal of Physics: Condensed Matter, 27(30), 305004. DOI: 10.1088/0953-8984/27/30/305004.

2000--Landa-A-Wynblatt-P-Siegel-D-J-et-al--Al-Pb
A. Landa, P. Wynblatt, D.J. Siegel, J.B. Adams, O.N. Mryasov, and X.-Y. Liu (2000), "Development of glue-type potentials for the Al-Pb system: phase diagram calculation", Acta Materialia, 48(8), 1753-1761. DOI: 10.1016/s1359-6454(00)00002-1.
A. Landa, P. Wynblatt, D.J. Siegel, J.B. Adams, O.N. Mryasov, and X.-Y. Liu (2000), "Development of glue-type potentials for the Al–Pb system: phase diagram calculation", Acta Materialia, 48(13), 3621. DOI: 10.1016/s1359-6454(00)00158-0.

2018--Jeong-G-U-Park-C-S-Do-H-S-et-al--Pd-Al
G.-U. Jeong, C.S. Park, H.-S. Do, S.-M. Park, and B.-J. Lee (2018), "Second nearest-neighbor modified embedded-atom method interatomic potentials for the Pd-M (M = Al, Co, Cu, Fe, Mo, Ni, Ti) binary systems", Calphad, 62, 172-186. DOI: 10.1016/j.calphad.2018.06.006.

2017--Kim-J-S-Seol-D-Ji-J-et-al--Pt-Al
J.-S. Kim, D. Seol, J. Ji, H.-S. Jang, Y. Kim, and B.-J. Lee (2017), "Second nearest-neighbor modified embedded-atom method interatomic potentials for the Pt-M (M = Al, Co, Cu, Mo, Ni, Ti, V) binary systems", Calphad, 59, 131-141. DOI: 10.1016/j.calphad.2017.09.005.

2021--Song-H-Mendelev-M-I--Al-Sm
H. Song, and M.I. Mendelev (2021), "Molecular Dynamics Study of Mechanism of Solid-Liquid Interface Migration and Defect Formation in Al3Sm Alloy", JOM, 73(8), 2312-2319. DOI: 10.1007/s11837-021-04733-8.

2015--Mendelev-M-I-Zhang-F-Ye-Z-et-al--Al-Sm
M.I. Mendelev, F. Zhang, Z. Ye, Y. Sun, M.C. Nguyen, S.R. Wilson, C.Z. Wang, and K.M. Ho (2015), "Development of interatomic potentials appropriate for simulation of devitrification of Al90Sm10alloy", Modelling and Simulation in Materials Science and Engineering, 23(4), 045013. DOI: 10.1088/0965-0393/23/4/045013.

2016--Kim-Y-K-Kim-H-K-Jung-W-S-Lee-B-J--Al-Ti
Y.-K. Kim, H.-K. Kim, W.-S. Jung, and B.-J. Lee (2016), "Atomistic modeling of the Ti–Al binary system", Computational Materials Science, 119, 1-8. DOI: 10.1016/j.commatsci.2016.03.038.

2003--Zope-R-R-Mishin-Y--Ti-Al
R.R. Zope, and Y. Mishin (2003), "Interatomic potentials for atomistic simulations of the Ti-Al system", Physical Review B, 68(2), 024102. DOI: 10.1103/physrevb.68.024102.

2015--Pascuet-M-I-Fernandez-J-R--Al-U
M.I. Pascuet, and J.R. Fernández (2015), "Atomic interaction of the MEAM type for the study of intermetallics in the Al-U alloy", Journal of Nuclear Materials, 467, 229-239. DOI: 10.1016/j.jnucmat.2015.09.030.

2013--Shim-J-H-Ko-W-S-Kim-K-H-et-al--V-Al
J.-H. Shim, W.-S. Ko, K.-H. Kim, H.-S. Lee, Y.-S. Lee, J.-Y. Suh, Y.W. Cho, and B.-J. Lee (2013), "Prediction of hydrogen permeability in V–Al and V–Ni alloys", Journal of Membrane Science, 430, 234-241. DOI: 10.1016/j.memsci.2012.12.019.

Am

2015--Elliott-R-S-Akerson-A--Am
R.S. Elliott, and A. Akerson (2015), "Efficient "universal" shifted Lennard-Jones model for all KIM API supported species".

Ar

2015--Elliott-R-S-Akerson-A--Ar
R.S. Elliott, and A. Akerson (2015), "Efficient "universal" shifted Lennard-Jones model for all KIM API supported species".

2005--Nguyen-T-X-Bhatia-S-K-Nicholson-D--Ar
T.X. Nguyen, S.K. Bhatia, and D. Nicholson (2005), "Prediction of High-Pressure Adsorption Equilibrium of Supercritical Gases Using Density Functional Theory", Langmuir, 21(7), 3187-3197. DOI: 10.1021/la047545h.

1972--Jelinek-G-E--Ar
G.E. Jelinek (1972), "Properties of Crystalline Argon, Krypton, and Xenon Based Upon the Born-Huang Method of Homogeneous Deformations. III. The Low-Temperature Limit", Physical Review B, 5(8), 3210-3217. DOI: 10.1103/physrevb.5.3210.

1958--Bernardes-N--Ar
N. Bernardes (1958), "Theory of Solid Ne, A, Kr, and Xe at 0°K", Physical Review, 112(5), 1534-1539. DOI: 10.1103/physrev.112.1534.

2000--Stuart-S-J-Tutein-A-B-Harrison-J-A--H-He-C-Ar-Xe
S.J. Stuart, A.B. Tutein, and J.A. Harrison (2000), "A reactive potential for hydrocarbons with intermolecular interactions", The Journal of Chemical Physics, 112(14), 6472-6486. DOI: 10.1063/1.481208.

1973--Kong-C-L-Chakrabarty-M-R--Ar-Ne
C.L. Kong, and M.R. Chakrabarty (1973), "Combining rules for intermolecular potential parameters. III. Application to the exp 6 potential", The Journal of Physical Chemistry, 77(22), 2668-2670. DOI: 10.1021/j100640a019.
W. Hogervorst (1971), "Transport and equilibrium properties of simple gases and forces between like and unlike atoms", Physica, 51(1), 77-89. DOI: 10.1016/0031-8914(71)90138-8.

As

2015--Elliott-R-S-Akerson-A--As
R.S. Elliott, and A. Akerson (2015), "Efficient "universal" shifted Lennard-Jones model for all KIM API supported species".

2006--Murdick-D-A-Zhou-X-W-Wadley-H-N-G-et-al--Ga-As
D.A. Murdick, X.W. Zhou, H.N.G. Wadley, D. Nguyen-Manh, R. Drautz, and D.G. Pettifor (2006), "Analytic bond-order potential for the gallium arsenide system", Physical Review B, 73(4), 045206. DOI: 10.1103/physrevb.73.045206.

2002--Albe-K-Nordlund-K-Nord-J-Kuronen-A--Ga-As
K. Albe, K. Nordlund, J. Nord, and A. Kuronen (2002), "Modeling of compound semiconductors: Analytical bond-order potential for Ga, As, and GaAs", Physical Review B, 66(3), 035205. DOI: 10.1103/physrevb.66.035205.

At

2015--Elliott-R-S-Akerson-A--At
R.S. Elliott, and A. Akerson (2015), "Efficient "universal" shifted Lennard-Jones model for all KIM API supported species".

Au

2022--Alvi-S-M-A-A-Faiyad-A-Munshi-M-A-M-et-al--Au
S.M.A.A. Alvi, A. Faiyad, M.A.M. Munshi, M. Motalab, M.M. Islam, and S. Saha (2022), "Cyclic and tensile deformations of Gold–Silver core shell systems using newly parameterized MEAM potential", Mechanics of Materials, 169, 104304. DOI: 10.1016/j.mechmat.2022.104304.

2017--Purja-Pun-G-P--Au
G.P. Purja Pun (2017), "to be published".

2015--Elliott-R-S-Akerson-A--Au
R.S. Elliott, and A. Akerson (2015), "Efficient "universal" shifted Lennard-Jones model for all KIM API supported species".

2012--Norman-G-E-Starikov-S-V-Stegailov-V-V--Au
G.E. Norman, S.V. Starikov, and V.V. Stegailov (2012), "Atomistic simulation of laser ablation of gold: Effect of pressure relaxation", Journal of Experimental and Theoretical Physics, 114(5), 792-800. DOI: 10.1134/s1063776112040115.
S.V. Starikov, A.Y. Faenov, T.A. Pikuz, I.Y. Skobelev, V.E. Fortov, S. Tamotsu, M. Ishino, M. Tanaka, N. Hasegawa, M. Nishikino, T. Kaihori, T. Imazono, M. Kando, and T. Kawachi (2014), "Soft picosecond X-ray laser nanomodification of gold and aluminum surfaces", Applied Physics B, 116(4), 1005-1016. DOI: 10.1007/s00340-014-5789-y.

2010--Olsson-P-A-T--Au
P.A.T. Olsson (2010), "Transverse resonant properties of strained gold nanowires", Journal of Applied Physics, 108(3), 034318. DOI: 10.1063/1.3460127.

2009--Zhakhovskii-V-V-Inogamov-N-A-Petrov-Y-V-et-al--Au
V.V. Zhakhovskii, N.A. Inogamov, Y.V. Petrov, S.I. Ashitkov, and K. Nishihara (2009), "Molecular dynamics simulation of femtosecond ablation and spallation with different interatomic potentials", Applied Surface Science, 255(24), 9592-9596. DOI: 10.1016/j.apsusc.2009.04.082.

2005--Grochola-G-Russo-S-P-Snook-I-K--Au
G. Grochola, S.P. Russo, and I.K. Snook (2005), "On fitting a gold embedded atom method potential using the force matching method", The Journal of Chemical Physics, 123(20), 204719. DOI: 10.1063/1.2124667.

2004--Zhou-X-W-Johnson-R-A-Wadley-H-N-G--Au
X.W. Zhou, R.A. Johnson, and H.N.G. Wadley (2004), "Misfit-energy-increasing dislocations in vapor-deposited CoFe/NiFe multilayers", Physical Review B, 69(14), 144113. DOI: 10.1103/physrevb.69.144113.

2003--Lee-B-J-Shim-J-H-Baskes-M-I--Au
B.-J. Lee, J.-H. Shim, and M.I. Baskes (2003), "Semiempirical atomic potentials for the fcc metals Cu, Ag, Au, Ni, Pd, Pt, Al, and Pb based on first and second nearest-neighbor modified embedded atom method", Physical Review B, 68(14), 144112. DOI: 10.1103/physrevb.68.144112.

1996--Jacobsen-K-W-Stoltze-P-Norskov-J-K--Au
K.W. Jacobsen, P. Stoltze, and J.K. Nørskov (1996), "A semi-empirical effective medium theory for metals and alloys", Surface Science, 366(2), 394-402. DOI: 10.1016/0039-6028(96)00816-3.

1989--Adams-J-B-Foiles-S-M-Wolfer-W-G--Au
J.B. Adams, S.M. Foiles, and W.G. Wolfer (1989), "Self-diffusion and impurity diffusion of fcc metals using the five-frequency model and the Embedded Atom Method", Journal of Materials Research, 4(1), 102-112. DOI: 10.1557/jmr.1989.0102.

1987--Ackland-G-J-Tichy-G-Vitek-V-Finnis-M-W--Au
G.J. Ackland, G. Tichy, V. Vitek, and M.W. Finnis (1987), "Simple N-body potentials for the noble metals and nickel", Philosophical Magazine A, 56(6), 735-756. DOI: 10.1080/01418618708204485.

1986--Foiles-S-M-Baskes-M-I-Daw-M-S--Au
S.M. Foiles, M.I. Baskes, and M.S. Daw (1986), "Embedded-atom-method functions for the fcc metals Cu, Ag, Au, Ni, Pd, Pt, and their alloys", Physical Review B, 33(12), 7983-7991. DOI: 10.1103/physrevb.33.7983.

2009--Guthikonda-V-S-Elliott-R-S--Au-Cd
V.S. Guthikonda, and R.S. Elliott (2009), "An effective interaction potential model for the shape memory alloy AuCd", Continuum Mechanics and Thermodynamics, 21(4), 269-295. DOI: 10.1007/s00161-009-0109-1.
V.S. Guthikonda, and R.S. Elliott (2010), "Erratum to: An effective interaction potential model for the shape memory alloy AuCd", Continuum Mechanics and Thermodynamics, 23(2), 177-183. DOI: 10.1007/s00161-010-0169-2.

2018--Gola-A-Pastewka-L--Au-Cu
A. Gola, and L. Pastewka (2018), "Embedded atom method potential for studying mechanical properties of binary Cu–Au alloys", Modelling and Simulation in Materials Science and Engineering, 26(5), 055006. DOI: 10.1088/1361-651x/aabce4.

2017--OBrien-C-J-Barr-C-M-Price-P-M-et-al--Pt-Au
C.J. O'Brien, C.M. Barr, P.M. Price, K. Hattar, and S.M. Foiles (2017), "Grain boundary phase transformations in PtAu and relevance to thermal stabilization of bulk nanocrystalline metals", Journal of Materials Science, 53(4), 2911-2927. DOI: 10.1007/s10853-017-1706-1.

2021--Wang-G-Xu-Y-Qian-P-Su-Y--Au-Rh
G. Wang, Y. Xu, P. Qian, and Y. Su (2021), "ADP potential for the Au-Rh system and its application in element segregation of nanoparticles", Computational Materials Science, 186, 110002. DOI: 10.1016/j.commatsci.2020.110002.

2018--Starikov-S-V-Lopanitsyna-N-Y-Smirnova-D-E-Makarov-S-V--Si-Au
S.V. Starikov, N.Y. Lopanitsyna, D.E. Smirnova, and S.V. Makarov (2018), "Atomistic simulation of Si-Au melt crystallization with novel interatomic potential", Computational Materials Science, 142, 303-311. DOI: 10.1016/j.commatsci.2017.09.054.

B

2015--Elliott-R-S-Akerson-A--B
R.S. Elliott, and A. Akerson (2015), "Efficient "universal" shifted Lennard-Jones model for all KIM API supported species".

2012--Kinaci-A-Haskins-J-B-Sevik-C-Cagin-T--B-N-C
A. Kınacı, J.B. Haskins, C. Sevik, and T. Çağın (2012), "Thermal conductivity of BN-C nanostructures", Physical Review B, 86(11), 115410. DOI: 10.1103/physrevb.86.115410.

2011--Daw-M-S-Lawson-J-W-Bauschlicher-C-W--Hf-B
M.S. Daw, J.W. Lawson, and C.W. Bauschlicher (2011), "Interatomic potentials for Zirconium Diboride and Hafnium Diboride", Computational Materials Science, 50(10), 2828-2835. DOI: 10.1016/j.commatsci.2011.04.038.
J.W. Lawson, M.S. Daw, and C.W. Bauschlicher (2011), "Lattice thermal conductivity of ultra high temperature ceramics ZrB2 and HfB2 from atomistic simulations", Journal of Applied Physics, 110(8), 083507. DOI: 10.1063/1.3647754.

B-N

2017--Los-J-H-Kroes-J-M-H-Albe-K-et-al--B-N
J.H. Los, J.M.H. Kroes, K. Albe, R.M. Gordillo, M.I. Katsnelson, and A. Fasolino (2017), "Extended Tersoff potential for boron nitride: Energetics and elastic properties of pristine and defective h-BN", Physical Review B, 96(18), 184108. DOI: 10.1103/physrevb.96.184108.

2011--Daw-M-S-Lawson-J-W-Bauschlicher-C-W--Zr-B
M.S. Daw, J.W. Lawson, and C.W. Bauschlicher (2011), "Interatomic potentials for Zirconium Diboride and Hafnium Diboride", Computational Materials Science, 50(10), 2828-2835. DOI: 10.1016/j.commatsci.2011.04.038.
J.W. Lawson, M.S. Daw, and C.W. Bauschlicher (2011), "Lattice thermal conductivity of ultra high temperature ceramics ZrB2 and HfB2 from atomistic simulations", Journal of Applied Physics, 110(8), 083507. DOI: 10.1063/1.3647754.
J.W. Lawson, M.S. Daw, T.H. Squire, and C.W. Bauschlicher (2012), "Computational Modeling of Grain Boundaries in ZrB2: Implications for Lattice Thermal Conductivity", Journal of the American Ceramic Society, 95(12), 3971-3978. DOI: 10.1111/jace.12037.

Ba

2015--Elliott-R-S-Akerson-A--Ba
R.S. Elliott, and A. Akerson (2015), "Efficient "universal" shifted Lennard-Jones model for all KIM API supported species".

1959--Girifalco-L-A-Weizer-V-G--Ba
L.A. Girifalco, and V.G. Weizer (1959), "Application of the Morse Potential Function to Cubic Metals", Physical Review, 114(3), 687-690. DOI: 10.1103/physrev.114.687.

Be

2015--Elliott-R-S-Akerson-A--Be
R.S. Elliott, and A. Akerson (2015), "Efficient "universal" shifted Lennard-Jones model for all KIM API supported species".

2013--Agrawal-A-Mishra-R-Ward-L-et-al--Be
A. Agrawal, R. Mishra, L. Ward, K.M. Flores, and W. Windl (2013), "An embedded atom method potential of beryllium", Modelling and Simulation in Materials Science and Engineering, 21(8), 085001. DOI: 10.1088/0965-0393/21/8/085001.

2018--Byggmastar-J-Hodille-E-A-Ferro-Y-Nordlund-K--Be-O
J. Byggmästar, E.A. Hodille, Y. Ferro, and K. Nordlund (2018), "Analytical bond order potential for simulations of BeO 1D and 2D nanostructures and plasma-surface interactions", Journal of Physics: Condensed Matter, 30(13), 135001. DOI: 10.1088/1361-648x/aaafb3.

Bh

2015--Elliott-R-S-Akerson-A--Bh
R.S. Elliott, and A. Akerson (2015), "Efficient "universal" shifted Lennard-Jones model for all KIM API supported species".

Bi

2021--Zhou-H-Dickel-D-E-Baskes-M-I-et-al--Bi
H. Zhou, D.E. Dickel, M.I. Baskes, S. Mun, and M. Asle Zaeem (2021), "A modified embedded-atom method interatomic potential for bismuth", Modelling and Simulation in Materials Science and Engineering, 29(6), 065008. DOI: 10.1088/1361-651x/ac095c.

2015--Elliott-R-S-Akerson-A--Bi
R.S. Elliott, and A. Akerson (2015), "Efficient "universal" shifted Lennard-Jones model for all KIM API supported species".

Bk

2015--Elliott-R-S-Akerson-A--Bk
R.S. Elliott, and A. Akerson (2015), "Efficient "universal" shifted Lennard-Jones model for all KIM API supported species".

Br

2015--Elliott-R-S-Akerson-A--Br
R.S. Elliott, and A. Akerson (2015), "Efficient "universal" shifted Lennard-Jones model for all KIM API supported species".

2011--Zhou-X-W-Doty-F-P-Yang-P--Li-Na-K-Rb-Cs-F-Cl-Br-I
X.W. Zhou, F.P. Doty, and P. Yang (2011), "Atomistic simulation study of atomic size effects on B1 (NaCl), B2 (CsCl), and B3 (zinc-blende) crystal stability of binary ionic compounds", Computational Materials Science, 50(8), 2470-2481. DOI: 10.1016/j.commatsci.2011.03.028.

C

2020--Wen-M-Tadmor-E-B--C-v1
M. Wen, and E.B. Tadmor (2020), "Uncertainty quantification in molecular simulations with dropout neural network potentials", npj Computational Materials, 6(1), 124. DOI: 10.1038/s41524-020-00390-8.

2020--Wen-M-Tadmor-E-B--C-v2
M. Wen, and E.B. Tadmor (2020), "Uncertainty quantification in molecular simulations with dropout neural network potentials", npj Computational Materials, 6(1), 124. DOI: 10.1038/s41524-020-00390-8.

2020--Wen-M-Tadmor-E-B--C-v3
M. Wen, and E.B. Tadmor (2020), "Uncertainty quantification in molecular simulations with dropout neural network potentials", npj Computational Materials, 6(1), 124. DOI: 10.1038/s41524-020-00390-8.

2019--Wen-M-Tadmor-E-B--C
M. Wen, and E.B. Tadmor (2019), "Hybrid neural network potential for multilayer graphene", Physical Review B, 100(19), 195419. DOI: 10.1103/physrevb.100.195419.

2015--Elliott-R-S-Akerson-A--C
R.S. Elliott, and A. Akerson (2015), "Efficient "universal" shifted Lennard-Jones model for all KIM API supported species".

2015--Zhou-X-W-Ward-D-K-Foster-M-E--C
X.W. Zhou, D.K. Ward, and M.E. Foster (2015), "An analytical bond-order potential for carbon", Journal of Computational Chemistry, 36(23), 1719-1735. DOI: 10.1002/jcc.23949.

2005--Lee-B-J-Lee-J-W--C
B.-J. Lee, and J.W. Lee (2005), "A modified embedded atom method interatomic potential for carbon", Calphad, 29(1), 7-16. DOI: 10.1016/j.calphad.2005.02.003.

2003--Los-J-H-Fasolino-A--C
J.H. Los, and A. Fasolino (2003), "Intrinsic long-range bond-order potential for carbon: Performance in Monte Carlo simulations of graphitization", Physical Review B, 68(2), 024107. DOI: 10.1103/physrevb.68.024107.

1988--Khor-K-E-Das-Sarma-S--C
K.E. Khor, and S. Das Sarma (1988), "Proposed universal interatomic potential for elemental tetrahedrally bonded semiconductors", Physical Review B, 38(5), 3318-3322. DOI: 10.1103/physrevb.38.3318.

1988--Tersoff-J--C
J. Tersoff (1988), "Empirical Interatomic Potential for Carbon, with Applications to Amorphous Carbon", Physical Review Letters, 61(25), 2879-2882. DOI: 10.1103/physrevlett.61.2879.

2021--Agrawal-A-Mirzaeifar-R--Cu-C
A. Agrawal, and R. Mirzaeifar (2021), "Copper-Graphene Composites; Developing the MEAM Potential and Investigating their Mechanical Properties", Computational Materials Science, 188, 110204. DOI: 10.1016/j.commatsci.2020.110204.

2015--Zhou-X-W-Ward-D-K-Foster-M-E--C-Cu
X.W. Zhou, D.K. Ward, and M.E. Foster (2015), "An analytical bond-order potential for carbon", Journal of Computational Chemistry, 36(23), 1719-1735. DOI: 10.1002/jcc.23949.

2014--Liyanage-L-S-I-Kim-S-G-Houze-J-et-al--Fe-C
L.S.I. Liyanage, S.-G. Kim, J. Houze, S. Kim, M.A. Tschopp, M.I. Baskes, and M.F. Horstemeyer (2014), "Structural, elastic, and thermal properties of cementite (Fe3C) calculated using a modified embedded atom method", Physical Review B, 89(9), 094102. DOI: 10.1103/physrevb.89.094102.

2013--Henriksson-K-O-E-Bjorkas-C-Nordlund-K--Fe-C
K.O.E. Henriksson, C. Björkas, and K. Nordlund (2013), "Atomistic simulations of stainless steels: a many-body potential for the Fe-Cr-C system", Journal of Physics: Condensed Matter, 25(44), 445401. DOI: 10.1088/0953-8984/25/44/445401.

2008--Hepburn-D-J-Ackland-G-J--Fe-C
D.J. Hepburn, and G.J. Ackland (2008), "Metallic-covalent interatomic potential for carbon in iron", Physical Review B, 78(16), 165115. DOI: 10.1103/physrevb.78.165115.

2006--Lee-B-J--Fe-C
B.-J. Lee (2006), "A modified embedded-atom method interatomic potential for the Fe–C system", Acta Materialia, 54(3), 701-711. DOI: 10.1016/j.actamat.2005.09.034.

2019--Aslam-I-Baskes-M-I-Dickel-D-E-et-al--Fe-Mn-Si-C
I. Aslam, M.I. Baskes, D.E. Dickel, S. Adibi, B. Li, H. Rhee, M. Asle Zaeem, and M.F. Horstemeyer (2019), "Thermodynamic and kinetic behavior of low-alloy steels: An atomic level study using an Fe-Mn-Si-C modified embedded atom method (MEAM) potential", Materialia, 8, 100473. DOI: 10.1016/j.mtla.2019.100473.

2010--Kim-H-K-Jung-W-S-Lee-B-J--Fe-Nb-C
H.-K. Kim, W.-S. Jung, and B.-J. Lee (2010), "Modified embedded-atom method interatomic potentials for the Nb-C, Nb-N, Fe-Nb-C, and Fe-Nb-N systems", Journal of Materials Research, 25(7), 1288-1297. DOI: 10.1557/jmr.2010.0182.

2009--Kim-H-K-Jung-W-S-Lee-B-J--Fe-Ti-C
H.-K. Kim, W.-S. Jung, and B.-J. Lee (2009), "Modified embedded-atom method interatomic potentials for the Fe-Ti-C and Fe-Ti-N ternary systems", Acta Materialia, 57(11), 3140-3147. DOI: 10.1016/j.actamat.2009.03.019.

2008--Chenoweth-K-van-Duin-A-C-T-Goddard-W-A--C-H-O
K. Chenoweth, A.C.T. van Duin, and W.A. Goddard (2008), "ReaxFF Reactive Force Field for Molecular Dynamics Simulations of Hydrocarbon Oxidation", The Journal of Physical Chemistry A, 112(5), 1040-1053. DOI: 10.1021/jp709896w.

2010--Kim-H-K-Jung-W-S-Lee-B-J--Nb-C
H.-K. Kim, W.-S. Jung, and B.-J. Lee (2010), "Modified embedded-atom method interatomic potentials for the Nb-C, Nb-N, Fe-Nb-C, and Fe-Nb-N systems", Journal of Materials Research, 25(7), 1288-1297. DOI: 10.1557/jmr.2010.0182.

2020--Jeong-G-U-Lee-B-J--Pd-C
G.-U. Jeong, and B.-J. Lee (2020), "Interatomic potentials for Pt-C and Pd-C systems and a study of structure-adsorption relationship in large Pt/graphene system", Computational Materials Science, 185, 109946. DOI: 10.1016/j.commatsci.2020.109946.

2020--Jeong-G-U-Lee-B-J--Pt-C
G.-U. Jeong, and B.-J. Lee (2020), "Interatomic potentials for Pt-C and Pd-C systems and a study of structure-adsorption relationship in large Pt/graphene system", Computational Materials Science, 185, 109946. DOI: 10.1016/j.commatsci.2020.109946.

2002--Albe-K-Nordlund-K-Averback-R-S--Pt-C
K. Albe, K. Nordlund, and R.S. Averback (2002), "Modeling the metal-semiconductor interaction: Analytical bond-order potential for platinum-carbon", Physical Review B, 65(19), 195124. DOI: 10.1103/physrevb.65.195124.

2014--Kang-K-H-Eun-T-Jun-M-C-Lee-B-J--Si-C
K.-H. Kang, T. Eun, M.-C. Jun, and B.-J. Lee (2014), "Governing factors for the formation of 4H or 6H-SiC polytype during SiC crystal growth: An atomistic computational approach", Journal of Crystal Growth, 389, 120-133. DOI: 10.1016/j.jcrysgro.2013.12.007.

2012--Jiang-C-Morgan-D-Szlufarska-I--Si-C
C. Jiang, D. Morgan, and I. Szlufarska (2012), "Carbon tri-interstitial defect: A model for the DII center", Physical Review B, 86(14), 144118. DOI: 10.1103/physrevb.86.144118.

2007--Vashishta-P-Kalia-R-K-Nakano-A-Rino-J-P--Si-C
P. Vashishta, R.K. Kalia, A. Nakano, and J.P. Rino (2007), "Interaction potential for silicon carbide: A molecular dynamics study of elastic constants and vibrational density of states for crystalline and amorphous silicon carbide", Journal of Applied Physics, 101(10), 103515. DOI: 10.1063/1.2724570.

2005--Erhart-P-Albe-K--Si-C-I
P. Erhart, and K. Albe (2005), "Analytical potential for atomistic simulations of silicon, carbon, and silicon carbide", Physical Review B, 71(3), 035211. DOI: 10.1103/physrevb.71.035211.

2005--Erhart-P-Albe-K--Si-C-II
P. Erhart, and K. Albe (2005), "Analytical potential for atomistic simulations of silicon, carbon, and silicon carbide", Physical Review B, 71(3), 035211. DOI: 10.1103/physrevb.71.035211.

1998--Devanathan-R-Diaz-de-la-Rubia-T-Weber-W-J--Si-C
R. Devanathan, T. Diaz de la Rubia, and W.J. Weber (1998), "Displacement threshold energies in β-SiC", Journal of Nuclear Materials, 253(1-3), 47-52. DOI: 10.1016/s0022-3115(97)00304-8.

1994--Tersoff-J--Si-C
J. Tersoff (1994), "Chemical order in amorphous silicon carbide", Physical Review B, 49(23), 16349-16352. DOI: 10.1103/physrevb.49.16349.

1990--Tersoff-J--Si-C
J. Tersoff (1990), "Carbon defects and defect reactions in silicon", Physical Review Letters, 64(15), 1757-1760. DOI: 10.1103/physrevlett.64.1757.

1989--Tersoff-J--Si-C
J. Tersoff (1989), "Modeling solid-state chemistry: Interatomic potentials for multicomponent systems", Physical Review B, 39(8), 5566-5568. DOI: 10.1103/physrevb.39.5566.
J. Tersoff (1990), "Erratum: Modeling solid-state chemistry: Interatomic potentials for multicomponent systems", Physical Review B, 41(5), 3248-3248. DOI: 10.1103/physrevb.41.3248.2.

2019--Plummer-G-Tucker-G-J--Ti-Si-C
G. Plummer, and G.J. Tucker (2019), "Bond-order potentials for the Ti3AlC2 and Ti3SiC2 MAX phases", Physical Review B, 100(21), 214114. DOI: 10.1103/physrevb.100.214114.

2008--Kim-Y-M-Lee-B-J--Ti-C
Y.-M. Kim, and B.-J. Lee (2008), "Modified embedded-atom method interatomic potentials for the Ti-C and Ti-N binary systems", Acta Materialia, 56(14), 3481-3489. DOI: 10.1016/j.actamat.2008.03.027.

CH

2014--Nouranian-S-Tschopp-M-A-Gwaltney-S-R-et-al--CH
S. Nouranian, M.A. Tschopp, S.R. Gwaltney, M.I. Baskes, and M.F. Horstemeyer (2014), "An interatomic potential for saturated hydrocarbons based on the modified embedded-atom method", Physical Chemistry Chemical Physics, 16(13), 6233-6249. DOI: 10.1039/c4cp00027g.

Ca

2015--Elliott-R-S-Akerson-A--Ca
R.S. Elliott, and A. Akerson (2015), "Efficient "universal" shifted Lennard-Jones model for all KIM API supported species".

2015--Kim-K-H-Jeon-J-B-Lee-B-J--Ca
K.-H. Kim, J.B. Jeon, and B.-J. Lee (2015), "Modified embedded-atom method interatomic potentials for Mg-X (X=Y, Sn, Ca) binary systems", Calphad, 48, 27-34. DOI: 10.1016/j.calphad.2014.10.001.

1959--Girifalco-L-A-Weizer-V-G--Ca
L.A. Girifalco, and V.G. Weizer (1959), "Application of the Morse Potential Function to Cubic Metals", Physical Review, 114(3), 687-690. DOI: 10.1103/physrev.114.687.

2007--Brommer-P-Gahler-F-Mihalkovic-M--Ca-Cd
P. Brommer, F. Gähler, and M. Mihalkovic̆ (2007), "Ordering and correlation of cluster orientations in CaCd6", Philosophical Magazine, 87(18-21), 2671-2677. DOI: 10.1080/14786430701361370.

2015--Kim-K-H-Jeon-J-B-Lee-B-J--Mg-Ca
K.-H. Kim, J.B. Jeon, and B.-J. Lee (2015), "Modified embedded-atom method interatomic potentials for Mg-X (X=Y, Sn, Ca) binary systems", Calphad, 48, 27-34. DOI: 10.1016/j.calphad.2014.10.001.

2019--Jang-H-S-Seol-D-Lee-B-J--Mg-Zn-Ca
H.-S. Jang, D. Seol, and B.-J. Lee (2019), "Modified embedded-atom method interatomic potential for the Mg–Zn–Ca ternary system", Calphad, 67, 101674. DOI: 10.1016/j.calphad.2019.101674.

Cd

2015--Elliott-R-S-Akerson-A--Cd
R.S. Elliott, and A. Akerson (2015), "Efficient "universal" shifted Lennard-Jones model for all KIM API supported species".

2013--Zhou-X-W-Ward-D-K-Martin-J-E-et-al--Zn-Cd-Hg-S-Se-Te
X.W. Zhou, D.K. Ward, J.E. Martin, F.B. van Swol, J.L. Cruz-Campa, and D. Zubia (2013), "Stillinger-Weber potential for the II-VI elements Zn-Cd-Hg-S-Se-Te", Physical Review B, 88(8), 085309. DOI: 10.1103/physrevb.88.085309.

2014--Zhou-X-W-Foster-M-E-van-Swol-F-B-et-al--Cd-Te-Se
X.W. Zhou, M.E. Foster, F.B. van Swol, J.E. Martin, and B.M. Wong (2014), "Analytical Bond-Order Potential for the Cd-Te-Se Ternary System", The Journal of Physical Chemistry C, 118(35), 20661-20679. DOI: 10.1021/jp505915u.

2012--Ward-D-K-Zhou-X-W-Wong-B-M-et-al--Cd-Te
D.K. Ward, X.W. Zhou, B.M. Wong, F.P. Doty, and J.A. Zimmerman (2012), "Analytical bond-order potential for the cadmium telluride binary system", Physical Review B, 85(11), 115206. DOI: 10.1103/physrevb.85.115206.

1989--Wang-Z-Q-Stroud-D-Markworth-A-J--Cd-Te
Z.Q. Wang, D. Stroud, and A.J. Markworth (1989), "Monte Carlo study of the liquid CdTe surface", Physical Review B, 40(5), 3129-3132. DOI: 10.1103/physrevb.40.3129.

2013--Ward-D-K-Zhou-X-Wong-B-M-Doty-F-P--Cd-Te-Zn
D.K. Ward, X. Zhou, B.M. Wong, and F.P. Doty (2013), "A refined parameterization of the analytical Cd-Zn-Te bond-order potential", Journal of Molecular Modeling, 19(12), 5469-5477. DOI: 10.1007/s00894-013-2004-8.

2012--Ward-D-K-Zhou-X-W-Wong-B-M-et-al--Cd-Te-Zn
D.K. Ward, X.W. Zhou, B.M. Wong, F.P. Doty, and J.A. Zimmerman (2012), "Analytical bond-order potential for the Cd-Zn-Te ternary system", Physical Review B, 86(24), 245203. DOI: 10.1103/physrevb.86.245203.

Ce

2015--Elliott-R-S-Akerson-A--Ce
R.S. Elliott, and A. Akerson (2015), "Efficient "universal" shifted Lennard-Jones model for all KIM API supported species".

2015--Broqvist-P-Kullgren-J-Wolf-M-J-et-al--Ce-O
P. Broqvist, J. Kullgren, M.J. Wolf, A.C.T. van Duin, and K. Hermansson (2015), "ReaxFF Force-Field for Ceria Bulk, Surfaces, and Nanoparticles", The Journal of Physical Chemistry C, 119(24), 13598-13609. DOI: 10.1021/acs.jpcc.5b01597.

Cf

2015--Elliott-R-S-Akerson-A--Cf
R.S. Elliott, and A. Akerson (2015), "Efficient "universal" shifted Lennard-Jones model for all KIM API supported species".

Cl

2015--Elliott-R-S-Akerson-A--Cl
R.S. Elliott, and A. Akerson (2015), "Efficient "universal" shifted Lennard-Jones model for all KIM API supported species".

Cm

2015--Elliott-R-S-Akerson-A--Cm
R.S. Elliott, and A. Akerson (2015), "Efficient "universal" shifted Lennard-Jones model for all KIM API supported species".

Cn

2015--Elliott-R-S-Akerson-A--Cn
R.S. Elliott, and A. Akerson (2015), "Efficient "universal" shifted Lennard-Jones model for all KIM API supported species".

Co

2015--Elliott-R-S-Akerson-A--Co
R.S. Elliott, and A. Akerson (2015), "Efficient "universal" shifted Lennard-Jones model for all KIM API supported species".

2012--Dong-W-P-Kim-H-K-Ko-W-S-et-al--Co
W.-P. Dong, H.-K. Kim, W.-S. Ko, B.-M. Lee, and B.-J. Lee (2012), "Atomistic modeling of pure Co and Co–Al system", Calphad, 38, 7-16. DOI: 10.1016/j.calphad.2012.04.001.

2012--Purja-Pun-G-P-Mishin-Y--Co
G.P. Purja Pun, and Y. Mishin (2012), "Embedded-atom potential for hcp and fcc cobalt", Physical Review B, 86(13), 134116. DOI: 10.1103/physrevb.86.134116.

2004--Zhou-X-W-Johnson-R-A-Wadley-H-N-G--Co
X.W. Zhou, R.A. Johnson, and H.N.G. Wadley (2004), "Misfit-energy-increasing dislocations in vapor-deposited CoFe/NiFe multilayers", Physical Review B, 69(14), 144113. DOI: 10.1103/physrevb.69.144113.

2017--Choi-W-M-Kim-Y-Seol-D-Lee-B-J--Co-Cr
W.-M. Choi, Y. Kim, D. Seol, and B.-J. Lee (2017), "Modified embedded-atom method interatomic potentials for the Co-Cr, Co-Fe, Co-Mn, Cr-Mn and Mn-Ni binary systems", Computational Materials Science, 130, 121-129. DOI: 10.1016/j.commatsci.2017.01.002.

2021--Deluigi-O-R-Pasianot-R-C-Valencia-F-J-et-al--Fe-Ni-Cr-Co-Cu
O.R. Deluigi, R.C. Pasianot, F.J. Valencia, A. Caro, D. Farkas, and E.M. Bringa (2021), "Simulations of primary damage in a High Entropy Alloy: Probing enhanced radiation resistance", Acta Materialia, 213, 116951. DOI: 10.1016/j.actamat.2021.116951.

2018--Farkas-D-Caro-A--Fe-Ni-Cr-Co-Cu
D. Farkas, and A. Caro (2018), "Model interatomic potentials and lattice strain in a high-entropy alloy", Journal of Materials Research, 33(19), 3218-3225. DOI: 10.1557/jmr.2018.245.

2020--Groger-R-Vitek-V-Dlouhy-A--Co-Cr-Fe-Mn-Ni
R. Gröger, V. Vitek, and A. Dlouhý (2020), "Effective pair potential for random fcc CoCrFeMnNi alloys", Modelling and Simulation in Materials Science and Engineering, 28(7), 075006. DOI: 10.1088/1361-651x/ab7f8b.

2018--Choi-W-M-Jo-Y-H-Sohn-S-S-et-al--Co-Ni-Cr-Fe-Mn
W.-M. Choi, Y.H. Jo, S.S. Sohn, S. Lee, and B.-J. Lee (2018), "Understanding the physical metallurgy of the CoCrFeMnNi high-entropy alloy: an atomistic simulation study", npj Computational Materials, 4(1), 1. DOI: 10.1038/s41524-017-0060-9.

2020--Wang-J-Oh-S-H-Lee-B-J--Cu-Co
J. Wang, S.-H. Oh, and B.-J. Lee (2020), "Second-nearest-neighbor modified embedded-atom method interatomic potential for Cu-M (M = Co, Mo) binary systems", Computational Materials Science, 178, 109627. DOI: 10.1016/j.commatsci.2020.109627.

2017--Choi-W-M-Kim-Y-Seol-D-Lee-B-J--Co-Fe
W.-M. Choi, Y. Kim, D. Seol, and B.-J. Lee (2017), "Modified embedded-atom method interatomic potentials for the Co-Cr, Co-Fe, Co-Mn, Cr-Mn and Mn-Ni binary systems", Computational Materials Science, 130, 121-129. DOI: 10.1016/j.commatsci.2017.01.002.

2018--Lee-E-Lee-K-R-Lee-B-J--Li-Co-O
E. Lee, K.-R. Lee, and B.-J. Lee (2018), "An interatomic potential for the Li-Co-O ternary system", Computational Materials Science, 142, 47-58. DOI: 10.1016/j.commatsci.2017.10.010.

2017--Choi-W-M-Kim-Y-Seol-D-Lee-B-J--Co-Mn
W.-M. Choi, Y. Kim, D. Seol, and B.-J. Lee (2017), "Modified embedded-atom method interatomic potentials for the Co-Cr, Co-Fe, Co-Mn, Cr-Mn and Mn-Ni binary systems", Computational Materials Science, 130, 121-129. DOI: 10.1016/j.commatsci.2017.01.002.

2016--Beland-L-K-Lu-C-Osetskiy-Y-N-et-al--Ni-Co
L.K. Béland, C. Lu, Y.N. Osetskiy, G.D. Samolyuk, A. Caro, L. Wang, and R.E. Stoller (2016), "Features of primary damage by high energy displacement cascades in concentrated Ni-based alloys", Journal of Applied Physics, 119(8), 085901. DOI: 10.1063/1.4942533.

2015--Kim-Y-K-Jung-W-S-Lee-B-J--Ni-Co
Y.-K. Kim, W.-S. Jung, and B.-J. Lee (2015), "Modified embedded-atom method interatomic potentials for the Ni-Co binary and the Ni-Al-Co ternary systems", Modelling and Simulation in Materials Science and Engineering, 23(5), 055004. DOI: 10.1088/0965-0393/23/5/055004.

2015--Purja-Pun-G-P-Yamakov-V-Mishin-Y--Ni-Co
G.P. Purja Pun, V. Yamakov, and Y. Mishin (2015), "Interatomic potential for the ternary Ni–Al–Co system and application to atomistic modeling of the B2–L10 martensitic transformation", Modelling and Simulation in Materials Science and Engineering, 23(6), 065006. DOI: 10.1088/0965-0393/23/6/065006.

2018--Jeong-G-U-Park-C-S-Do-H-S-et-al--Pd-Co
G.-U. Jeong, C.S. Park, H.-S. Do, S.-M. Park, and B.-J. Lee (2018), "Second nearest-neighbor modified embedded-atom method interatomic potentials for the Pd-M (M = Al, Co, Cu, Fe, Mo, Ni, Ti) binary systems", Calphad, 62, 172-186. DOI: 10.1016/j.calphad.2018.06.006.

2017--Kim-J-S-Seol-D-Ji-J-et-al--Pt-Co
J.-S. Kim, D. Seol, J. Ji, H.-S. Jang, Y. Kim, and B.-J. Lee (2017), "Second nearest-neighbor modified embedded-atom method interatomic potentials for the Pt-M (M = Al, Co, Cu, Mo, Ni, Ti, V) binary systems", Calphad, 59, 131-141. DOI: 10.1016/j.calphad.2017.09.005.

2020--Oh-S-H-Seol-D-Lee-B-J--Co-Ti
S.-H. Oh, D. Seol, and B.-J. Lee (2020), "Second nearest-neighbor modified embedded-atom method interatomic potentials for the Co-M (M = Ti, V) binary systems", Calphad, 70, 101791. DOI: 10.1016/j.calphad.2020.101791.

2020--Oh-S-H-Seol-D-Lee-B-J--Co-V
S.-H. Oh, D. Seol, and B.-J. Lee (2020), "Second nearest-neighbor modified embedded-atom method interatomic potentials for the Co-M (M = Ti, V) binary systems", Calphad, 70, 101791. DOI: 10.1016/j.calphad.2020.101791.

Cr

2018--Howells-C-A-Mishin-Y--Cr
C.A. Howells, and Y. Mishin (2018), "Angular-dependent interatomic potential for the binary Ni-Cr system", Modelling and Simulation in Materials Science and Engineering, 26(8), 085008. DOI: 10.1088/1361-651x/aae400.

2017--Choi-W-M-Kim-Y-Seol-D-Lee-B-J--Cr
W.-M. Choi, Y. Kim, D. Seol, and B.-J. Lee (2017), "Modified embedded-atom method interatomic potentials for the Co-Cr, Co-Fe, Co-Mn, Cr-Mn and Mn-Ni binary systems", Computational Materials Science, 130, 121-129. DOI: 10.1016/j.commatsci.2017.01.002.

2015--Elliott-R-S-Akerson-A--Cr
R.S. Elliott, and A. Akerson (2015), "Efficient "universal" shifted Lennard-Jones model for all KIM API supported species".

2001--Lee-B-J-Baskes-M-I-Kim-H-Cho-Y-K--Cr
B.-J. Lee, M.I. Baskes, H. Kim, and Y.K. Cho (2001), "Second nearest-neighbor modified embedded atom method potentials for bcc transition metals", Physical Review B, 64(18), 184102. DOI: 10.1103/physrevb.64.184102.

1959--Girifalco-L-A-Weizer-V-G--Cr
L.A. Girifalco, and V.G. Weizer (1959), "Application of the Morse Potential Function to Cubic Metals", Physical Review, 114(3), 687-690. DOI: 10.1103/physrev.114.687.

2015--Eich-S-M-Beinke-D-Schmitz-G--Fe-Cr
S.M. Eich, D. Beinke, and G. Schmitz (2015), "Embedded-atom potential for an accurate thermodynamic description of the iron-chromium system", Computational Materials Science, 104, 185-192. DOI: 10.1016/j.commatsci.2015.03.047.

2011--Bonny-G-Pasianot-R-C-Terentyev-D-Malerba-L--Fe-Cr
G. Bonny, R.C. Pasianot, D. Terentyev, and L. Malerba (2011), "Iron chromium potential to model high-chromium ferritic alloys", Philosophical Magazine, 91(12), 1724-1746. DOI: 10.1080/14786435.2010.545780.

2009--Stukowski-A-Sadigh-B-Erhart-P-Caro-A--Fe-Cr
A. Stukowski, B. Sadigh, P. Erhart, and A. Caro (2009), "Efficient implementation of the concentration-dependent embedded atom method for molecular-dynamics and Monte-Carlo simulations", Modelling and Simulation in Materials Science and Engineering, 17(7), 075005. DOI: 10.1088/0965-0393/17/7/075005.

2001--Lee-B-J-Shim-J-H-Park-H-M--Fe-Cr
B.-J. Lee, J.-H. Shim, and H.M. Park (2001), "A semi-empirical atomic potential for the Fe-Cr binary system", Calphad, 25(4), 527-534. DOI: 10.1016/s0364-5916(02)00005-6.

2022--Starikov-S-Smirnova-D-Pradhan-T-et-al--Fe-Cr-H
S. Starikov, D. Smirnova, T. Pradhan, I. Gordeev, R. Drautz, and M. Mrovec (2022), "Angular-dependent interatomic potential for large-scale atomistic simulation of the Fe-Cr-H ternary system", Physical Review Materials, 6(4), 043604. DOI: 10.1103/physrevmaterials.6.043604.

2019--Mendelev-M-I--Fe-Ni-Cr
M.I. Mendelev (2019), "to be published".

2018--Zhou-X-W-Foster-M-E-Sills-R-B--Fe-Ni-Cr
X.W. Zhou, M.E. Foster, and R.B. Sills (2018), "An Fe-Ni-Cr embedded atom method potential for austenitic and ferritic systems", Journal of Computational Chemistry, 39(29), 2420-2431. DOI: 10.1002/jcc.25573.

2017--Beland-L-K-Tamm-A-Mu-S-et-al--Fe-Ni-Cr
L.K. Béland, A. Tamm, S. Mu, G.D. Samolyuk, Y.N. Osetsky, A. Aabloo, M. Klintenberg, A. Caro, and R.E. Stoller (2017), "Accurate classical short-range forces for the study of collision cascades in Fe–Ni–Cr", Computer Physics Communications, 219, 11-19. DOI: 10.1016/j.cpc.2017.05.001.

2017--Wu-C-Lee-B-J-Su-X--Ni-Cr-Fe
C. Wu, B.-J. Lee, and X. Su (2017), "Modified embedded-atom interatomic potential for Fe-Ni, Cr-Ni and Fe-Cr-Ni systems", Calphad, 57, 98-106. DOI: 10.1016/j.calphad.2017.03.007.

2013--Bonny-G-Castin-N-Terentyev-D--Fe-Ni-Cr
G. Bonny, N. Castin, and D. Terentyev (2013), "Interatomic potential for studying ageing under irradiation in stainless steels: the FeNiCr model alloy", Modelling and Simulation in Materials Science and Engineering, 21(8), 085004. DOI: 10.1088/0965-0393/21/8/085004.

2011--Bonny-G-Terentyev-D-Pasianot-R-C-et-al--Fe-Ni-Cr
G. Bonny, D. Terentyev, R.C. Pasianot, S. Poncé, and A. Bakaev (2011), "Interatomic potential to study plasticity in stainless steels: the FeNiCr model alloy", Modelling and Simulation in Materials Science and Engineering, 19(8), 085008. DOI: 10.1088/0965-0393/19/8/085008.

2013--Bonny-G-Castin-N-Bullens-J-et-al--Fe-Cr-W
G. Bonny, N. Castin, J. Bullens, A. Bakaev, T.C.P. Klaver, and D. Terentyev (2013), "On the mobility of vacancy clusters in reduced activation steels: an atomistic study in the Fe-Cr-W model alloy", Journal of Physics: Condensed Matter, 25(31), 315401. DOI: 10.1088/0953-8984/25/31/315401.

2017--Choi-W-M-Kim-Y-Seol-D-Lee-B-J--Cr-Mn
W.-M. Choi, Y. Kim, D. Seol, and B.-J. Lee (2017), "Modified embedded-atom method interatomic potentials for the Co-Cr, Co-Fe, Co-Mn, Cr-Mn and Mn-Ni binary systems", Computational Materials Science, 130, 121-129. DOI: 10.1016/j.commatsci.2017.01.002.

2018--Howells-C-A-Mishin-Y--Cr-Ni
C.A. Howells, and Y. Mishin (2018), "Angular-dependent interatomic potential for the binary Ni-Cr system", Modelling and Simulation in Materials Science and Engineering, 26(8), 085008. DOI: 10.1088/1361-651x/aae400.

2017--Wu-C-Lee-B-J-Su-X--Ni-Cr
C. Wu, B.-J. Lee, and X. Su (2017), "Modified embedded-atom interatomic potential for Fe-Ni, Cr-Ni and Fe-Cr-Ni systems", Calphad, 57, 98-106. DOI: 10.1016/j.calphad.2017.03.007.

Cs

2016--Nichol-A-Ackland-G-J--Cs
A. Nichol, and G.J. Ackland (2016), "Property trends in simple metals: An empirical potential approach", Physical Review B, 93(18), 184101. DOI: 10.1103/physrevb.93.184101.

2015--Elliott-R-S-Akerson-A--Cs
R.S. Elliott, and A. Akerson (2015), "Efficient "universal" shifted Lennard-Jones model for all KIM API supported species".

1959--Girifalco-L-A-Weizer-V-G--Cs
L.A. Girifalco, and V.G. Weizer (1959), "Application of the Morse Potential Function to Cubic Metals", Physical Review, 114(3), 687-690. DOI: 10.1103/physrev.114.687.

Cu

2020--Zuo-Y-Chen-C-Li-X-et-al--Cu-SNAP
Y. Zuo, C. Chen, X. Li, Z. Deng, Y. Chen, J. Behler, G. Csányi, A.V. Shapeev, A.P. Thompson, M.A. Wood, and S.P. Ong (2020), "Performance and Cost Assessment of Machine Learning Interatomic Potentials", The Journal of Physical Chemistry A, 124(4), 731-745. DOI: 10.1021/acs.jpca.9b08723.

2020--Zuo-Y-Chen-C-Li-X-et-al--Cu-qSNAP
Y. Zuo, C. Chen, X. Li, Z. Deng, Y. Chen, J. Behler, G. Csányi, A.V. Shapeev, A.P. Thompson, M.A. Wood, and S.P. Ong (2020), "Performance and Cost Assessment of Machine Learning Interatomic Potentials", The Journal of Physical Chemistry A, 124(4), 731-745. DOI: 10.1021/acs.jpca.9b08723.

2018--Etesami-S-A-Asadi-E--Cu
S.A. Etesami, and E. Asadi (2018), "Molecular dynamics for near melting temperatures simulations of metals using modified embedded-atom method", Journal of Physics and Chemistry of Solids, 112, 61-72. DOI: 10.1016/j.jpcs.2017.09.001.

2018--Li-X-G-Hu-C-Chen-C-et-al--Cu
X.-G. Li, C. Hu, C. Chen, Z. Deng, J. Luo, and S.P. Ong (2018), "Quantum-accurate spectral neighbor analysis potential models for Ni-Mo binary alloys and fcc metals", Physical Review B, 98(9), 094104. DOI: 10.1103/physrevb.98.094104.

2015--Asadi-E-Asle-Zaeem-M-Nouranian-S-Baskes-M-I--Cu
E. Asadi, M. Asle Zaeem, S. Nouranian, and M.I. Baskes (2015), "Two-phase solid-liquid coexistence of Ni, Cu, and Al by molecular dynamics simulations using the modified embedded-atom method", Acta Materialia, 86, 169-181. DOI: 10.1016/j.actamat.2014.12.010.

2015--Elliott-R-S-Akerson-A--Cu
R.S. Elliott, and A. Akerson (2015), "Efficient "universal" shifted Lennard-Jones model for all KIM API supported species".

2013--Mendelev-M-I-King-A-H--Cu
M.I. Mendelev, and A.H. King (2013), "The interactions of self-interstitials with twin boundaries", Philosophical Magazine, 93(10-12), 1268-1278. DOI: 10.1080/14786435.2012.747012.

2008--Mendelev-M-I-Kramer-M-J-Becker-C-A-Asta-M--Cu
M.I. Mendelev, M.J. Kramer, C.A. Becker, and M. Asta (2008), "Analysis of semi-empirical interatomic potentials appropriate for simulation of crystalline and liquid Al and Cu", Philosophical Magazine, 88(12), 1723-1750. DOI: 10.1080/14786430802206482.

2004--Zhou-X-W-Johnson-R-A-Wadley-H-N-G--Cu
X.W. Zhou, R.A. Johnson, and H.N.G. Wadley (2004), "Misfit-energy-increasing dislocations in vapor-deposited CoFe/NiFe multilayers", Physical Review B, 69(14), 144113. DOI: 10.1103/physrevb.69.144113.

2003--Lee-B-J-Shim-J-H-Baskes-M-I--Cu
B.-J. Lee, J.-H. Shim, and M.I. Baskes (2003), "Semiempirical atomic potentials for the fcc metals Cu, Ag, Au, Ni, Pd, Pt, Al, and Pb based on first and second nearest-neighbor modified embedded atom method", Physical Review B, 68(14), 144112. DOI: 10.1103/physrevb.68.144112.

2001--Mishin-Y-Mehl-M-J-Papaconstantopoulos-D-A-et-al--Cu-1
Y. Mishin, M.J. Mehl, D.A. Papaconstantopoulos, A.F. Voter, and J.D. Kress (2001), "Structural stability and lattice defects in copper: Ab initio, tight-binding, and embedded-atom calculations", Physical Review B, 63(22), 224106. DOI: 10.1103/physrevb.63.224106.

2001--Mishin-Y-Mehl-M-J-Papaconstantopoulos-D-A-et-al--Cu-2
Y. Mishin, M.J. Mehl, D.A. Papaconstantopoulos, A.F. Voter, and J.D. Kress (2001), "Structural stability and lattice defects in copper: Ab initio, tight-binding, and embedded-atom calculations", Physical Review B, 63(22), 224106. DOI: 10.1103/physrevb.63.224106.

2001--Zhou-X-W-Wadley-H-N-G-Johnson-R-A-et-al--Cu
X.W. Zhou, H.N.G. Wadley, R.A. Johnson, D.J. Larson, N. Tabat, A. Cerezo, A.K. Petford-Long, G.D.W. Smith, P.H. Clifton, R.L. Martens, and T.F. Kelly (2001), "Atomic scale structure of sputtered metal multilayers", Acta Materialia, 49(19), 4005-4015. DOI: 10.1016/s1359-6454(01)00287-7.

1996--Jacobsen-K-W-Stoltze-P-Norskov-J-K--Cu
K.W. Jacobsen, P. Stoltze, and J.K. Nørskov (1996), "A semi-empirical effective medium theory for metals and alloys", Surface Science, 366(2), 394-402. DOI: 10.1016/0039-6028(96)00816-3.

1990--Ackland-G-J-Vitek-V--Cu
G.J. Ackland, and V. Vitek (1990), "Many-body potentials and atomic-scale relaxations in noble-metal alloys", Physical Review B, 41(15), 10324-10333. DOI: 10.1103/physrevb.41.10324.

1989--Adams-J-B-Foiles-S-M-Wolfer-W-G--Cu
J.B. Adams, S.M. Foiles, and W.G. Wolfer (1989), "Self-diffusion and impurity diffusion of fcc metals using the five-frequency model and the Embedded Atom Method", Journal of Materials Research, 4(1), 102-112. DOI: 10.1557/jmr.1989.0102.

1988--Johnson-R-A--Cu
R.A. Johnson (1988), "Analytic nearest-neighbor model for fcc metals", Physical Review B, 37(8), 3924-3931. DOI: 10.1103/physrevb.37.3924.

1987--Ackland-G-J-Tichy-G-Vitek-V-Finnis-M-W--Cu
G.J. Ackland, G. Tichy, V. Vitek, and M.W. Finnis (1987), "Simple N-body potentials for the noble metals and nickel", Philosophical Magazine A, 56(6), 735-756. DOI: 10.1080/01418618708204485.

1986--Foiles-S-M-Baskes-M-I-Daw-M-S--Cu
S.M. Foiles, M.I. Baskes, and M.S. Daw (1986), "Embedded-atom-method functions for the fcc metals Cu, Ag, Au, Ni, Pd, Pt, and their alloys", Physical Review B, 33(12), 7983-7991. DOI: 10.1103/physrevb.33.7983.

1981--MacDonald-R-A-MacDonald-W-M--Cu
R.A. MacDonald, and W.M. MacDonald (1981), "Thermodynamic properties of fcc metals at high temperatures", Physical Review B, 24(4), 1715-1724. DOI: 10.1103/physrevb.24.1715.

1959--Girifalco-L-A-Weizer-V-G--Cu
L.A. Girifalco, and V.G. Weizer (1959), "Application of the Morse Potential Function to Cubic Metals", Physical Review, 114(3), 687-690. DOI: 10.1103/physrev.114.687.

2005--Lee-B-J-Wirth-B-D-Shim-J-H-et-al--Fe-Cu
B.-J. Lee, B.D. Wirth, J.-H. Shim, J. Kwon, S.C. Kwon, and J.-H. Hong (2005), "Modified embedded-atom method interatomic potential for the Fe-Cu alloy system and cascade simulations on pure Fe and Fe-Cu alloys", Physical Review B, 71(18), 184205. DOI: 10.1103/physrevb.71.184205.

2009--Bonny-G-Pasianot-R-C-Castin-N-Malerba-L--Fe-Cu-Ni
G. Bonny, R.C. Pasianot, N. Castin, and L. Malerba (2009), "Ternary Fe-Cu-Ni many-body potential to model reactor pressure vessel steels: First validation by simulated thermal annealing", Philosophical Magazine, 89(34-36), 3531-3546. DOI: 10.1080/14786430903299824.

2015--Zhou-X-W-Ward-D-K-Foster-M-Zimmerman-J-A--Cu-H
X.W. Zhou, D.K. Ward, M. Foster, and J.A. Zimmerman (2015), "An analytical bond-order potential for the copper-hydrogen binary system", Journal of Materials Science, 50(7), 2859-2875. DOI: 10.1007/s10853-015-8848-9.

2004--Bailey-N-P-Schiotz-J-Jacobsen-K-W--Cu-Mg
N.P. Bailey, J. Schiøtz, and K.W. Jacobsen (2004), "Simulation of Cu-Mg metallic glass: Thermodynamics and structure", Physical Review B, 69(14), 144205. DOI: 10.1103/physrevb.69.144205.
N.P. Bailey, J. Schiøtz, and K.W. Jacobsen (2017), "Erratum: Simulation of Cu-Mg metallic glass: Thermodynamics and structure [Phys. Rev. B \n69\n, 144205 (2004)]", Physical Review B, 96(5), 059904. DOI: 10.1103/physrevb.96.059904.

2020--Wang-J-Oh-S-H-Lee-B-J--Cu-Mo
J. Wang, S.-H. Oh, and B.-J. Lee (2020), "Second-nearest-neighbor modified embedded-atom method interatomic potential for Cu-M (M = Co, Mo) binary systems", Computational Materials Science, 178, 109627. DOI: 10.1016/j.commatsci.2020.109627.

2020--Miraz-A-S-M-Dhariwal-N-Meng-W-J-et-al--Cu-N-Ti
A.S.M. Miraz, N. Dhariwal, W.J. Meng, B.R. Ramachandran, and C.D. Wick (2020), "Development and application of interatomic potentials to study the stability and shear strength of Ti/TiN and Cu/TiN interfaces", Materials & Design, 196, 109123. DOI: 10.1016/j.matdes.2020.109123.

2019--Fischer-F-Schmitz-G-Eich-S-M--Cu-Ni
F. Fischer, G. Schmitz, and S.M. Eich (2019), "A systematic study of grain boundary segregation and grain boundary formation energy using a new copper–nickel embedded-atom potential", Acta Materialia, 176, 220-231. DOI: 10.1016/j.actamat.2019.06.027.

2013--Onat-B-Durukanoglu-S--Cu-Ni
B. Onat, and S. Durukanoğlu (2013), "An optimized interatomic potential for Cu–Ni alloys with the embedded-atom method", Journal of Physics: Condensed Matter, 26(3), 035404. DOI: 10.1088/0953-8984/26/3/035404.

2004--Lee-B-J-Shim-J-H--Cu-Ni
B.-J. Lee, and J.-H. Shim (2004), "A modified embedded atom method interatomic potential for the Cu–Ni system", Calphad, 28(2), 125-132. DOI: 10.1016/j.calphad.2004.06.001.

1985--Foiles-S-M--Ni-Cu
S.M. Foiles (1985), "Calculation of the surface segregation of Ni-Cu alloys with the use of the embedded-atom method", Physical Review B, 32(12), 7685-7693. DOI: 10.1103/physrevb.32.7685.

2003--Hoyt-J-J-Garvin-J-W-Webb-E-B-Asta-M--Cu-Pb
J.J. Hoyt, J.W. Garvin, E.B. Webb, and M. Asta (2003), "An embedded atom method interatomic potential for the Cu-Pb system", Modelling and Simulation in Materials Science and Engineering, 11(3), 287-299. DOI: 10.1088/0965-0393/11/3/302.

2018--Jeong-G-U-Park-C-S-Do-H-S-et-al--Pd-Cu
G.-U. Jeong, C.S. Park, H.-S. Do, S.-M. Park, and B.-J. Lee (2018), "Second nearest-neighbor modified embedded-atom method interatomic potentials for the Pd-M (M = Al, Co, Cu, Fe, Mo, Ni, Ti) binary systems", Calphad, 62, 172-186. DOI: 10.1016/j.calphad.2018.06.006.

2017--Kim-J-S-Seol-D-Ji-J-et-al--Cu-Pt
J.-S. Kim, D. Seol, J. Ji, H.-S. Jang, Y. Kim, and B.-J. Lee (2017), "Second nearest-neighbor modified embedded-atom method interatomic potentials for the Pt-M (M = Al, Co, Cu, Mo, Ni, Ti, V) binary systems", Calphad, 59, 131-141. DOI: 10.1016/j.calphad.2017.09.005.

2015--Purja-Pun-G-P-Darling-K-A-Kecskes-L-J-Mishin-Y--Cu-Ta
G.P. Purja Pun, K.A. Darling, L.J. Kecskes, and Y. Mishin (2015), "Angular-dependent interatomic potential for the Cu-Ta system and its application to structural stability of nano-crystalline alloys", Acta Materialia, 100, 377-391. DOI: 10.1016/j.actamat.2015.08.052.

2008--Hashibon-A-Lozovoi-A-Y-Mishin-Y-et-al--Cu-Ta
A. Hashibon, A.Y. Lozovoi, Y. Mishin, C. Elsässer, and P. Gumbsch (2008), "Interatomic potential for the Cu-Ta system and its application to surface wetting and dewetting", Physical Review B, 77(9), 094131. DOI: 10.1103/physrevb.77.094131.

2004--Zhou-X-W-Johnson-R-A-Wadley-H-N-G--Ta-Cu
X.W. Zhou, R.A. Johnson, and H.N.G. Wadley (2004), "Misfit-energy-increasing dislocations in vapor-deposited CoFe/NiFe multilayers", Physical Review B, 69(14), 144113. DOI: 10.1103/physrevb.69.144113.

2019--Mendelev-M-I-Sun-Y-Zhang-F-et-al--Cu-Zr
M.I. Mendelev, Y. Sun, F. Zhang, C.Z. Wang, and K.M. Ho (2019), "Development of a semi-empirical potential suitable for molecular dynamics simulation of vitrification in Cu-Zr alloys", The Journal of Chemical Physics, 151(21), 214502. DOI: 10.1063/1.5131500.

2016--Borovikov-V-Mendelev-M-I-King-A-H--Cu-Zr
V. Borovikov, M.I. Mendelev, and A.H. King (2016), "Effects of stable and unstable stacking fault energy on dislocation nucleation in nano-crystalline metals", Modelling and Simulation in Materials Science and Engineering, 24(8), 085017. DOI: 10.1088/0965-0393/24/8/085017.

2009--Mendelev-M-I-Kramer-M-J-Ott-R-T-et-al--Cu-Zr
M.I. Mendelev, M.J. Kramer, R.T. Ott, D.J. Sordelet, D. Yagodin, and P. Popel (2009), "Development of suitable interatomic potentials for simulation of liquid and amorphous Cu-Zr alloys", Philosophical Magazine, 89(11), 967-987. DOI: 10.1080/14786430902832773.

2008--Kim-Y-M-Lee-B-J--Cu-Zr
Y.-M. Kim, and B.-J. Lee (2008), "A modified embedded-atom method interatomic potential for the Cu–Zr system", Journal of Materials Research, 23(4), 1095-1104. DOI: 10.1557/jmr.2008.0130.

2007--Mendelev-M-I-Sordelet-D-J-Kramer-M-J--Cu-Zr
M.I. Mendelev, D.J. Sordelet, and M.J. Kramer (2007), "Using atomistic computer simulations to analyze x-ray diffraction data from metallic glasses", Journal of Applied Physics, 102(4), 043501. DOI: 10.1063/1.2769157.

2007--Paduraru-A-Kenoufi-A-Bailey-N-P-Schiotz-J--Cu-Zr
A. Pǎduraru, A. Kenoufi, N.P. Bailey, and J. Schiøtz (2007), "An Interatomic Potential for Studying CuZr Bulk Metallic Glasses", Advanced Engineering Materials, 9(6), 505-508. DOI: 10.1002/adem.200700047.

Db

2015--Elliott-R-S-Akerson-A--Db
R.S. Elliott, and A. Akerson (2015), "Efficient "universal" shifted Lennard-Jones model for all KIM API supported species".

Ds

2015--Elliott-R-S-Akerson-A--Ds
R.S. Elliott, and A. Akerson (2015), "Efficient "universal" shifted Lennard-Jones model for all KIM API supported species".

Dy

2015--Elliott-R-S-Akerson-A--Dy
R.S. Elliott, and A. Akerson (2015), "Efficient "universal" shifted Lennard-Jones model for all KIM API supported species".

Er

2015--Elliott-R-S-Akerson-A--Er
R.S. Elliott, and A. Akerson (2015), "Efficient "universal" shifted Lennard-Jones model for all KIM API supported species".

Es

2015--Elliott-R-S-Akerson-A--Es
R.S. Elliott, and A. Akerson (2015), "Efficient "universal" shifted Lennard-Jones model for all KIM API supported species".

Eu

2015--Elliott-R-S-Akerson-A--Eu
R.S. Elliott, and A. Akerson (2015), "Efficient "universal" shifted Lennard-Jones model for all KIM API supported species".

F

2015--Elliott-R-S-Akerson-A--F
R.S. Elliott, and A. Akerson (2015), "Efficient "universal" shifted Lennard-Jones model for all KIM API supported species".

Fe

2022--Sun-Y-Zhang-F-Mendelev-M-I-et-al--Fe
Y. Sun, F. Zhang, M.I. Mendelev, R.M. Wentzcovitch, and K.-M. Ho (2022), "Two-step nucleation of the Earth's inner core", Proceedings of the National Academy of Sciences, 119(2), e2113059119. DOI: 10.1073/pnas.2113059119.

2021--Starikov-S-Smirnova-D-Pradhan-T-et-al--Fe
S. Starikov, D. Smirnova, T. Pradhan, Y. Lysogorskiy, H. Chapman, M. Mrovec, and R. Drautz (2021), "Angular-dependent interatomic potential for large-scale atomistic simulation of iron: Development and comprehensive comparison with existing interatomic models", Physical Review Materials, 5(6), 063607. DOI: 10.1103/physrevmaterials.5.063607.

2020--Byggmastar-J-Granberg-F--Fe
J. Byggmästar, and F. Granberg (2020), "Dynamical stability of radiation-induced C15 clusters in iron", Journal of Nuclear Materials, 528, 151893. DOI: 10.1016/j.jnucmat.2019.151893.

2020--Mori-H-Ozaki-T--Fe
H. Mori, and T. Ozaki (2020), "Neural network atomic potential to investigate the dislocation dynamics in bcc iron", Physical Review Materials, 4(4), 040601. DOI: 10.1103/physrevmaterials.4.040601.

2018--Etesami-S-A-Asadi-E--Fe
S.A. Etesami, and E. Asadi (2018), "Molecular dynamics for near melting temperatures simulations of metals using modified embedded-atom method", Journal of Physics and Chemistry of Solids, 112, 61-72. DOI: 10.1016/j.jpcs.2017.09.001.

2015--Asadi-E-Asle-Zaeem-M-Nouranian-S-Baskes-M-I--Fe
E. Asadi, M. Asle Zaeem, S. Nouranian, and M.I. Baskes (2015), "Quantitative modeling of the equilibration of two-phase solid-liquid Fe by atomistic simulations on diffusive time scales", Physical Review B, 91(2), 024105. DOI: 10.1103/physrevb.91.024105.

2015--Elliott-R-S-Akerson-A--Fe
R.S. Elliott, and A. Akerson (2015), "Efficient "universal" shifted Lennard-Jones model for all KIM API supported species".

2012--Proville-L-Rodney-D-Marinica-M-C--Fe
L. Proville, D. Rodney, and M.-C. Marinica (2012), "Quantum effect on thermally activated glide of dislocations", Nature Materials, 11(10), 845-849. DOI: 10.1038/nmat3401.

2011--Chiesa-S-Derlet-P-M-Dudarev-S-L-Swygenhoven-H-V--Fe-33
S. Chiesa, P.M. Derlet, S.L. Dudarev, and H.V. Swygenhoven (2011), "Optimization of the magnetic potential for α-Fe", Journal of Physics: Condensed Matter, 23(20), 206001. DOI: 10.1088/0953-8984/23/20/206001.

2010--Malerba-L-Marinica-M-C-Anento-N-et-al--Fe
L. Malerba, M.C. Marinica, N. Anento, C. Björkas, H. Nguyen, C. Domain, F. Djurabekova, P. Olsson, K. Nordlund, A. Serra, D. Terentyev, F. Willaime, and C.S. Becquart (2010), "Comparison of empirical interatomic potentials for iron applied to radiation damage studies", Journal of Nuclear Materials, 406(1), 19-38. DOI: 10.1016/j.jnucmat.2010.05.017.
M.-C. Marinica, F. Willaime, and J.-P. Crocombette (2012), "Irradiation-Induced Formation of Nanocrystallites with C15 Laves Phase Structure in bcc Iron", Physical Review Letters, 108(2), 025501. DOI: 10.1103/physrevlett.108.025501.

2009--Olsson-P-A-T--Fe
P.A.T. Olsson (2009), "Semi-empirical atomistic study of point defect properties in BCC transition metals", Computational Materials Science, 47(1), 135-145. DOI: 10.1016/j.commatsci.2009.06.025.

2008--Morris-J-R-Aga-R-S-Levashov-V-Egami-T--Fe
J.R. Morris, R.S. Aga, V. Levashov, and T. Egami (2008), "Many-body effects in bcc metals: An embedded atom model extension of the modified Johnson pair potential for iron", Physical Review B, 77(17), 174201. DOI: 10.1103/physrevb.77.174201.

2007--Muller-M-Erhart-P-Albe-K--Fe
M. Müller, P. Erhart, and K. Albe (2007), "Analytic bond-order potential for bcc and fcc iron—comparison with established embedded-atom method potentials", Journal of Physics: Condensed Matter, 19(32), 326220. DOI: 10.1088/0953-8984/19/32/326220.

2006--Chamati-H-Papanicolaou-N-I-Mishin-Y-Papaconstantopoulos-D-A--Fe
H. Chamati, N.I. Papanicolaou, Y. Mishin, and D.A. Papaconstantopoulos (2006), "Embedded-atom potential for Fe and its application to self-diffusion on Fe(100)", Surface Science, 600(9), 1793-1803. DOI: 10.1016/j.susc.2006.02.010.

2005--Dudarev-S-L-Derlet-P-M--Fe
S.L. Dudarev, and P.M. Derlet (2005), "A 'magnetic' interatomic potential for molecular dynamics simulations", Journal of Physics: Condensed Matter, 17(44), 7097-7118. DOI: 10.1088/0953-8984/17/44/003.

2004--Zhou-X-W-Johnson-R-A-Wadley-H-N-G--Fe
X.W. Zhou, R.A. Johnson, and H.N.G. Wadley (2004), "Misfit-energy-increasing dislocations in vapor-deposited CoFe/NiFe multilayers", Physical Review B, 69(14), 144113. DOI: 10.1103/physrevb.69.144113.

2003--Mendelev-M-I-Han-S-Srolovitz-D-J-et-al--Fe-2
M.I. Mendelev, S. Han, D.J. Srolovitz, G.J. Ackland, D.Y. Sun, and M. Asta (2003), "Development of new interatomic potentials appropriate for crystalline and liquid iron", Philosophical Magazine, 83(35), 3977-3994. DOI: 10.1080/14786430310001613264.

2003--Mendelev-M-I-Han-S-Srolovitz-D-J-et-al--Fe-5
M.I. Mendelev, S. Han, D.J. Srolovitz, G.J. Ackland, D.Y. Sun, and M. Asta (2003), "Development of new interatomic potentials appropriate for crystalline and liquid iron", Philosophical Magazine, 83(35), 3977-3994. DOI: 10.1080/14786430310001613264.

2001--Lee-B-J-Baskes-M-I-Kim-H-Cho-Y-K--Fe
B.-J. Lee, M.I. Baskes, H. Kim, and Y.K. Cho (2001), "Second nearest-neighbor modified embedded atom method potentials for bcc transition metals", Physical Review B, 64(18), 184102. DOI: 10.1103/physrevb.64.184102.

1998--Meyer-R-Entel-P--Fe
R. Meyer, and P. Entel (1998), "Martensite-austenite transition and phonon dispersion curves of Fe1-xNix studied by molecular-dynamics simulations", Physical Review B, 57(9), 5140-5147. DOI: 10.1103/physrevb.57.5140.

1997--Ackland-G-J-Bacon-D-J-Calder-A-F-Harry-T--Fe
G.J. Ackland, D.J. Bacon, A.F. Calder, and T. Harry (1997), "Computer simulation of point defect properties in dilute Fe-Cu alloy using a many-body interatomic potential", Philosophical Magazine A, 75(3), 713-732. DOI: 10.1080/01418619708207198.

1959--Girifalco-L-A-Weizer-V-G--Fe
L.A. Girifalco, and V.G. Weizer (1959), "Application of the Morse Potential Function to Cubic Metals", Physical Review, 114(3), 687-690. DOI: 10.1103/physrev.114.687.

2021--Wen-M--Fe-H
M. Wen (2021), "A new interatomic potential describing Fe-H and H-H interactions in bcc iron", Computational Materials Science, 197, 110640. DOI: 10.1016/j.commatsci.2021.110640.

2007--Lee-B-J-Jang-J-W--Fe-H
B.-J. Lee, and J.-W. Jang (2007), "A modified embedded-atom method interatomic potential for the Fe-H system", Acta Materialia, 55(20), 6779-6788. DOI: 10.1016/j.actamat.2007.08.041.

2009--Kim-Y-M-Shin-Y-H-Lee-B-J--Fe-Mn
Y.-M. Kim, Y.-H. Shin, and B.-J. Lee (2009), "Modified embedded-atom method interatomic potentials for pure Mn and the Fe-Mn system", Acta Materialia, 57(2), 474-482. DOI: 10.1016/j.actamat.2008.09.031.

2006--Lee-B-J-Lee-T-H-Kim-S-J--Fe-N
B.-J. Lee, T.-H. Lee, and S.-J. Kim (2006), "A modified embedded-atom method interatomic potential for the Fe–N system: A comparative study with the Fe–C system", Acta Materialia, 54(17), 4597-4607. DOI: 10.1016/j.actamat.2006.06.003.

2008--Sa-I-Lee-B--Fe-Nb
I. Sa, and B. Lee (2008), "Modified embedded-atom method interatomic potentials for the Fe–Nb and Fe–Ti binary systems", Scripta Materialia, 59(6), 595-598. DOI: 10.1016/j.scriptamat.2008.05.007.

2017--Wu-C-Lee-B-J-Su-X--Ni-Fe
C. Wu, B.-J. Lee, and X. Su (2017), "Modified embedded-atom interatomic potential for Fe-Ni, Cr-Ni and Fe-Cr-Ni systems", Calphad, 57, 98-106. DOI: 10.1016/j.calphad.2017.03.007.

2009--Bonny-G-Pasianot-R-C-Malerba-L--Fe-Ni
G. Bonny, R.C. Pasianot, and L. Malerba (2009), "Fe-Ni many-body potential for metallurgical applications", Modelling and Simulation in Materials Science and Engineering, 17(2), 025010. DOI: 10.1088/0965-0393/17/2/025010.

2005--Mishin-Y-Mehl-M-J-Papaconstantopoulos-D-A--Fe-Ni
Y. Mishin, M.J. Mehl, and D.A. Papaconstantopoulos (2005), "Phase stability in the Fe-Ni system: Investigation by first-principles calculations and atomistic simulations", Acta Materialia, 53(15), 4029-4041. DOI: 10.1016/j.actamat.2005.05.001.

2019--Byggmastar-J-Nagel-M-Albe-K-et-al--Fe-O
J. Byggmästar, M. Nagel, K. Albe, K. Henriksson, and K. Nordlund (2019), "Analytical interatomic bond-order potential for simulations of oxygen defects in iron", Journal of Physics: Condensed Matter, 31, 215401. DOI: 10.1088/1361-648x/ab0931.

2012--Ko-W-S-Kim-N-J-Lee-B-J--Fe-P
W.-S. Ko, N.J. Kim, and B.-J. Lee (2012), "Atomistic modeling of an impurity element and a metal-impurity system: pure P and Fe-P system", Journal of Physics: Condensed Matter, 24(22), 225002. DOI: 10.1088/0953-8984/24/22/225002.

2004--Ackland-G-J-Mendelev-M-I-Srolovitz-D-J-et-al--Fe-P
G.J. Ackland, M.I. Mendelev, D.J. Srolovitz, S. Han, and A.V. Barashev (2004), "Development of an interatomic potential for phosphorus impurities in α-iron", Journal of Physics: Condensed Matter, 16(27), S2629-S2642. DOI: 10.1088/0953-8984/16/27/003.

2018--Jeong-G-U-Park-C-S-Do-H-S-et-al--Pd-Fe
G.-U. Jeong, C.S. Park, H.-S. Do, S.-M. Park, and B.-J. Lee (2018), "Second nearest-neighbor modified embedded-atom method interatomic potentials for the Pd-M (M = Al, Co, Cu, Fe, Mo, Ni, Ti) binary systems", Calphad, 62, 172-186. DOI: 10.1016/j.calphad.2018.06.006.

2006--Kim-J-Koo-Y-Lee-B-J--Fe-Pt
J. Kim, Y. Koo, and B.-J. Lee (2006), "Modified embedded-atom method interatomic potential for the Fe–Pt alloy system", Journal of Materials Research, 21(1), 199-208. DOI: 10.1557/jmr.2006.0008.

2008--Sa-I-Lee-B--Fe-Ti
I. Sa, and B. Lee (2008), "Modified embedded-atom method interatomic potentials for the Fe–Nb and Fe–Ti binary systems", Scripta Materialia, 59(6), 595-598. DOI: 10.1016/j.scriptamat.2008.05.007.

2007--Mendelev-M-I-Han-S-Son-W-et-al--V-Fe
M.I. Mendelev, S. Han, W.- Son, G.J. Ackland, and D.J. Srolovitz (2007), "Simulation of the interaction between Fe impurities and point defects in V", Physical Review B, 76(21), 214105. DOI: 10.1103/physrevb.76.214105.

2013--Bonny-G-Castin-N-Bullens-J-et-al--Fe-W
G. Bonny, N. Castin, J. Bullens, A. Bakaev, T.C.P. Klaver, and D. Terentyev (2013), "On the mobility of vacancy clusters in reduced activation steels: an atomistic study in the Fe-Cr-W model alloy", Journal of Physics: Condensed Matter, 25(31), 315401. DOI: 10.1088/0953-8984/25/31/315401.

Fl

2015--Elliott-R-S-Akerson-A--Fl
R.S. Elliott, and A. Akerson (2015), "Efficient "universal" shifted Lennard-Jones model for all KIM API supported species".

Fm

2015--Elliott-R-S-Akerson-A--Fm
R.S. Elliott, and A. Akerson (2015), "Efficient "universal" shifted Lennard-Jones model for all KIM API supported species".

Fr

2015--Elliott-R-S-Akerson-A--Fr
R.S. Elliott, and A. Akerson (2015), "Efficient "universal" shifted Lennard-Jones model for all KIM API supported species".

Ga

2015--Elliott-R-S-Akerson-A--Ga
R.S. Elliott, and A. Akerson (2015), "Efficient "universal" shifted Lennard-Jones model for all KIM API supported species".

2009--Do-E-C-Shin-Y-H-Lee-B-J--Ga-In
E.C. Do, Y.-H. Shin, and B.-J. Lee (2009), "Atomistic modeling of III-V nitrides: modified embedded-atom method interatomic potentials for GaN, InN and Ga1-xInxN", Journal of Physics: Condensed Matter, 21(32), 325801. DOI: 10.1088/0953-8984/21/32/325801.

2017--Zhou-X-W-Jones-R-E-Chu-K--In-Ga-N
X.W. Zhou, R.E. Jones, and K. Chu (2017), "Polymorphic improvement of Stillinger-Weber potential for InGaN", Journal of Applied Physics, 122(23), 235703. DOI: 10.1063/1.5001339.

2009--Do-E-C-Shin-Y-H-Lee-B-J--Ga-In-N
E.C. Do, Y.-H. Shin, and B.-J. Lee (2009), "Atomistic modeling of III-V nitrides: modified embedded-atom method interatomic potentials for GaN, InN and Ga1-xInxN", Journal of Physics: Condensed Matter, 21(32), 325801. DOI: 10.1088/0953-8984/21/32/325801.

2009--Do-E-C-Shin-Y-H-Lee-B-J--Ga-N
E.C. Do, Y.-H. Shin, and B.-J. Lee (2009), "Atomistic modeling of III-V nitrides: modified embedded-atom method interatomic potentials for GaN, InN and Ga1-xInxN", Journal of Physics: Condensed Matter, 21(32), 325801. DOI: 10.1088/0953-8984/21/32/325801.

2006--Bere-A-Serra-A--Ga-N
A. Béré, and A. Serra (2006), "On the atomic structures, mobility and interactions of extended defects in GaN: dislocations, tilt and twin boundaries", Philosophical Magazine, 86(15), 2159-2192. DOI: 10.1080/14786430600640486.

2003--Nord-J-Albe-K-Erhart-P-Nordlund-K--Ga-N
J. Nord, K. Albe, P. Erhart, and K. Nordlund (2003), "Modelling of compound semiconductors: analytical bond-order potential for gallium, nitrogen and gallium nitride", Journal of Physics: Condensed Matter, 15(32), 5649-5662. DOI: 10.1088/0953-8984/15/32/324.

Gd

2015--Elliott-R-S-Akerson-A--Gd
R.S. Elliott, and A. Akerson (2015), "Efficient "universal" shifted Lennard-Jones model for all KIM API supported species".

Ge

2020--Zuo-Y-Chen-C-Li-X-et-al--Ge-SNAP
Y. Zuo, C. Chen, X. Li, Z. Deng, Y. Chen, J. Behler, G. Csányi, A.V. Shapeev, A.P. Thompson, M.A. Wood, and S.P. Ong (2020), "Performance and Cost Assessment of Machine Learning Interatomic Potentials", The Journal of Physical Chemistry A, 124(4), 731-745. DOI: 10.1021/acs.jpca.9b08723.

2020--Zuo-Y-Chen-C-Li-X-et-al--Ge-qSNAP
Y. Zuo, C. Chen, X. Li, Z. Deng, Y. Chen, J. Behler, G. Csányi, A.V. Shapeev, A.P. Thompson, M.A. Wood, and S.P. Ong (2020), "Performance and Cost Assessment of Machine Learning Interatomic Potentials", The Journal of Physical Chemistry A, 124(4), 731-745. DOI: 10.1021/acs.jpca.9b08723.

2017--Mahdizadeh-S-J-Akhlamadi-G--Ge
S.J. Mahdizadeh, and G. Akhlamadi (2017), "Optimized Tersoff empirical potential for germanene", Journal of Molecular Graphics and Modelling, 72, 1-5. DOI: 10.1016/j.jmgm.2016.11.009.

2015--Elliott-R-S-Akerson-A--Ge
R.S. Elliott, and A. Akerson (2015), "Efficient "universal" shifted Lennard-Jones model for all KIM API supported species".

2010--Belko-V-I-Gusakov-V-E-Dorozhkin-N-N--Ge

2008--Kim-E-H-Shin-Y-H-Lee-B-J--Ge
E.H. Kim, Y.-H. Shin, and B.-J. Lee (2008), "A modified embedded-atom method interatomic potential for Germanium", Calphad, 32(1), 34-42. DOI: 10.1016/j.calphad.2007.12.003.

1988--Khor-K-E-Das-Sarma-S--Ge
K.E. Khor, and S. Das Sarma (1988), "Proposed universal interatomic potential for elemental tetrahedrally bonded semiconductors", Physical Review B, 38(5), 3318-3322. DOI: 10.1103/physrevb.38.3318.

1989--Tersoff-J--Si-Ge
J. Tersoff (1989), "Modeling solid-state chemistry: Interatomic potentials for multicomponent systems", Physical Review B, 39(8), 5566-5568. DOI: 10.1103/physrevb.39.5566.
J. Tersoff (1990), "Erratum: Modeling solid-state chemistry: Interatomic potentials for multicomponent systems", Physical Review B, 41(5), 3248-3248. DOI: 10.1103/physrevb.41.3248.2.

H

2015--Elliott-R-S-Akerson-A--H
R.S. Elliott, and A. Akerson (2015), "Efficient "universal" shifted Lennard-Jones model for all KIM API supported species".

2021--Zhou-X-W-Bartelt-N-C-Sills-R-B--Pd-H-He
X.W. Zhou, N.C. Bartelt, and R.B. Sills (2021), "Enabling simulations of helium bubble nucleation and growth: A strategy for interatomic potentials", Physical Review B, 103(1), 014108. DOI: 10.1103/physrevb.103.014108.

2014--Bonny-G-Grigorev-P-Terentyev-D--W-H-He-1
G. Bonny, P. Grigorev, and D. Terentyev (2014), "On the binding of nanometric hydrogen-helium clusters in tungsten", Journal of Physics: Condensed Matter, 26(48), 485001. DOI: 10.1088/0953-8984/26/48/485001.

2014--Bonny-G-Grigorev-P-Terentyev-D--W-H-He-2
G. Bonny, P. Grigorev, and D. Terentyev (2014), "On the binding of nanometric hydrogen-helium clusters in tungsten", Journal of Physics: Condensed Matter, 26(48), 485001. DOI: 10.1088/0953-8984/26/48/485001.

2018--Smirnova-D-E-Starikov-S-V-Vlasova-A-M--Mg-H
D.E. Smirnova, S.V. Starikov, and A.M. Vlasova (2018), "New interatomic potential for simulation of pure magnesium and magnesium hydrides", Computational Materials Science, 154, 295-302. DOI: 10.1016/j.commatsci.2018.07.051.

2017--Tehranchi-A-Curtin-W-A--Ni-H
A. Tehranchi, and W.A. Curtin (2017), "Atomistic study of hydrogen embrittlement of grain boundaries in nickel: I. Fracture", Journal of the Mechanics and Physics of Solids, 101, 150-165. DOI: 10.1016/j.jmps.2017.01.020.

2011--Ko-W-S-Shim-J-H-Lee-B-J--Ni-H
W.-S. Ko, J.-H. Shim, and B.-J. Lee (2011), "Atomistic modeling of the Al-H and Ni-H systems", Journal of Materials Research, 26(12), 1552-1560. DOI: 10.1557/jmr.2011.95.

2013--Shim-J-H-Ko-W-S-Kim-K-H-et-al--V-Ni-H
J.-H. Shim, W.-S. Ko, K.-H. Kim, H.-S. Lee, Y.-S. Lee, J.-Y. Suh, Y.W. Cho, and B.-J. Lee (2013), "Prediction of hydrogen permeability in V–Al and V–Ni alloys", Journal of Membrane Science, 430, 234-241. DOI: 10.1016/j.memsci.2012.12.019.

2008--Zhou-X-W-Zimmerman-J-A-Wong-B-M-Hoyt-J-J--Pd-H
X.W. Zhou, J.A. Zimmerman, B.M. Wong, and J.J. Hoyt (2008), "An embedded-atom method interatomic potential for Pd-H alloys", Journal of Materials Research, 23(3), 704-718. DOI: 10.1557/jmr.2008.0090.

H-V

2011--Shim-J-H-Lee-Y-S-Fleury-E-et-al--V-H
J.-H. Shim, Y.-S. Lee, E. Fleury, Y.W. Cho, W.-S. Ko, and B.-J. Lee (2011), "A modified embedded-atom method interatomic potential for the V–H system", Calphad, 35(3), 302-307. DOI: 10.1016/j.calphad.2011.04.007.

2014--Lee-B-M-Lee-B-J--Zr-H
B.-M. Lee, and B.-J. Lee (2014), "A Comparative Study on Hydrogen Diffusion in Amorphous and Crystalline Metals Using a Molecular Dynamics Simulation", Metallurgical and Materials Transactions A, 45(6), 2906-2915. DOI: 10.1007/s11661-014-2230-4.

He

2015--Elliott-R-S-Akerson-A--He
R.S. Elliott, and A. Akerson (2015), "Efficient "universal" shifted Lennard-Jones model for all KIM API supported species".

2007--Hellmann-R-Bich-E-Vogel-E--He
R. Hellmann, E. Bich, and E. Vogel (2007), "Ab initio potential energy curve for the helium atom pair and thermophysical properties of dilute helium gas. I. Helium–helium interatomic potential", Molecular Physics, 105(23-24), 3013-3023. DOI: 10.1080/00268970701730096.
K.T. Tang, and J. Peter Toennies (1984), "An improved simple model for the van der Waals potential based on universal damping functions for the dispersion coefficients", The Journal of Chemical Physics, 80(8), 3726-3741. DOI: 10.1063/1.447150.

2019--Duan-X-Xie-F-Guo-X-et-al--Ta-He
X. Duan, F. Xie, X. Guo, Z. Liu, J. Yang, X. Liu, and B. Shan (2019), "Development of a pair potential for Ta-He system", Computational Materials Science, 156, 268-272. DOI: 10.1016/j.commatsci.2018.09.057.

Hf

2015--Elliott-R-S-Akerson-A--Hf
R.S. Elliott, and A. Akerson (2015), "Efficient "universal" shifted Lennard-Jones model for all KIM API supported species".

2021--Huang-X-Liu-L-Duan-X-et-al--Hf-Nb-Ta-Ti-Zr
X. Huang, L. Liu, X. Duan, W. Liao, J. Huang, H. Sun, and C. Yu (2021), "Atomistic simulation of chemical short-range order in HfNbTaZr high entropy alloy based on a newly-developed interatomic potential", Materials & Design, 202, 109560. DOI: 10.1016/j.matdes.2021.109560.

Hg

2015--Elliott-R-S-Akerson-A--Hg
R.S. Elliott, and A. Akerson (2015), "Efficient "universal" shifted Lennard-Jones model for all KIM API supported species".

Ho

2015--Elliott-R-S-Akerson-A--Ho
R.S. Elliott, and A. Akerson (2015), "Efficient "universal" shifted Lennard-Jones model for all KIM API supported species".

Hs

2015--Elliott-R-S-Akerson-A--Hs
R.S. Elliott, and A. Akerson (2015), "Efficient "universal" shifted Lennard-Jones model for all KIM API supported species".

I

2015--Elliott-R-S-Akerson-A--I
R.S. Elliott, and A. Akerson (2015), "Efficient "universal" shifted Lennard-Jones model for all KIM API supported species".

In

2015--Elliott-R-S-Akerson-A--In
R.S. Elliott, and A. Akerson (2015), "Efficient "universal" shifted Lennard-Jones model for all KIM API supported species".

2008--Do-E-C-Shin-Y-H-Lee-B-J--In
E.C. Do, Y.-H. Shin, and B.-J. Lee (2008), "A modified embedded-atom method interatomic potential for indium", Calphad, 32(1), 82-88. DOI: 10.1016/j.calphad.2007.08.004.

2009--Do-E-C-Shin-Y-H-Lee-B-J--In-N
E.C. Do, Y.-H. Shin, and B.-J. Lee (2009), "Atomistic modeling of III-V nitrides: modified embedded-atom method interatomic potentials for GaN, InN and Ga1-xInxN", Journal of Physics: Condensed Matter, 21(32), 325801. DOI: 10.1088/0953-8984/21/32/325801.

2009--Branicio-P-S-Rino-J-P-Gan-C-K-Tsuzuki-H--In-P
P.S. Branicio, J.P. Rino, C.K. Gan, and H. Tsuzuki (2009), "Interaction potential for indium phosphide: a molecular dynamics and first-principles study of the elastic constants, generalized stacking fault and surface energies", Journal of Physics: Condensed Matter, 21(9), 095002. DOI: 10.1088/0953-8984/21/9/095002.

Ir

2015--Elliott-R-S-Akerson-A--Ir
R.S. Elliott, and A. Akerson (2015), "Efficient "universal" shifted Lennard-Jones model for all KIM API supported species".

K

2016--Nichol-A-Ackland-G-J--K
A. Nichol, and G.J. Ackland (2016), "Property trends in simple metals: An empirical potential approach", Physical Review B, 93(18), 184101. DOI: 10.1103/physrevb.93.184101.

2015--Elliott-R-S-Akerson-A--K
R.S. Elliott, and A. Akerson (2015), "Efficient "universal" shifted Lennard-Jones model for all KIM API supported species".

1959--Girifalco-L-A-Weizer-V-G--K
L.A. Girifalco, and V.G. Weizer (1959), "Application of the Morse Potential Function to Cubic Metals", Physical Review, 114(3), 687-690. DOI: 10.1103/physrev.114.687.

Kr

2015--Elliott-R-S-Akerson-A--Kr
R.S. Elliott, and A. Akerson (2015), "Efficient "universal" shifted Lennard-Jones model for all KIM API supported species".

1958--Bernardes-N--Kr
N. Bernardes (1958), "Theory of Solid Ne, A, Kr, and Xe at 0°K", Physical Review, 112(5), 1534-1539. DOI: 10.1103/physrev.112.1534.

La

2015--Elliott-R-S-Akerson-A--La
R.S. Elliott, and A. Akerson (2015), "Efficient "universal" shifted Lennard-Jones model for all KIM API supported species".

Li

2020--Zuo-Y-Chen-C-Li-X-et-al--Li-SNAP
Y. Zuo, C. Chen, X. Li, Z. Deng, Y. Chen, J. Behler, G. Csányi, A.V. Shapeev, A.P. Thompson, M.A. Wood, and S.P. Ong (2020), "Performance and Cost Assessment of Machine Learning Interatomic Potentials", The Journal of Physical Chemistry A, 124(4), 731-745. DOI: 10.1021/acs.jpca.9b08723.

2020--Zuo-Y-Chen-C-Li-X-et-al--Li-qSNAP
Y. Zuo, C. Chen, X. Li, Z. Deng, Y. Chen, J. Behler, G. Csányi, A.V. Shapeev, A.P. Thompson, M.A. Wood, and S.P. Ong (2020), "Performance and Cost Assessment of Machine Learning Interatomic Potentials", The Journal of Physical Chemistry A, 124(4), 731-745. DOI: 10.1021/acs.jpca.9b08723.

2016--Nichol-A-Ackland-G-J--Li
A. Nichol, and G.J. Ackland (2016), "Property trends in simple metals: An empirical potential approach", Physical Review B, 93(18), 184101. DOI: 10.1103/physrevb.93.184101.

2015--Elliott-R-S-Akerson-A--Li
R.S. Elliott, and A. Akerson (2015), "Efficient "universal" shifted Lennard-Jones model for all KIM API supported species".

2012--Kim-Y-M-Jung-I-H-Lee-B-J--Li
Y.-M. Kim, I.-H. Jung, and B.-J. Lee (2012), "Atomistic modeling of pure Li and Mg-Li system", Modelling and Simulation in Materials Science and Engineering, 20(3), 035005. DOI: 10.1088/0965-0393/20/3/035005.

2012--Kim-Y-M-Jung-I-H-Lee-B-J--Mg-Li
Y.-M. Kim, I.-H. Jung, and B.-J. Lee (2012), "Atomistic modeling of pure Li and Mg-Li system", Modelling and Simulation in Materials Science and Engineering, 20(3), 035005. DOI: 10.1088/0965-0393/20/3/035005.

2017--Lee-E-Lee-K-R-Lee-B-J--Li-Mn-O
E. Lee, K.-R. Lee, and B.-J. Lee (2017), "Interatomic Potential of Li–Mn–O and Molecular Dynamics Simulations on Li Diffusion in Spinel Li1–xMn2O4", The Journal of Physical Chemistry C, 121(24), 13008-13017. DOI: 10.1021/acs.jpcc.7b02727.

2015--Islam-M-M-Ostadhossein-A-Borodin-O-et-al--Li-S
M.M. Islam, A. Ostadhossein, O. Borodin, A. Todd Yeates, W.W. Tipton, R.G. Hennig, N. Kumar, and A.C.T. van Duin (2015), "ReaxFF molecular dynamics simulations on lithiated sulfur cathode materials", Physical Chemistry Chemical Physics, 17(5), 3383-3393. DOI: 10.1039/c4cp04532g.

Lr

2015--Elliott-R-S-Akerson-A--Lr
R.S. Elliott, and A. Akerson (2015), "Efficient "universal" shifted Lennard-Jones model for all KIM API supported species".

Lu

2015--Elliott-R-S-Akerson-A--Lu
R.S. Elliott, and A. Akerson (2015), "Efficient "universal" shifted Lennard-Jones model for all KIM API supported species".

Lv

2015--Elliott-R-S-Akerson-A--Lv
R.S. Elliott, and A. Akerson (2015), "Efficient "universal" shifted Lennard-Jones model for all KIM API supported species".

MOx

2011--Tiwary-P-Walle-A-Jeon-B-Gronbech-Jensen-N--MOx
P. Tiwary, A. Walle, B. Jeon, and N. Grønbech-Jensen (2011), "Interatomic potentials for mixed oxide and advanced nuclear fuels", Physical Review B, 83(9), 094104. DOI: 10.1103/physrevb.83.094104.
P. Tiwary, A. van de Walle, and N. Grønbech-Jensen (2009), "Ab initio construction of interatomic potentials for uranium dioxide across all interatomic distances", Physical Review B, 80(17), 174302. DOI: 10.1103/physrevb.80.174302.

Mc

2015--Elliott-R-S-Akerson-A--Mc
R.S. Elliott, and A. Akerson (2015), "Efficient "universal" shifted Lennard-Jones model for all KIM API supported species".

Md

2015--Elliott-R-S-Akerson-A--Md
R.S. Elliott, and A. Akerson (2015), "Efficient "universal" shifted Lennard-Jones model for all KIM API supported species".

Mg

2016--Wilson-S-R-Mendelev-M-I--Mg
S.R. Wilson, and M.I. Mendelev (2016), "A unified relation for the solid-liquid interface free energy of pure FCC, BCC, and HCP metals", The Journal of Chemical Physics, 144(14), 144707. DOI: 10.1063/1.4946032.

2015--Elliott-R-S-Akerson-A--Mg
R.S. Elliott, and A. Akerson (2015), "Efficient "universal" shifted Lennard-Jones model for all KIM API supported species".

2009--Kim-Y-M-Kim-N-J-Lee-B-J--Mg
Y.-M. Kim, N.J. Kim, and B.-J. Lee (2009), "Atomistic Modeling of pure Mg and Mg-Al systems", Calphad, 33(4), 650-657. DOI: 10.1016/j.calphad.2009.07.004.

2006--Sun-D-Y-Mendelev-M-I-Becker-C-A-et-al--Mg
D.Y. Sun, M.I. Mendelev, C.A. Becker, K. Kudin, T. Haxhimali, M. Asta, J.J. Hoyt, A. Karma, and D.J. Srolovitz (2006), "Crystal-melt interfacial free energies in hcp metals: A molecular dynamics study of Mg", Physical Review B, 73(2), 024116. DOI: 10.1103/physrevb.73.024116.

2004--Zhou-X-W-Johnson-R-A-Wadley-H-N-G--Mg
X.W. Zhou, R.A. Johnson, and H.N.G. Wadley (2004), "Misfit-energy-increasing dislocations in vapor-deposited CoFe/NiFe multilayers", Physical Review B, 69(14), 144113. DOI: 10.1103/physrevb.69.144113.

2017--Kim-K-H-Lee-B-J--Mg-Nd
K.-H. Kim, and B.-J. Lee (2017), "Modified embedded-atom method interatomic potentials for Mg-Nd and Mg-Pb binary systems", Calphad, 57, 55-61. DOI: 10.1016/j.calphad.2017.03.003.

2017--Kim-K-H-Lee-B-J--Mg-Pb
K.-H. Kim, and B.-J. Lee (2017), "Modified embedded-atom method interatomic potentials for Mg-Nd and Mg-Pb binary systems", Calphad, 57, 55-61. DOI: 10.1016/j.calphad.2017.03.003.

2015--Kim-K-H-Jeon-J-B-Lee-B-J--Mg-Sn
K.-H. Kim, J.B. Jeon, and B.-J. Lee (2015), "Modified embedded-atom method interatomic potentials for Mg-X (X=Y, Sn, Ca) binary systems", Calphad, 48, 27-34. DOI: 10.1016/j.calphad.2014.10.001.

2015--Kim-K-H-Jeon-J-B-Lee-B-J--Mg-Y
K.-H. Kim, J.B. Jeon, and B.-J. Lee (2015), "Modified embedded-atom method interatomic potentials for Mg-X (X=Y, Sn, Ca) binary systems", Calphad, 48, 27-34. DOI: 10.1016/j.calphad.2014.10.001.

2018--Jang-H-S-Kim-K-M-Lee-B-J--Zn-Mg
H.-S. Jang, K.-M. Kim, and B.-J. Lee (2018), "Modified embedded-atom method interatomic potentials for pure Zn and Mg-Zn binary system", Calphad, 60, 200-207. DOI: 10.1016/j.calphad.2018.01.003.

2009--Brommer-P-Boissieu-M-Euchner-H-et-al--Mg-Zn
P. Brommer, M. Boissieu, H. Euchner, S. Francoual, F. Gähler, M. Johnson, K. Parlinski, and K. Schmalzl (2009), "Vibrational properties of MgZn2", Zeitschrift für Kristallographie - Crystalline Materials, 224(1-2), 97-100. DOI: 10.1524/zkri.2009.1085.

Mn

2015--Elliott-R-S-Akerson-A--Mn
R.S. Elliott, and A. Akerson (2015), "Efficient "universal" shifted Lennard-Jones model for all KIM API supported species".

2009--Kim-Y-M-Shin-Y-H-Lee-B-J--Mn
Y.-M. Kim, Y.-H. Shin, and B.-J. Lee (2009), "Modified embedded-atom method interatomic potentials for pure Mn and the Fe-Mn system", Acta Materialia, 57(2), 474-482. DOI: 10.1016/j.actamat.2008.09.031.

2017--Choi-W-M-Kim-Y-Seol-D-Lee-B-J--Mn-Ni
W.-M. Choi, Y. Kim, D. Seol, and B.-J. Lee (2017), "Modified embedded-atom method interatomic potentials for the Co-Cr, Co-Fe, Co-Mn, Cr-Mn and Mn-Ni binary systems", Computational Materials Science, 130, 121-129. DOI: 10.1016/j.commatsci.2017.01.002.

Mo

2020--Zuo-Y-Chen-C-Li-X-et-al--Mo-SNAP
Y. Zuo, C. Chen, X. Li, Z. Deng, Y. Chen, J. Behler, G. Csányi, A.V. Shapeev, A.P. Thompson, M.A. Wood, and S.P. Ong (2020), "Performance and Cost Assessment of Machine Learning Interatomic Potentials", The Journal of Physical Chemistry A, 124(4), 731-745. DOI: 10.1021/acs.jpca.9b08723.

2020--Zuo-Y-Chen-C-Li-X-et-al--Mo-qSNAP
Y. Zuo, C. Chen, X. Li, Z. Deng, Y. Chen, J. Behler, G. Csányi, A.V. Shapeev, A.P. Thompson, M.A. Wood, and S.P. Ong (2020), "Performance and Cost Assessment of Machine Learning Interatomic Potentials", The Journal of Physical Chemistry A, 124(4), 731-745. DOI: 10.1021/acs.jpca.9b08723.

2017--Chen-C-Deng-Z-Tran-R-et-al--Mo
C. Chen, Z. Deng, R. Tran, H. Tang, I.-H. Chu, and S.P. Ong (2017), "Accurate force field for molybdenum by machine learning large materials data", Physical Review Materials, 1(4), 043603. DOI: 10.1103/physrevmaterials.1.043603.

2017--Kim-J-S-Seol-D-Ji-J-et-al--Mo
J.-S. Kim, D. Seol, J. Ji, H.-S. Jang, Y. Kim, and B.-J. Lee (2017), "Second nearest-neighbor modified embedded-atom method interatomic potentials for the Pt-M (M = Al, Co, Cu, Mo, Ni, Ti, V) binary systems", Calphad, 59, 131-141. DOI: 10.1016/j.calphad.2017.09.005.

2015--Elliott-R-S-Akerson-A--Mo
R.S. Elliott, and A. Akerson (2015), "Efficient "universal" shifted Lennard-Jones model for all KIM API supported species".

2012--Park-H-Fellinger-M-R-Lenosky-T-J-et-al--Mo
H. Park, M.R. Fellinger, T.J. Lenosky, W.W. Tipton, D.R. Trinkle, S.P. Rudin, C. Woodward, J.W. Wilkins, and R.G. Hennig (2012), "Ab initio based empirical potential used to study the mechanical properties of molybdenum", Physical Review B, 85(21), 214121. DOI: 10.1103/physrevb.85.214121.

2007--Derlet-P-M-Nguyen-Manh-D-Dudarev-S-L--Mo
P.M. Derlet, D. Nguyen-Manh, and S.L. Dudarev (2007), "Multiscale modeling of crowdion and vacancy defects in body-centered-cubic transition metals", Physical Review B, 76(5), 054107. DOI: 10.1103/physrevb.76.054107.

2004--Zhou-X-W-Johnson-R-A-Wadley-H-N-G--Mo
X.W. Zhou, R.A. Johnson, and H.N.G. Wadley (2004), "Misfit-energy-increasing dislocations in vapor-deposited CoFe/NiFe multilayers", Physical Review B, 69(14), 144113. DOI: 10.1103/physrevb.69.144113.

2003--Han-S-Zepeda-Ruiz-L-A-Ackland-G-J-et-al--Mo
S. Han, L.A. Zepeda-Ruiz, G.J. Ackland, R. Car, and D.J. Srolovitz (2003), "Interatomic potential for vanadium suitable for radiation damage simulations", Journal of Applied Physics, 93(6), 3328-3335. DOI: 10.1063/1.1555275.

2001--Lee-B-J-Baskes-M-I-Kim-H-Cho-Y-K--Mo
B.-J. Lee, M.I. Baskes, H. Kim, and Y.K. Cho (2001), "Second nearest-neighbor modified embedded atom method potentials for bcc transition metals", Physical Review B, 64(18), 184102. DOI: 10.1103/physrevb.64.184102.

1987--Ackland-G-J-Thetford-R--Mo
G.J. Ackland, and R. Thetford (1987), "An improved N-body semi-empirical model for body-centred cubic transition metals", Philosophical Magazine A, 56(1), 15-30. DOI: 10.1080/01418618708204464.

1959--Girifalco-L-A-Weizer-V-G--Mo
L.A. Girifalco, and V.G. Weizer (1959), "Application of the Morse Potential Function to Cubic Metals", Physical Review, 114(3), 687-690. DOI: 10.1103/physrev.114.687.

2020--Li-X-G-Chen-C-Zheng-H-et-al--Nb-Ta-W-Mo
X.-G. Li, C. Chen, H. Zheng, Y. Zuo, and S.P. Ong (2020), "Complex strengthening mechanisms in the NbMoTaW multi-principal element alloy", npj Computational Materials, 6(1), 70. DOI: 10.1038/s41524-020-0339-0.

2018--Li-X-G-Hu-C-Chen-C-et-al--Ni-Mo
X.-G. Li, C. Hu, C. Chen, Z. Deng, J. Luo, and S.P. Ong (2018), "Quantum-accurate spectral neighbor analysis potential models for Ni-Mo binary alloys and fcc metals", Physical Review B, 98(9), 094104. DOI: 10.1103/physrevb.98.094104.

2018--Jeong-G-U-Park-C-S-Do-H-S-et-al--Pd-Mo
G.-U. Jeong, C.S. Park, H.-S. Do, S.-M. Park, and B.-J. Lee (2018), "Second nearest-neighbor modified embedded-atom method interatomic potentials for the Pd-M (M = Al, Co, Cu, Fe, Mo, Ni, Ti) binary systems", Calphad, 62, 172-186. DOI: 10.1016/j.calphad.2018.06.006.

2017--Kim-J-S-Seol-D-Ji-J-et-al--Pt-Mo
J.-S. Kim, D. Seol, J. Ji, H.-S. Jang, Y. Kim, and B.-J. Lee (2017), "Second nearest-neighbor modified embedded-atom method interatomic potentials for the Pt-M (M = Al, Co, Cu, Mo, Ni, Ti, V) binary systems", Calphad, 59, 131-141. DOI: 10.1016/j.calphad.2017.09.005.

2017--Wen-M-Shirodkar-S-N-Plechac-P-et-al--Mo-S
M. Wen, S.N. Shirodkar, P. Plecháč, E. Kaxiras, R.S. Elliott, and E.B. Tadmor (2017), "A force-matching Stillinger-Weber potential for MoS2: Parameterization and Fisher information theory based sensitivity analysis", Journal of Applied Physics, 122(24), 244301. DOI: 10.1063/1.5007842.

2018--Starikov-S-V-Kolotova-L-N-Kuksin-A-Y-et-al--U-Mo
S.V. Starikov, L.N. Kolotova, A.Y. Kuksin, D.E. Smirnova, and V.I. Tseplyaev (2018), "Atomistic simulation of cubic and tetragonal phases of U-Mo alloy: Structure and thermodynamic properties", Journal of Nuclear Materials, 499, 451-463. DOI: 10.1016/j.jnucmat.2017.11.047.

2013--Smirnova-D-E-Kuksin-A-Y-Starikov-S-V-et-al--U-Mo-Xe
D.E. Smirnova, A.Y. Kuksin, S.V. Starikov, V.V. Stegailov, Z. Insepov, J. Rest, and A.M. Yacout (2013), "A ternary EAM interatomic potential for U-Mo alloys with xenon", Modelling and Simulation in Materials Science and Engineering, 21(3), 035011. DOI: 10.1088/0965-0393/21/3/035011.

Mt

2015--Elliott-R-S-Akerson-A--Mt
R.S. Elliott, and A. Akerson (2015), "Efficient "universal" shifted Lennard-Jones model for all KIM API supported species".

N

2015--Elliott-R-S-Akerson-A--N
R.S. Elliott, and A. Akerson (2015), "Efficient "universal" shifted Lennard-Jones model for all KIM API supported species".

2008--Kim-Y-M-Lee-B-J--Ti-N
Y.-M. Kim, and B.-J. Lee (2008), "Modified embedded-atom method interatomic potentials for the Ti-C and Ti-N binary systems", Acta Materialia, 56(14), 3481-3489. DOI: 10.1016/j.actamat.2008.03.027.

N-U

2016--Tseplyaev-V-I-Starikov-S-V--U-N
V.I. Tseplyaev, and S.V. Starikov (2016), "The atomistic simulation of pressure-induced phase transition in uranium mononitride", Journal of Nuclear Materials, 480, 7-14. DOI: 10.1016/j.jnucmat.2016.07.048.

Na

2016--Nichol-A-Ackland-G-J--Na
A. Nichol, and G.J. Ackland (2016), "Property trends in simple metals: An empirical potential approach", Physical Review B, 93(18), 184101. DOI: 10.1103/physrevb.93.184101.

2015--Elliott-R-S-Akerson-A--Na
R.S. Elliott, and A. Akerson (2015), "Efficient "universal" shifted Lennard-Jones model for all KIM API supported species".

2015--Wilson-S-R-Gunawardana-K-G-S-H-Mendelev-M-I--Na
S.R. Wilson, K.G.S.H. Gunawardana, and M.I. Mendelev (2015), "Solid-liquid interface free energies of pure bcc metals and B2 phases", The Journal of Chemical Physics, 142(13), 134705. DOI: 10.1063/1.4916741.

1959--Girifalco-L-A-Weizer-V-G--Na
L.A. Girifalco, and V.G. Weizer (1959), "Application of the Morse Potential Function to Cubic Metals", Physical Review, 114(3), 687-690. DOI: 10.1103/physrev.114.687.

Nb

2019--Yang-C-Qi-L--Nb
C. Yang, and L. Qi (2019), "Modified embedded-atom method potential of niobium for studies on mechanical properties", Computational Materials Science, 161, 351-363. DOI: 10.1016/j.commatsci.2019.01.047.

2015--Elliott-R-S-Akerson-A--Nb
R.S. Elliott, and A. Akerson (2015), "Efficient "universal" shifted Lennard-Jones model for all KIM API supported species".

2010--Fellinger-M-R-Park-H-Wilkins-J-W--Nb
M.R. Fellinger, H. Park, and J.W. Wilkins (2010), "Force-matched embedded-atom method potential for niobium", Physical Review B, 81(14), 144119. DOI: 10.1103/physrevb.81.144119.

2007--Derlet-P-M-Nguyen-Manh-D-Dudarev-S-L--Nb
P.M. Derlet, D. Nguyen-Manh, and S.L. Dudarev (2007), "Multiscale modeling of crowdion and vacancy defects in body-centered-cubic transition metals", Physical Review B, 76(5), 054107. DOI: 10.1103/physrevb.76.054107.

2003--Han-S-Zepeda-Ruiz-L-A-Ackland-G-J-et-al--Nb
S. Han, L.A. Zepeda-Ruiz, G.J. Ackland, R. Car, and D.J. Srolovitz (2003), "Interatomic potential for vanadium suitable for radiation damage simulations", Journal of Applied Physics, 93(6), 3328-3335. DOI: 10.1063/1.1555275.

2001--Lee-B-J-Baskes-M-I-Kim-H-Cho-Y-K--Nb
B.-J. Lee, M.I. Baskes, H. Kim, and Y.K. Cho (2001), "Second nearest-neighbor modified embedded atom method potentials for bcc transition metals", Physical Review B, 64(18), 184102. DOI: 10.1103/physrevb.64.184102.

1987--Ackland-G-J-Thetford-R--Nb
G.J. Ackland, and R. Thetford (1987), "An improved N-body semi-empirical model for body-centred cubic transition metals", Philosophical Magazine A, 56(1), 15-30. DOI: 10.1080/01418618708204464.

2022--Mendelev-M-I--Ni-Nb
M.I. Mendelev (2022), "to be published".

2016--Zhang-Y-Ashcraft-R-Mendelev-M-I-et-al--Ni-Nb
Y. Zhang, R. Ashcraft, M.I. Mendelev, C.Z. Wang, and K.F. Kelton (2016), "Experimental and molecular dynamics simulation study of structure of liquid and amorphous Ni62Nb38 alloy", The Journal of Chemical Physics, 145(20), 204505. DOI: 10.1063/1.4968212.

2021--Starikov-S-Smirnova-D--Zr-Nb
S. Starikov, and D. Smirnova (2021), "Optimized interatomic potential for atomistic simulation of Zr-Nb alloy", Computational Materials Science, 197, 110581. DOI: 10.1016/j.commatsci.2021.110581.

2017--Smirnova-D-E-Starikov-S-V--Zr-Nb
D.E. Smirnova, and S.V. Starikov (2017), "An interatomic potential for simulation of Zr-Nb system", Computational Materials Science, 129, 259-272. DOI: 10.1016/j.commatsci.2016.12.016.

Nd

2015--Elliott-R-S-Akerson-A--Nd
R.S. Elliott, and A. Akerson (2015), "Efficient "universal" shifted Lennard-Jones model for all KIM API supported species".

Ne

2015--Elliott-R-S-Akerson-A--Ne
R.S. Elliott, and A. Akerson (2015), "Efficient "universal" shifted Lennard-Jones model for all KIM API supported species".

1970--Glyde-H-R--Ne
H.R. Glyde (1970), "Anharmonicity and potentials for the solidified inert gases", Journal of Physics C: Solid State Physics, 3(4), 810-819. DOI: 10.1088/0022-3719/3/4/009.

1958--Bernardes-N--Ne
N. Bernardes (1958), "Theory of Solid Ne, A, Kr, and Xe at 0°K", Physical Review, 112(5), 1534-1539. DOI: 10.1103/physrev.112.1534.

Nh

2015--Elliott-R-S-Akerson-A--Nh
R.S. Elliott, and A. Akerson (2015), "Efficient "universal" shifted Lennard-Jones model for all KIM API supported species".

Ni

2020--Zuo-Y-Chen-C-Li-X-et-al--Ni-SNAP
Y. Zuo, C. Chen, X. Li, Z. Deng, Y. Chen, J. Behler, G. Csányi, A.V. Shapeev, A.P. Thompson, M.A. Wood, and S.P. Ong (2020), "Performance and Cost Assessment of Machine Learning Interatomic Potentials", The Journal of Physical Chemistry A, 124(4), 731-745. DOI: 10.1021/acs.jpca.9b08723.

2020--Zuo-Y-Chen-C-Li-X-et-al--Ni-qSNAP
Y. Zuo, C. Chen, X. Li, Z. Deng, Y. Chen, J. Behler, G. Csányi, A.V. Shapeev, A.P. Thompson, M.A. Wood, and S.P. Ong (2020), "Performance and Cost Assessment of Machine Learning Interatomic Potentials", The Journal of Physical Chemistry A, 124(4), 731-745. DOI: 10.1021/acs.jpca.9b08723.

2018--Etesami-S-A-Asadi-E--Ni
S.A. Etesami, and E. Asadi (2018), "Molecular dynamics for near melting temperatures simulations of metals using modified embedded-atom method", Journal of Physics and Chemistry of Solids, 112, 61-72. DOI: 10.1016/j.jpcs.2017.09.001.

2018--Li-X-G-Hu-C-Chen-C-et-al--Ni
X.-G. Li, C. Hu, C. Chen, Z. Deng, J. Luo, and S.P. Ong (2018), "Quantum-accurate spectral neighbor analysis potential models for Ni-Mo binary alloys and fcc metals", Physical Review B, 98(9), 094104. DOI: 10.1103/physrevb.98.094104.

2016--Stoller-R-E-Tamm-A-Beland-L-K-et-al--Ni
R.E. Stoller, A. Tamm, L.K. Béland, G.D. Samolyuk, G.M. Stocks, A. Caro, L.V. Slipchenko, Y.N. Osetsky, A. Aabloo, M. Klintenberg, and Y. Wang (2016), "Impact of Short-Range Forces on Defect Production from High-Energy Collisions", Journal of Chemical Theory and Computation, 12(6), 2871-2879. DOI: 10.1021/acs.jctc.5b01194.

2015--Asadi-E-Asle-Zaeem-M-Nouranian-S-Baskes-M-I--Ni
E. Asadi, M. Asle Zaeem, S. Nouranian, and M.I. Baskes (2015), "Two-phase solid-liquid coexistence of Ni, Cu, and Al by molecular dynamics simulations using the modified embedded-atom method", Acta Materialia, 86, 169-181. DOI: 10.1016/j.actamat.2014.12.010.

2015--Elliott-R-S-Akerson-A--Ni
R.S. Elliott, and A. Akerson (2015), "Efficient "universal" shifted Lennard-Jones model for all KIM API supported species".

2012--Mendelev-M-I-Kramer-M-J-Hao-S-G-et-al--Ni
M.I. Mendelev, M.J. Kramer, S.G. Hao, K.M. Ho, and C.Z. Wang (2012), "Development of interatomic potentials appropriate for simulation of liquid and glass properties of NiZr2 alloy", Philosophical Magazine, 92(35), 4454-4469. DOI: 10.1080/14786435.2012.712220.

2004--Zhou-X-W-Johnson-R-A-Wadley-H-N-G--Ni
X.W. Zhou, R.A. Johnson, and H.N.G. Wadley (2004), "Misfit-energy-increasing dislocations in vapor-deposited CoFe/NiFe multilayers", Physical Review B, 69(14), 144113. DOI: 10.1103/physrevb.69.144113.

2003--Lee-B-J-Shim-J-H-Baskes-M-I--Ni
B.-J. Lee, J.-H. Shim, and M.I. Baskes (2003), "Semiempirical atomic potentials for the fcc metals Cu, Ag, Au, Ni, Pd, Pt, Al, and Pb based on first and second nearest-neighbor modified embedded atom method", Physical Review B, 68(14), 144112. DOI: 10.1103/physrevb.68.144112.

1999--Mishin-Y-Farkas-D-Mehl-M-J-Papaconstantopoulos-D-A--Ni
Y. Mishin, D. Farkas, M.J. Mehl, and D.A. Papaconstantopoulos (1999), "Interatomic potentials for monoatomic metals from experimental data and ab initio calculations", Physical Review B, 59(5), 3393-3407. DOI: 10.1103/physrevb.59.3393.

1996--Jacobsen-K-W-Stoltze-P-Norskov-J-K--Ni
K.W. Jacobsen, P. Stoltze, and J.K. Nørskov (1996), "A semi-empirical effective medium theory for metals and alloys", Surface Science, 366(2), 394-402. DOI: 10.1016/0039-6028(96)00816-3.

1995--Angelo-J-E-Moody-N-R-Baskes-M-I--Ni
J.E. Angelo, N.R. Moody, and M.I. Baskes (1995), "Trapping of hydrogen to lattice defects in nickel", Modelling and Simulation in Materials Science and Engineering, 3(3), 289-307. DOI: 10.1088/0965-0393/3/3/001.

1989--Adams-J-B-Foiles-S-M-Wolfer-W-G--Ni
J.B. Adams, S.M. Foiles, and W.G. Wolfer (1989), "Self-diffusion and impurity diffusion of fcc metals using the five-frequency model and the Embedded Atom Method", Journal of Materials Research, 4(1), 102-112. DOI: 10.1557/jmr.1989.0102.

1987--Ackland-G-J-Tichy-G-Vitek-V-Finnis-M-W--Ni
G.J. Ackland, G. Tichy, V. Vitek, and M.W. Finnis (1987), "Simple N-body potentials for the noble metals and nickel", Philosophical Magazine A, 56(6), 735-756. DOI: 10.1080/01418618708204485.

1986--Foiles-S-M-Baskes-M-I-Daw-M-S--Ni
S.M. Foiles, M.I. Baskes, and M.S. Daw (1986), "Embedded-atom-method functions for the fcc metals Cu, Ag, Au, Ni, Pd, Pt, and their alloys", Physical Review B, 33(12), 7983-7991. DOI: 10.1103/physrevb.33.7983.

1959--Girifalco-L-A-Weizer-V-G--Ni
L.A. Girifalco, and V.G. Weizer (1959), "Application of the Morse Potential Function to Cubic Metals", Physical Review, 114(3), 687-690. DOI: 10.1103/physrev.114.687.

2022--Xu-Y-Wang-G-Qian-P-Su-Y--Ni-Pd
Y. Xu, G. Wang, P. Qian, and Y. Su (2022), "Element segregation and thermal stability of Ni–Pd nanoparticles", Journal of Materials Science, . DOI: 10.1007/s10853-022-07118-7.

2018--Jeong-G-U-Park-C-S-Do-H-S-et-al--Pd-Ni
G.-U. Jeong, C.S. Park, H.-S. Do, S.-M. Park, and B.-J. Lee (2018), "Second nearest-neighbor modified embedded-atom method interatomic potentials for the Pd-M (M = Al, Co, Cu, Fe, Mo, Ni, Ti) binary systems", Calphad, 62, 172-186. DOI: 10.1016/j.calphad.2018.06.006.

2016--Samolyuk-G-D-Beland-L-K-Stocks-G-M-Stoller-R-E--Ni-Pd
G.D. Samolyuk, L.K. Béland, G.M. Stocks, and R.E. Stoller (2016), "Electron–phonon coupling in Ni-based binary alloys with application to displacement cascade modeling", Journal of Physics: Condensed Matter, 28(17), 175501. DOI: 10.1088/0953-8984/28/17/175501.

2017--Kim-J-S-Seol-D-Ji-J-et-al--Ni-Pt
J.-S. Kim, D. Seol, J. Ji, H.-S. Jang, Y. Kim, and B.-J. Lee (2017), "Second nearest-neighbor modified embedded-atom method interatomic potentials for the Pt-M (M = Al, Co, Cu, Mo, Ni, Ti, V) binary systems", Calphad, 59, 131-141. DOI: 10.1016/j.calphad.2017.09.005.

2022--Xu-Y-Wang-G-Qian-P-Su-Y--Ni-Rh
Y. Xu, G. Wang, P. Qian, and Y. Su (2022), "Element segregation and thermal stability of Ni–Rh nanoparticles", Journal of Solid State Chemistry, 311, 123096. DOI: 10.1016/j.jssc.2022.123096.

2019--Kavousi-S-Novak-B-R-Baskes-M-I-et-al--Ni-Ti
S. Kavousi, B.R. Novak, M.I. Baskes, M. Asle Zaeem, and D. Moldovan (2019), "Modified embedded-atom method potential for high-temperature crystal-melt properties of Ti–Ni alloys and its application to phase field simulation of solidification", Modelling and Simulation in Materials Science and Engineering, 28(1), 015006. DOI: 10.1088/1361-651x/ab580c.

2017--Kim-Y-K-Kim-H-K-Jung-W-S-Lee-B-J--Ni-Ti
Y.-K. Kim, H.-K. Kim, W.-S. Jung, and B.-J. Lee (2017), "Development and application of Ni-Ti and Ni-Al-Ti 2NN-MEAM interatomic potentials for Ni-base superalloys", Computational Materials Science, 139, 225-233. DOI: 10.1016/j.commatsci.2017.08.002.

2015--Ko-W-S-Grabowski-B-Neugebauer-J--Ni-Ti
W.-S. Ko, B. Grabowski, and J. Neugebauer (2015), "Development and application of a Ni-Ti interatomic potential with high predictive accuracy of the martensitic phase transition", Physical Review B, 92(13), 134107. DOI: 10.1103/physrevb.92.134107.

2017--Maisel-S-B-Ko-W-S-Zhang-J-L-et-al--V-Ni-Ti
S.B. Maisel, W.-S. Ko, J.-L. Zhang, B. Grabowski, and J. Neugebauer (2017), "Thermomechanical response of NiTi shape-memory nanoprecipitates in TiV alloys", Physical Review Materials, 1(3), 033610. DOI: 10.1103/physrevmaterials.1.033610.

2013--Shim-J-H-Ko-W-S-Kim-K-H-et-al--V-Ni
J.-H. Shim, W.-S. Ko, K.-H. Kim, H.-S. Lee, Y.-S. Lee, J.-Y. Suh, Y.W. Cho, and B.-J. Lee (2013), "Prediction of hydrogen permeability in V–Al and V–Ni alloys", Journal of Membrane Science, 430, 234-241. DOI: 10.1016/j.memsci.2012.12.019.

2003--Shim-J-H-Park-S-I-Cho-Y-W-Lee-B-J--Ni-W
J.-H. Shim, S.I. Park, Y.W. Cho, and B.-J. Lee (2003), "Modified embedded-atom method calculation for the Ni–W system", Journal of Materials Research, 18(8), 1863-1867. DOI: 10.1557/jmr.2003.0260.

2015--Wilson-S-R-Mendelev-M-I--Ni-Zr
S.R. Wilson, and M.I. Mendelev (2015), "Anisotropy of the solid-liquid interface properties of the Ni-Zr B33 phase from molecular dynamics simulation", Philosophical Magazine, 95(2), 224-241. DOI: 10.1080/14786435.2014.995742.

2012--Mendelev-M-I-Kramer-M-J-Hao-S-G-et-al--Ni-Zr
M.I. Mendelev, M.J. Kramer, S.G. Hao, K.M. Ho, and C.Z. Wang (2012), "Development of interatomic potentials appropriate for simulation of liquid and glass properties of NiZr2 alloy", Philosophical Magazine, 92(35), 4454-4469. DOI: 10.1080/14786435.2012.712220.

No

2015--Elliott-R-S-Akerson-A--No
R.S. Elliott, and A. Akerson (2015), "Efficient "universal" shifted Lennard-Jones model for all KIM API supported species".

Np

2015--Elliott-R-S-Akerson-A--Np
R.S. Elliott, and A. Akerson (2015), "Efficient "universal" shifted Lennard-Jones model for all KIM API supported species".

O

2015--Elliott-R-S-Akerson-A--O
R.S. Elliott, and A. Akerson (2015), "Efficient "universal" shifted Lennard-Jones model for all KIM API supported species".

2016--Lee-E-Lee-K-R-Baskes-M-I-Lee-B-J--Si-O
E. Lee, K.-R. Lee, M.I. Baskes, and B.-J. Lee (2016), "A modified embedded-atom method interatomic potential for ionic systems: 2NNMEAM+Qeq", Physical Review B, 93(14), 144110. DOI: 10.1103/physrevb.93.144110.

2007--Munetoh-S-Motooka-T-Moriguchi-K-Shintani-A--Si-O
S. Munetoh, T. Motooka, K. Moriguchi, and A. Shintani (2007), "Interatomic potential for Si-O systems using Tersoff parameterization", Computational Materials Science, 39(2), 334-339. DOI: 10.1016/j.commatsci.2006.06.010.

1997--Broughton-J-Q-Meli-C-A-Vashishta-P-Kalia-R-K--Si-O
J.Q. Broughton, C.A. Meli, P. Vashishta, and R.K. Kalia (1997), "Direct atomistic simulation of quartz crystal oscillators: Bulk properties and nanoscale devices", Physical Review B, 56(2), 611-618. DOI: 10.1103/physrevb.56.611.

1994--Nakano-A-Kalia-R-K-Vashishta-P--Si-O
A. Nakano, R.K. Kalia, and P. Vashishta (1994), "First sharp diffraction peak and intermediate-range order in amorphous silica: finite-size effects in molecular dynamics simulations", Journal of Non-Crystalline Solids, 171(2), 157-163. DOI: 10.1016/0022-3093(94)90351-4.

1990--Vashishta-P-Kalia-R-K-Rino-J-P-Ebbsjo-I--Si-O
P. Vashishta, R.K. Kalia, J.P. Rino, and I. Ebbsjö (1990), "Interaction potential for SiO2: A molecular-dynamics study of structural correlations", Physical Review B, 41(17), 12197-12209. DOI: 10.1103/physrevb.41.12197.

2016--Lee-E-Lee-K-R-Baskes-M-I-Lee-B-J--Ti-O
E. Lee, K.-R. Lee, M.I. Baskes, and B.-J. Lee (2016), "A modified embedded-atom method interatomic potential for ionic systems: 2NNMEAM+Qeq", Physical Review B, 93(14), 144110. DOI: 10.1103/physrevb.93.144110.

2016--Zhang-P-Trinkle-D-R--Ti-O
P. Zhang, and D.R. Trinkle (2016), "A modified embedded atom method potential for interstitial oxygen in titanium", Computational Materials Science, 124, 204-210. DOI: 10.1016/j.commatsci.2016.07.039.

2013--Umeno-Y-Iskandarov-A-M-Kubo-A-Albina-J-M--O-Y-Zr
Y. Umeno, A.M. Iskandarov, A. Kubo, and J.M. Albina (2013), "Atomistic Modeling and Ab Initio Calculations of Yttria-Stabilized Zirconia", ECS Transactions, 57(1), 2791-2797. DOI: 10.1149/05701.2791ecst.

2006--Erhart-P-Juslin-N-Goy-O-et-al--Zn-O
P. Erhart, N. Juslin, O. Goy, K. Nordlund, R. Müller, and K. Albe (2006), "Analytic bond-order potential for atomistic simulations of zinc oxide", Journal of Physics: Condensed Matter, 18(29), 6585-6605. DOI: 10.1088/0953-8984/18/29/003.

Og

2015--Elliott-R-S-Akerson-A--Og
R.S. Elliott, and A. Akerson (2015), "Efficient "universal" shifted Lennard-Jones model for all KIM API supported species".

Os

2015--Elliott-R-S-Akerson-A--Os
R.S. Elliott, and A. Akerson (2015), "Efficient "universal" shifted Lennard-Jones model for all KIM API supported species".

P

2015--Elliott-R-S-Akerson-A--P
R.S. Elliott, and A. Akerson (2015), "Efficient "universal" shifted Lennard-Jones model for all KIM API supported species".

2012--Ko-W-S-Kim-N-J-Lee-B-J--P
W.-S. Ko, N.J. Kim, and B.-J. Lee (2012), "Atomistic modeling of an impurity element and a metal-impurity system: pure P and Fe-P system", Journal of Physics: Condensed Matter, 24(22), 225002. DOI: 10.1088/0953-8984/24/22/225002.

Pa

2015--Elliott-R-S-Akerson-A--Pa
R.S. Elliott, and A. Akerson (2015), "Efficient "universal" shifted Lennard-Jones model for all KIM API supported species".

Pb

2018--Wang-K-Zhu-W-Xiang-M-et-al--Pb-II
K. Wang, W. Zhu, M. Xiang, Y. Xu, G. Li, and J. Chen (2018), "Improved embedded-atom model potentials of Pb at high pressure: application to investigations of plasticity and phase transition under extreme conditions", Modelling and Simulation in Materials Science and Engineering, 27(1), 015001. DOI: 10.1088/1361-651x/aaea55.

2015--Elliott-R-S-Akerson-A--Pb
R.S. Elliott, and A. Akerson (2015), "Efficient "universal" shifted Lennard-Jones model for all KIM API supported species".

2004--Zhou-X-W-Johnson-R-A-Wadley-H-N-G--Pb
X.W. Zhou, R.A. Johnson, and H.N.G. Wadley (2004), "Misfit-energy-increasing dislocations in vapor-deposited CoFe/NiFe multilayers", Physical Review B, 69(14), 144113. DOI: 10.1103/physrevb.69.144113.

2003--Lee-B-J-Shim-J-H-Baskes-M-I--Pb
B.-J. Lee, J.-H. Shim, and M.I. Baskes (2003), "Semiempirical atomic potentials for the fcc metals Cu, Ag, Au, Ni, Pd, Pt, Al, and Pb based on first and second nearest-neighbor modified embedded atom method", Physical Review B, 68(14), 144112. DOI: 10.1103/physrevb.68.144112.

1959--Girifalco-L-A-Weizer-V-G--Pb
L.A. Girifalco, and V.G. Weizer (1959), "Application of the Morse Potential Function to Cubic Metals", Physical Review, 114(3), 687-690. DOI: 10.1103/physrev.114.687.

2018--Etesami-S-A-Baskes-M-I-Laradji-M-Asadi-E--Pb-Sn
S.A. Etesami, M.I. Baskes, M. Laradji, and E. Asadi (2018), "Thermodynamics of solid Sn and Pb-Sn liquid mixtures using molecular dynamics simulations", Acta Materialia, 161, 320-330. DOI: 10.1016/j.actamat.2018.09.036.

Pd

2015--Elliott-R-S-Akerson-A--Pd
R.S. Elliott, and A. Akerson (2015), "Efficient "universal" shifted Lennard-Jones model for all KIM API supported species".

2004--Zhou-X-W-Johnson-R-A-Wadley-H-N-G--Pd
X.W. Zhou, R.A. Johnson, and H.N.G. Wadley (2004), "Misfit-energy-increasing dislocations in vapor-deposited CoFe/NiFe multilayers", Physical Review B, 69(14), 144113. DOI: 10.1103/physrevb.69.144113.

2003--Lee-B-J-Shim-J-H-Baskes-M-I--Pd
B.-J. Lee, J.-H. Shim, and M.I. Baskes (2003), "Semiempirical atomic potentials for the fcc metals Cu, Ag, Au, Ni, Pd, Pt, Al, and Pb based on first and second nearest-neighbor modified embedded atom method", Physical Review B, 68(14), 144112. DOI: 10.1103/physrevb.68.144112.

1996--Jacobsen-K-W-Stoltze-P-Norskov-J-K--Pd
K.W. Jacobsen, P. Stoltze, and J.K. Nørskov (1996), "A semi-empirical effective medium theory for metals and alloys", Surface Science, 366(2), 394-402. DOI: 10.1016/0039-6028(96)00816-3.

1989--Adams-J-B-Foiles-S-M-Wolfer-W-G--Pd
J.B. Adams, S.M. Foiles, and W.G. Wolfer (1989), "Self-diffusion and impurity diffusion of fcc metals using the five-frequency model and the Embedded Atom Method", Journal of Materials Research, 4(1), 102-112. DOI: 10.1557/jmr.1989.0102.

1986--Foiles-S-M-Baskes-M-I-Daw-M-S--Pd
S.M. Foiles, M.I. Baskes, and M.S. Daw (1986), "Embedded-atom-method functions for the fcc metals Cu, Ag, Au, Ni, Pd, Pt, and their alloys", Physical Review B, 33(12), 7983-7991. DOI: 10.1103/physrevb.33.7983.

2018--Jeong-G-U-Park-C-S-Do-H-S-et-al--Pd-Ti
G.-U. Jeong, C.S. Park, H.-S. Do, S.-M. Park, and B.-J. Lee (2018), "Second nearest-neighbor modified embedded-atom method interatomic potentials for the Pd-M (M = Al, Co, Cu, Fe, Mo, Ni, Ti) binary systems", Calphad, 62, 172-186. DOI: 10.1016/j.calphad.2018.06.006.

2013--Ko-W-S-Lee-B-J--V-Pd-Y
W.-S. Ko, and B.-J. Lee (2013), "Modified embedded-atom method interatomic potentials for pure Y and the V-Pd-Y ternary system", Modelling and Simulation in Materials Science and Engineering, 21(8), 085008. DOI: 10.1088/0965-0393/21/8/085008.

Pm

2015--Elliott-R-S-Akerson-A--Pm
R.S. Elliott, and A. Akerson (2015), "Efficient "universal" shifted Lennard-Jones model for all KIM API supported species".

Po

2015--Elliott-R-S-Akerson-A--Po
R.S. Elliott, and A. Akerson (2015), "Efficient "universal" shifted Lennard-Jones model for all KIM API supported species".

Pr

2015--Elliott-R-S-Akerson-A--Pr
R.S. Elliott, and A. Akerson (2015), "Efficient "universal" shifted Lennard-Jones model for all KIM API supported species".

Pt

2015--Elliott-R-S-Akerson-A--Pt
R.S. Elliott, and A. Akerson (2015), "Efficient "universal" shifted Lennard-Jones model for all KIM API supported species".

2004--Zhou-X-W-Johnson-R-A-Wadley-H-N-G--Pt
X.W. Zhou, R.A. Johnson, and H.N.G. Wadley (2004), "Misfit-energy-increasing dislocations in vapor-deposited CoFe/NiFe multilayers", Physical Review B, 69(14), 144113. DOI: 10.1103/physrevb.69.144113.

2003--Lee-B-J-Shim-J-H-Baskes-M-I--Pt
B.-J. Lee, J.-H. Shim, and M.I. Baskes (2003), "Semiempirical atomic potentials for the fcc metals Cu, Ag, Au, Ni, Pd, Pt, Al, and Pb based on first and second nearest-neighbor modified embedded atom method", Physical Review B, 68(14), 144112. DOI: 10.1103/physrevb.68.144112.

1996--Jacobsen-K-W-Stoltze-P-Norskov-J-K--Pt
K.W. Jacobsen, P. Stoltze, and J.K. Nørskov (1996), "A semi-empirical effective medium theory for metals and alloys", Surface Science, 366(2), 394-402. DOI: 10.1016/0039-6028(96)00816-3.

1990--Ackland-G-J--Pt
G.J. Ackland (1990), "unpublished".

1989--Adams-J-B-Foiles-S-M-Wolfer-W-G--Pt
J.B. Adams, S.M. Foiles, and W.G. Wolfer (1989), "Self-diffusion and impurity diffusion of fcc metals using the five-frequency model and the Embedded Atom Method", Journal of Materials Research, 4(1), 102-112. DOI: 10.1557/jmr.1989.0102.

1986--Foiles-S-M-Baskes-M-I-Daw-M-S--Pt
S.M. Foiles, M.I. Baskes, and M.S. Daw (1986), "Embedded-atom-method functions for the fcc metals Cu, Ag, Au, Ni, Pd, Pt, and their alloys", Physical Review B, 33(12), 7983-7991. DOI: 10.1103/physrevb.33.7983.

2017--Kim-J-S-Seol-D-Ji-J-et-al--Pt-Ti
J.-S. Kim, D. Seol, J. Ji, H.-S. Jang, Y. Kim, and B.-J. Lee (2017), "Second nearest-neighbor modified embedded-atom method interatomic potentials for the Pt-M (M = Al, Co, Cu, Mo, Ni, Ti, V) binary systems", Calphad, 59, 131-141. DOI: 10.1016/j.calphad.2017.09.005.

2017--Kim-J-S-Seol-D-Ji-J-et-al--Pt-V
J.-S. Kim, D. Seol, J. Ji, H.-S. Jang, Y. Kim, and B.-J. Lee (2017), "Second nearest-neighbor modified embedded-atom method interatomic potentials for the Pt-M (M = Al, Co, Cu, Mo, Ni, Ti, V) binary systems", Calphad, 59, 131-141. DOI: 10.1016/j.calphad.2017.09.005.

Pu

2015--Elliott-R-S-Akerson-A--Pu
R.S. Elliott, and A. Akerson (2015), "Efficient "universal" shifted Lennard-Jones model for all KIM API supported species".

Ra

2015--Elliott-R-S-Akerson-A--Ra
R.S. Elliott, and A. Akerson (2015), "Efficient "universal" shifted Lennard-Jones model for all KIM API supported species".

Rb

2016--Nichol-A-Ackland-G-J--Rb
A. Nichol, and G.J. Ackland (2016), "Property trends in simple metals: An empirical potential approach", Physical Review B, 93(18), 184101. DOI: 10.1103/physrevb.93.184101.

2015--Elliott-R-S-Akerson-A--Rb
R.S. Elliott, and A. Akerson (2015), "Efficient "universal" shifted Lennard-Jones model for all KIM API supported species".

1959--Girifalco-L-A-Weizer-V-G--Rb
L.A. Girifalco, and V.G. Weizer (1959), "Application of the Morse Potential Function to Cubic Metals", Physical Review, 114(3), 687-690. DOI: 10.1103/physrev.114.687.

Re

2015--Elliott-R-S-Akerson-A--Re
R.S. Elliott, and A. Akerson (2015), "Efficient "universal" shifted Lennard-Jones model for all KIM API supported species".

2018--Setyawan-W-Gao-N-Kurtz-R-J--W-Re
W. Setyawan, N. Gao, and R.J. Kurtz (2018), "A tungsten-rhenium interatomic potential for point defect studies", Journal of Applied Physics, 123(20), 205102. DOI: 10.1063/1.5030113.

2017--Bonny-G-Bakaev-A-Terentyev-D-Mastrikov-Y-A--W-Re
G. Bonny, A. Bakaev, D. Terentyev, and Y.A. Mastrikov (2017), "Interatomic potential to study plastic deformation in tungsten-rhenium alloys", Journal of Applied Physics, 121(16), 165107. DOI: 10.1063/1.4982361.

Rf

2015--Elliott-R-S-Akerson-A--Rf
R.S. Elliott, and A. Akerson (2015), "Efficient "universal" shifted Lennard-Jones model for all KIM API supported species".

Rg

2015--Elliott-R-S-Akerson-A--Rg
R.S. Elliott, and A. Akerson (2015), "Efficient "universal" shifted Lennard-Jones model for all KIM API supported species".

Rh

2015--Elliott-R-S-Akerson-A--Rh
R.S. Elliott, and A. Akerson (2015), "Efficient "universal" shifted Lennard-Jones model for all KIM API supported species".

Rn

2015--Elliott-R-S-Akerson-A--Rn
R.S. Elliott, and A. Akerson (2015), "Efficient "universal" shifted Lennard-Jones model for all KIM API supported species".

Ru

2015--Elliott-R-S-Akerson-A--Ru
R.S. Elliott, and A. Akerson (2015), "Efficient "universal" shifted Lennard-Jones model for all KIM API supported species".

2008--Fortini-A-Mendelev-M-I-Buldyrev-S-Srolovitz-D--Ru
A. Fortini, M.I. Mendelev, S. Buldyrev, and D. Srolovitz (2008), "Asperity contacts at the nanoscale: Comparison of Ru and Au", Journal of Applied Physics, 104(7), 074320. DOI: 10.1063/1.2991301.

S

2015--Elliott-R-S-Akerson-A--S
R.S. Elliott, and A. Akerson (2015), "Efficient "universal" shifted Lennard-Jones model for all KIM API supported species".

Sb

2015--Elliott-R-S-Akerson-A--Sb
R.S. Elliott, and A. Akerson (2015), "Efficient "universal" shifted Lennard-Jones model for all KIM API supported species".

Sc

2015--Elliott-R-S-Akerson-A--Sc
R.S. Elliott, and A. Akerson (2015), "Efficient "universal" shifted Lennard-Jones model for all KIM API supported species".

Se

2015--Elliott-R-S-Akerson-A--Se
R.S. Elliott, and A. Akerson (2015), "Efficient "universal" shifted Lennard-Jones model for all KIM API supported species".

Sg

2015--Elliott-R-S-Akerson-A--Sg
R.S. Elliott, and A. Akerson (2015), "Efficient "universal" shifted Lennard-Jones model for all KIM API supported species".

Si

2020--Zuo-Y-Chen-C-Li-X-et-al--Si-SNAP
Y. Zuo, C. Chen, X. Li, Z. Deng, Y. Chen, J. Behler, G. Csányi, A.V. Shapeev, A.P. Thompson, M.A. Wood, and S.P. Ong (2020), "Performance and Cost Assessment of Machine Learning Interatomic Potentials", The Journal of Physical Chemistry A, 124(4), 731-745. DOI: 10.1021/acs.jpca.9b08723.

2020--Zuo-Y-Chen-C-Li-X-et-al--Si-qSNAP
Y. Zuo, C. Chen, X. Li, Z. Deng, Y. Chen, J. Behler, G. Csányi, A.V. Shapeev, A.P. Thompson, M.A. Wood, and S.P. Ong (2020), "Performance and Cost Assessment of Machine Learning Interatomic Potentials", The Journal of Physical Chemistry A, 124(4), 731-745. DOI: 10.1021/acs.jpca.9b08723.

2017--Purja-Pun-G-P-Mishin-Y--Si
G.P. Purja Pun, and Y. Mishin (2017), "Optimized interatomic potential for silicon and its application to thermal stability of silicene", Physical Review B, 95(22), 224103. DOI: 10.1103/physrevb.95.224103.

2015--Elliott-R-S-Akerson-A--Si
R.S. Elliott, and A. Akerson (2015), "Efficient "universal" shifted Lennard-Jones model for all KIM API supported species".

2014--Zhang-X-Xie-H-Hu-M-et-al--Si-1
X. Zhang, H. Xie, M. Hu, H. Bao, S. Yue, G. Qin, and G. Su (2014), "Thermal conductivity of silicene calculated using an optimized Stillinger-Weber potential", Physical Review B, 89(5), 054310. DOI: 10.1103/physrevb.89.054310.

2014--Zhang-X-Xie-H-Hu-M-et-al--Si-2
X. Zhang, H. Xie, M. Hu, H. Bao, S. Yue, G. Qin, and G. Su (2014), "Thermal conductivity of silicene calculated using an optimized Stillinger-Weber potential", Physical Review B, 89(5), 054310. DOI: 10.1103/physrevb.89.054310.

2012--Lee-Y-Hwang-G-S--Si-GGA
Y. Lee, and G.S. Hwang (2012), "Force-matching-based parameterization of the Stillinger-Weber potential for thermal conduction in silicon", Physical Review B, 85(12), 125204. DOI: 10.1103/physrevb.85.125204.

2012--Lee-Y-Hwang-G-S--Si-LDA
Y. Lee, and G.S. Hwang (2012), "Force-matching-based parameterization of the Stillinger-Weber potential for thermal conduction in silicon", Physical Review B, 85(12), 125204. DOI: 10.1103/physrevb.85.125204.

2011--Du-Y-A-Lenosky-T-J-Hennig-R-G-et-al--Si
Y.A. Du, T.J. Lenosky, R.G. Hennig, S. Goedecker, and J.W. Wilkins (2011), "Energy landscape of silicon tetra-interstitials using an optimized classical potential", physica status solidi (b), 248(9), 2050-2055. DOI: 10.1002/pssb.201147137.

2007--Kumagai-T-Izumi-S-Hara-S-Sakai-S--Si
T. Kumagai, S. Izumi, S. Hara, and S. Sakai (2007), "Development of bond-order potentials that can reproduce the elastic constants and melting point of silicon for classical molecular dynamics simulation", Computational Materials Science, 39(2), 457-464. DOI: 10.1016/j.commatsci.2006.07.013.

2007--Lee-B-J--Si
B.-J. Lee (2007), "A modified embedded atom method interatomic potential for silicon", Calphad, 31(1), 95-104. DOI: 10.1016/j.calphad.2006.10.002.

2000--Lenosky-T-J-Sadigh-B-Alonso-E-et-al--Si
T.J. Lenosky, B. Sadigh, E. Alonso, V.V. Bulatov, T.D. Rubia, J. Kim, A.F. Voter, and J.D. Kress (2000), "Highly optimized empirical potential model of silicon", Modelling and Simulation in Materials Science and Engineering, 8(6), 825-841. DOI: 10.1088/0965-0393/8/6/305.

1999--Hauch-J-A-Holland-D-Marder-M-P-Swinney-H-L--Si
J.A. Hauch, D. Holland, M.P. Marder, and H.L. Swinney (1999), "Dynamic Fracture in Single Crystal Silicon", Physical Review Letters, 82(19), 3823-3826. DOI: 10.1103/physrevlett.82.3823.

1998--Justo-J-F-Bazant-M-Z-Kaxiras-E-et-al--Si
J.F. Justo, M.Z. Bazant, E. Kaxiras, V.V. Bulatov, and S. Yip (1998), "Interatomic potential for silicon defects and disordered phases", Physical Review B, 58(5), 2539-2550. DOI: 10.1103/physrevb.58.2539.

1996--Stephenson-P-C-L-Radny-M-W-Smith-P-V--Si
P.C.L. Stephenson, M.W. Radny, and P.V. Smith (1996), "A modified Stillinger-Weber potential for modelling silicon surfaces", Surface Science, 366(1), 177-184. DOI: 10.1016/0039-6028(96)00801-1.

1993--Gong-X-G--Si
X.G. Gong (1993), "Empirical-potential studies on the structural properties of small silicon clusters", Physical Review B, 47(4), 2329-2332. DOI: 10.1103/physrevb.47.2329.

1992--Balamane-H-Halicioglu-T-Tiller-W-A--Si
H. Balamane, T. Halicioglu, and W.A. Tiller (1992), "Comparative study of silicon empirical interatomic potentials", Physical Review B, 46(4), 2250-2279. DOI: 10.1103/physrevb.46.2250.
F.H. Stillinger, and T.A. Weber (1985), "Computer simulation of local order in condensed phases of silicon", Physical Review B, 31(8), 5262-5271. DOI: 10.1103/physrevb.31.5262.

1992--Baskes-M-I--Si
M.I. Baskes (1992), "Modified embedded-atom potentials for cubic materials and impurities", Physical Review B, 46(5), 2727-2742. DOI: 10.1103/physrevb.46.2727.

1991--Wang-J-Rockett-A--Si
J. Wang, and A. Rockett (1991), "Simulating diffusion on Si(001) 2×1 surfaces using a modified interatomic potential", Physical Review B, 43(15), 12571-12579. DOI: 10.1103/physrevb.43.12571.

1989--Mistriotis-A-D-Flytzanis-N-Farantos-S-C--Si
A.D. Mistriotis, N. Flytzanis, and S.C. Farantos (1989), "Potential model for silicon clusters", Physical Review B, 39(2), 1212-1218. DOI: 10.1103/physrevb.39.1212.

1988--Kaxiras-E-Pandey-K-C--Si
E. Kaxiras, and K.C. Pandey (1988), "New classical potential for accurate simulation of atomic processes in Si", Physical Review B, 38(17), 12736-12739. DOI: 10.1103/physrevb.38.12736.

1988--Khor-K-E-Das-Sarma-S--Si
K.E. Khor, and S. Das Sarma (1988), "Proposed universal interatomic potential for elemental tetrahedrally bonded semiconductors", Physical Review B, 38(5), 3318-3322. DOI: 10.1103/physrevb.38.3318.

1988--Tersoff-J--Si-b
J. Tersoff (1988), "New empirical approach for the structure and energy of covalent systems", Physical Review B, 37(12), 6991-7000. DOI: 10.1103/physrevb.37.6991.

1988--Tersoff-J--Si-c
J. Tersoff (1988), "Empirical interatomic potential for silicon with improved elastic properties", Physical Review B, 38(14), 9902-9905. DOI: 10.1103/physrevb.38.9902.

1987--Biswas-R-Hamann-D-R--Si
R. Biswas, and D.R. Hamann (1987), "New classical models for silicon structural energies", Physical Review B, 36(12), 6434-6445. DOI: 10.1103/physrevb.36.6434.

1986--Tersoff-J--Si
J. Tersoff (1986), "New empirical model for the structural properties of silicon", Physical Review Letters, 56(6), 632-635. DOI: 10.1103/physrevlett.56.632.

1985--Stillinger-F-H-Weber-T-A--Si
F.H. Stillinger, and T.A. Weber (1985), "Computer simulation of local order in condensed phases of silicon", Physical Review B, 31(8), 5262-5271. DOI: 10.1103/physrevb.31.5262.
F.H. Stillinger, and T.A. Weber (1986), "Erratum: Computer simulation of local order in condensed phases of silicon [Phys. Rev. B 31, 5262 (1985)]", Physical Review B, 33(2), 1451-1451. DOI: 10.1103/physrevb.33.1451.

2017--Beeler-B-Baskes-M-Andersson-D-et-al--U-Si
B. Beeler, M. Baskes, D. Andersson, M.W.D. Cooper, and Y. Zhang (2017), "A modified Embedded-Atom Method interatomic potential for uranium-silicide", Journal of Nuclear Materials, 495, 267-276. DOI: 10.1016/j.jnucmat.2017.08.025.

Sm

2015--Elliott-R-S-Akerson-A--Sm
R.S. Elliott, and A. Akerson (2015), "Efficient "universal" shifted Lennard-Jones model for all KIM API supported species".

Sn

2018--Ko-W-S-Kim-D-H-Kwon-Y-J-Lee-M--Sn
W.-S. Ko, D.-H. Kim, Y.-J. Kwon, and M. Lee (2018), "Atomistic Simulations of Pure Tin Based on a New Modified Embedded-Atom Method Interatomic Potential", Metals, 8(11), 900. DOI: 10.3390/met8110900.

2015--Elliott-R-S-Akerson-A--Sn
R.S. Elliott, and A. Akerson (2015), "Efficient "universal" shifted Lennard-Jones model for all KIM API supported species".

Sr

2015--Elliott-R-S-Akerson-A--Sr
R.S. Elliott, and A. Akerson (2015), "Efficient "universal" shifted Lennard-Jones model for all KIM API supported species".

1959--Girifalco-L-A-Weizer-V-G--Sr
L.A. Girifalco, and V.G. Weizer (1959), "Application of the Morse Potential Function to Cubic Metals", Physical Review, 114(3), 687-690. DOI: 10.1103/physrev.114.687.

2017--Wang-P-Xu-S-Liu-J-et-al--TWIP
P. Wang, S. Xu, J. Liu, X. Li, Y. Wei, H. Wang, H. Gao, and W. Yang (2017), "Atomistic simulation for deforming complex alloys with application toward TWIP steel and associated physical insights", Journal of the Mechanics and Physics of Solids, 98, 290-308. DOI: 10.1016/j.jmps.2016.09.008.

Ta

2022--Lin-Y-S-Purja-Pun-G-P-Mishin-Y--Ta
Y.-S. Lin, G.P. Purja Pun, and Y. Mishin (2022), "Development of a physically-informed neural network interatomic potential for tantalum", Computational Materials Science, 205, 111180. DOI: 10.1016/j.commatsci.2021.111180.
Y. Mishin (2021), "Machine-learning interatomic potentials for materials science", Acta Materialia, 214, 116980. DOI: 10.1016/j.actamat.2021.116980.

2015--Elliott-R-S-Akerson-A--Ta
R.S. Elliott, and A. Akerson (2015), "Efficient "universal" shifted Lennard-Jones model for all KIM API supported species".

2015--Purja-Pun-G-P-Darling-K-A-Kecskes-L-J-Mishin-Y--Ta
G.P. Purja Pun, K.A. Darling, L.J. Kecskes, and Y. Mishin (2015), "Angular-dependent interatomic potential for the Cu-Ta system and its application to structural stability of nano-crystalline alloys", Acta Materialia, 100, 377-391. DOI: 10.1016/j.actamat.2015.08.052.

2015--Thompson-A-P-Swiler-L-P-Trott-C-R-et-al--Ta
A.P. Thompson, L.P. Swiler, C.R. Trott, S.M. Foiles, and G.J. Tucker (2015), "Spectral neighbor analysis method for automated generation of quantum-accurate interatomic potentials", Journal of Computational Physics, 285, 316-330. DOI: 10.1016/j.jcp.2014.12.018.

2013--Ravelo-R-Germann-T-C-Guerrero-O-et-al--Ta-1
R. Ravelo, T.C. Germann, O. Guerrero, Q. An, and B.L. Holian (2013), "Shock-induced plasticity in tantalum single crystals: Interatomic potentials and large-scale molecular-dynamics simulations", Physical Review B, 88(13), 134101. DOI: 10.1103/physrevb.88.134101.

2013--Ravelo-R-Germann-T-C-Guerrero-O-et-al--Ta-2
R. Ravelo, T.C. Germann, O. Guerrero, Q. An, and B.L. Holian (2013), "Shock-induced plasticity in tantalum single crystals: Interatomic potentials and large-scale molecular-dynamics simulations", Physical Review B, 88(13), 134101. DOI: 10.1103/physrevb.88.134101.

2007--Derlet-P-M-Nguyen-Manh-D-Dudarev-S-L--Ta
P.M. Derlet, D. Nguyen-Manh, and S.L. Dudarev (2007), "Multiscale modeling of crowdion and vacancy defects in body-centered-cubic transition metals", Physical Review B, 76(5), 054107. DOI: 10.1103/physrevb.76.054107.

2004--Zhou-X-W-Johnson-R-A-Wadley-H-N-G--Ta
X.W. Zhou, R.A. Johnson, and H.N.G. Wadley (2004), "Misfit-energy-increasing dislocations in vapor-deposited CoFe/NiFe multilayers", Physical Review B, 69(14), 144113. DOI: 10.1103/physrevb.69.144113.

2003--Han-S-Zepeda-Ruiz-L-A-Ackland-G-J-et-al--Ta
S. Han, L.A. Zepeda-Ruiz, G.J. Ackland, R. Car, and D.J. Srolovitz (2003), "Interatomic potential for vanadium suitable for radiation damage simulations", Journal of Applied Physics, 93(6), 3328-3335. DOI: 10.1063/1.1555275.

2003--Li-Y-Siegel-D-J-Adams-J-B-Liu-X-Y--Ta
Y. Li, D.J. Siegel, J.B. Adams, and X.-Y. Liu (2003), "Embedded-atom-method tantalum potential developed by the force-matching method", Physical Review B, 67(12), 125101. DOI: 10.1103/physrevb.67.125101.

2001--Lee-B-J-Baskes-M-I-Kim-H-Cho-Y-K--Ta
B.-J. Lee, M.I. Baskes, H. Kim, and Y.K. Cho (2001), "Second nearest-neighbor modified embedded atom method potentials for bcc transition metals", Physical Review B, 64(18), 184102. DOI: 10.1103/physrevb.64.184102.

1987--Ackland-G-J-Thetford-R--Ta
G.J. Ackland, and R. Thetford (1987), "An improved N-body semi-empirical model for body-centred cubic transition metals", Philosophical Magazine A, 56(1), 15-30. DOI: 10.1080/01418618708204464.

2019--Chen-Y-Fang-J-Liu-L-et-al--W-Ta
Y. Chen, J. Fang, L. Liu, W. Hu, N. Gao, F. Gao, and H. Deng (2019), "Development of the interatomic potentials for W-Ta system", Computational Materials Science, 163, 91-99. DOI: 10.1016/j.commatsci.2019.03.021.

Tb

2018--Mendelev-M-I-Zhang-F-Song-H-et-al--Tb
M.I. Mendelev, F. Zhang, H. Song, Y. Sun, C.Z. Wang, and K.M. Ho (2018), "Molecular dynamics simulation of the solid-liquid interface migration in terbium", The Journal of Chemical Physics, 148(21), 214705. DOI: 10.1063/1.5026922.

2015--Elliott-R-S-Akerson-A--Tb
R.S. Elliott, and A. Akerson (2015), "Efficient "universal" shifted Lennard-Jones model for all KIM API supported species".

Tc

2015--Elliott-R-S-Akerson-A--Tc
R.S. Elliott, and A. Akerson (2015), "Efficient "universal" shifted Lennard-Jones model for all KIM API supported species".

Te

2015--Elliott-R-S-Akerson-A--Te
R.S. Elliott, and A. Akerson (2015), "Efficient "universal" shifted Lennard-Jones model for all KIM API supported species".

Th

2015--Elliott-R-S-Akerson-A--Th
R.S. Elliott, and A. Akerson (2015), "Efficient "universal" shifted Lennard-Jones model for all KIM API supported species".

Ti

2016--Gibson-J-S-Srinivasan-S-G-Baskes-M-I-et-al--Ti
J.S. Gibson, S.G. Srinivasan, M.I. Baskes, R.E. Miller, and A.K. Wilson (2016), "A multi-state modified embedded atom method potential for titanium", Modelling and Simulation in Materials Science and Engineering, 25(1), 015010. DOI: 10.1088/1361-651x/25/1/015010.

2016--Mendelev-M-I-Underwood-T-L-Ackland-G-J--Ti-1
M.I. Mendelev, T.L. Underwood, and G.J. Ackland (2016), "Development of an interatomic potential for the simulation of defects, plasticity, and phase transformations in titanium", The Journal of Chemical Physics, 145(15), 154102. DOI: 10.1063/1.4964654.

2016--Mendelev-M-I-Underwood-T-L-Ackland-G-J--Ti-2
M.I. Mendelev, T.L. Underwood, and G.J. Ackland (2016), "Development of an interatomic potential for the simulation of defects, plasticity, and phase transformations in titanium", The Journal of Chemical Physics, 145(15), 154102. DOI: 10.1063/1.4964654.

2016--Mendelev-M-I-Underwood-T-L-Ackland-G-J--Ti-3
M.I. Mendelev, T.L. Underwood, and G.J. Ackland (2016), "Development of an interatomic potential for the simulation of defects, plasticity, and phase transformations in titanium", The Journal of Chemical Physics, 145(15), 154102. DOI: 10.1063/1.4964654.

2016--Mendelev-M-I-Underwood-T-L-Ackland-G-J--Ti-Tdep
M.I. Mendelev, T.L. Underwood, and G.J. Ackland (2016), "Development of an interatomic potential for the simulation of defects, plasticity, and phase transformations in titanium", The Journal of Chemical Physics, 145(15), 154102. DOI: 10.1063/1.4964654.

2015--Elliott-R-S-Akerson-A--Ti
R.S. Elliott, and A. Akerson (2015), "Efficient "universal" shifted Lennard-Jones model for all KIM API supported species".

2008--Hennig-R-G-Lenosky-T-J-Trinkle-D-R-et-al--Ti
R.G. Hennig, T.J. Lenosky, D.R. Trinkle, S.P. Rudin, and J.W. Wilkins (2008), "Classical potential describes martensitic phase transformations between the α, β, and ω titanium phases", Physical Review B, 78(5), 054121. DOI: 10.1103/physrevb.78.054121.

2006--Kim-Y-M-Lee-B-J-Baskes-M-I--Ti
Y.-M. Kim, B.-J. Lee, and M.I. Baskes (2006), "Modified embedded-atom method interatomic potentials for Ti and Zr", Physical Review B, 74(1), 014101. DOI: 10.1103/physrevb.74.014101.

2004--Zhou-X-W-Johnson-R-A-Wadley-H-N-G--Ti
X.W. Zhou, R.A. Johnson, and H.N.G. Wadley (2004), "Misfit-energy-increasing dislocations in vapor-deposited CoFe/NiFe multilayers", Physical Review B, 69(14), 144113. DOI: 10.1103/physrevb.69.144113.

1992--Ackland-G-J--Ti
G.J. Ackland (1992), "Theoretical study of titanium surfaces and defects with a new many-body potential", Philosophical Magazine A, 66(6), 917-932. DOI: 10.1080/01418619208247999.

Tl

2015--Elliott-R-S-Akerson-A--Tl
R.S. Elliott, and A. Akerson (2015), "Efficient "universal" shifted Lennard-Jones model for all KIM API supported species".

Tm

2015--Elliott-R-S-Akerson-A--Tm
R.S. Elliott, and A. Akerson (2015), "Efficient "universal" shifted Lennard-Jones model for all KIM API supported species".

Ts

2015--Elliott-R-S-Akerson-A--Ts
R.S. Elliott, and A. Akerson (2015), "Efficient "universal" shifted Lennard-Jones model for all KIM API supported species".

U

2015--Elliott-R-S-Akerson-A--U
R.S. Elliott, and A. Akerson (2015), "Efficient "universal" shifted Lennard-Jones model for all KIM API supported species".

2014--Fernandez-J-R-Pascuet-M-I--U
J.R. Fernández, and M.I. Pascuet (2014), "On the accurate description of uranium metallic phases: a MEAM interatomic potential approach", Modelling and Simulation in Materials Science and Engineering, 22(5), 055019. DOI: 10.1088/0965-0393/22/5/055019.

2011--Smirnova-D-E-Starikov-S-V-Stegailov-V-V--U
D.E. Smirnova, S.V. Starikov, and V.V. Stegailov (2011), "Interatomic potential for uranium in a wide range of pressures and temperatures", Journal of Physics: Condensed Matter, 24(1), 015702. DOI: 10.1088/0953-8984/24/1/015702.
D.E. Smirnova, S.V. Starikov, and V.V. Stegailov (2012), "Interatomic potential for uranium in a wide range of pressures and temperatures", Journal of Physics: Condensed Matter, 24(14), 149501. DOI: 10.1088/0953-8984/24/14/149501.

2015--Moore-A-P-Beeler-B-Deo-C-et-al--U-Zr
A.P. Moore, B. Beeler, C. Deo, M.I. Baskes, and M.A. Okuniewski (2015), "Atomistic modeling of high temperature uranium-zirconium alloy structure and thermodynamics", Journal of Nuclear Materials, 467, 802-819. DOI: 10.1016/j.jnucmat.2015.10.016.

UO2

2014--Thompson-A-E-Meredig-B-Stan-M-Wolverton-C--UO2
A.E. Thompson, B. Meredig, M. Stan, and C. Wolverton (2014), "Interatomic potential for accurate phonons and defects in UO2", Journal of Nuclear Materials, 446(1-3), 155-162. DOI: 10.1016/j.jnucmat.2013.11.040.

2009--Tiwary-P-van-de-Walle-A-Gronbech-Jensen-N--UO2
P. Tiwary, A. van de Walle, and N. Grønbech-Jensen (2009), "Ab initio construction of interatomic potentials for uranium dioxide across all interatomic distances", Physical Review B, 80(17), 174302. DOI: 10.1103/physrevb.80.174302.

V

2015--Elliott-R-S-Akerson-A--V
R.S. Elliott, and A. Akerson (2015), "Efficient "universal" shifted Lennard-Jones model for all KIM API supported species".

2009--Olsson-P-A-T--V
P.A.T. Olsson (2009), "Semi-empirical atomistic study of point defect properties in BCC transition metals", Computational Materials Science, 47(1), 135-145. DOI: 10.1016/j.commatsci.2009.06.025.

2007--Derlet-P-M-Nguyen-Manh-D-Dudarev-S-L--V
P.M. Derlet, D. Nguyen-Manh, and S.L. Dudarev (2007), "Multiscale modeling of crowdion and vacancy defects in body-centered-cubic transition metals", Physical Review B, 76(5), 054107. DOI: 10.1103/physrevb.76.054107.

2003--Han-S-Zepeda-Ruiz-L-A-Ackland-G-J-et-al--V
S. Han, L.A. Zepeda-Ruiz, G.J. Ackland, R. Car, and D.J. Srolovitz (2003), "Interatomic potential for vanadium suitable for radiation damage simulations", Journal of Applied Physics, 93(6), 3328-3335. DOI: 10.1063/1.1555275.

2001--Lee-B-J-Baskes-M-I-Kim-H-Cho-Y-K--V
B.-J. Lee, M.I. Baskes, H. Kim, and Y.K. Cho (2001), "Second nearest-neighbor modified embedded atom method potentials for bcc transition metals", Physical Review B, 64(18), 184102. DOI: 10.1103/physrevb.64.184102.

1987--Ackland-G-J-Thetford-R--V
G.J. Ackland, and R. Thetford (1987), "An improved N-body semi-empirical model for body-centred cubic transition metals", Philosophical Magazine A, 56(1), 15-30. DOI: 10.1080/01418618708204464.

W

2022--Hiremath-P-Melin-S-Bitzek-E-Olsson-P-A-T--W
P. Hiremath, S. Melin, E. Bitzek, and P.A.T. Olsson (2022), "Effects of interatomic potential on fracture behaviour in single- and bicrystalline tungsten", Computational Materials Science, 207, 111283. DOI: 10.1016/j.commatsci.2022.111283.

2017--Mason-D-R-Nguyen-Manh-D-Becquart-C-S--W
D.R. Mason, D. Nguyen-Manh, and C.S. Becquart (2017), "An empirical potential for simulating vacancy clusters in tungsten", Journal of Physics: Condensed Matter, 29(50), 505501. DOI: 10.1088/1361-648x/aa9776.

2015--Elliott-R-S-Akerson-A--W
R.S. Elliott, and A. Akerson (2015), "Efficient "universal" shifted Lennard-Jones model for all KIM API supported species".

2013--Marinica-M-C-Ventelon-L-Gilbert-M-R-et-al--W-2
M.-C. Marinica, L. Ventelon, M.R. Gilbert, L. Proville, S.L. Dudarev, J. Marian, G. Bencteux, and F. Willaime (2013), "Interatomic potentials for modelling radiation defects and dislocations in tungsten", Journal of Physics: Condensed Matter, 25(39), 395502. DOI: 10.1088/0953-8984/25/39/395502.

2013--Marinica-M-C-Ventelon-L-Gilbert-M-R-et-al--W-3
M.-C. Marinica, L. Ventelon, M.R. Gilbert, L. Proville, S.L. Dudarev, J. Marian, G. Bencteux, and F. Willaime (2013), "Interatomic potentials for modelling radiation defects and dislocations in tungsten", Journal of Physics: Condensed Matter, 25(39), 395502. DOI: 10.1088/0953-8984/25/39/395502.

2013--Marinica-M-C-Ventelon-L-Gilbert-M-R-et-al--W-4
M.-C. Marinica, L. Ventelon, M.R. Gilbert, L. Proville, S.L. Dudarev, J. Marian, G. Bencteux, and F. Willaime (2013), "Interatomic potentials for modelling radiation defects and dislocations in tungsten", Journal of Physics: Condensed Matter, 25(39), 395502. DOI: 10.1088/0953-8984/25/39/395502.

2013--Wang-J-Zhou-Y-L-Li-M-Hou-Q--W
J. Wang, Y.L. Zhou, M. Li, and Q. Hou (2013), "A modified W-W interatomic potential based on ab initio calculations", Modelling and Simulation in Materials Science and Engineering, 22(1), 015004. DOI: 10.1088/0965-0393/22/1/015004.

2009--Olsson-P-A-T--W
P.A.T. Olsson (2009), "Semi-empirical atomistic study of point defect properties in BCC transition metals", Computational Materials Science, 47(1), 135-145. DOI: 10.1016/j.commatsci.2009.06.025.

2007--Derlet-P-M-Nguyen-Manh-D-Dudarev-S-L--W
P.M. Derlet, D. Nguyen-Manh, and S.L. Dudarev (2007), "Multiscale modeling of crowdion and vacancy defects in body-centered-cubic transition metals", Physical Review B, 76(5), 054107. DOI: 10.1103/physrevb.76.054107.

2004--Zhou-X-W-Johnson-R-A-Wadley-H-N-G--W
X.W. Zhou, R.A. Johnson, and H.N.G. Wadley (2004), "Misfit-energy-increasing dislocations in vapor-deposited CoFe/NiFe multilayers", Physical Review B, 69(14), 144113. DOI: 10.1103/physrevb.69.144113.

2003--Han-S-Zepeda-Ruiz-L-A-Ackland-G-J-et-al--W
S. Han, L.A. Zepeda-Ruiz, G.J. Ackland, R. Car, and D.J. Srolovitz (2003), "Interatomic potential for vanadium suitable for radiation damage simulations", Journal of Applied Physics, 93(6), 3328-3335. DOI: 10.1063/1.1555275.

2001--Lee-B-J-Baskes-M-I-Kim-H-Cho-Y-K--W
B.-J. Lee, M.I. Baskes, H. Kim, and Y.K. Cho (2001), "Second nearest-neighbor modified embedded atom method potentials for bcc transition metals", Physical Review B, 64(18), 184102. DOI: 10.1103/physrevb.64.184102.

1987--Ackland-G-J-Thetford-R--W
G.J. Ackland, and R. Thetford (1987), "An improved N-body semi-empirical model for body-centred cubic transition metals", Philosophical Magazine A, 56(1), 15-30. DOI: 10.1080/01418618708204464.

1959--Girifalco-L-A-Weizer-V-G--W
L.A. Girifalco, and V.G. Weizer (1959), "Application of the Morse Potential Function to Cubic Metals", Physical Review, 114(3), 687-690. DOI: 10.1103/physrev.114.687.

Xe

2015--Elliott-R-S-Akerson-A--Xe
R.S. Elliott, and A. Akerson (2015), "Efficient "universal" shifted Lennard-Jones model for all KIM API supported species".

1958--Bernardes-N--Xe
N. Bernardes (1958), "Theory of Solid Ne, A, Kr, and Xe at 0°K", Physical Review, 112(5), 1534-1539. DOI: 10.1103/physrev.112.1534.

Y

2015--Elliott-R-S-Akerson-A--Y
R.S. Elliott, and A. Akerson (2015), "Efficient "universal" shifted Lennard-Jones model for all KIM API supported species".

2013--Ko-W-S-Lee-B-J--Y
W.-S. Ko, and B.-J. Lee (2013), "Modified embedded-atom method interatomic potentials for pure Y and the V-Pd-Y ternary system", Modelling and Simulation in Materials Science and Engineering, 21(8), 085008. DOI: 10.1088/0965-0393/21/8/085008.

Yb

2015--Elliott-R-S-Akerson-A--Yb
R.S. Elliott, and A. Akerson (2015), "Efficient "universal" shifted Lennard-Jones model for all KIM API supported species".

Zn

2018--Jang-H-S-Kim-K-M-Lee-B-J--Zn
H.-S. Jang, K.-M. Kim, and B.-J. Lee (2018), "Modified embedded-atom method interatomic potentials for pure Zn and Mg-Zn binary system", Calphad, 60, 200-207. DOI: 10.1016/j.calphad.2018.01.003.

2015--Elliott-R-S-Akerson-A--Zn
R.S. Elliott, and A. Akerson (2015), "Efficient "universal" shifted Lennard-Jones model for all KIM API supported species".

Zr

2022--Zhou-M-Fu-B-Hou-Q-et-al--Zr
M. Zhou, B. Fu, Q. Hou, L. Wu, and R. Pan (2022), "Determining the diffusion behavior of point defects in zirconium by a multiscale modelling approach", Journal of Nuclear Materials, 566, 153772. DOI: 10.1016/j.jnucmat.2022.153772.

2015--Elliott-R-S-Akerson-A--Zr
R.S. Elliott, and A. Akerson (2015), "Efficient "universal" shifted Lennard-Jones model for all KIM API supported species".

2007--Mendelev-M-I-Ackland-G-J--Zr-1
M.I. Mendelev, and G.J. Ackland (2007), "Development of an interatomic potential for the simulation of phase transformations in zirconium", Philosophical Magazine Letters, 87(5), 349-359. DOI: 10.1080/09500830701191393.

2007--Mendelev-M-I-Ackland-G-J--Zr-2
M.I. Mendelev, and G.J. Ackland (2007), "Development of an interatomic potential for the simulation of phase transformations in zirconium", Philosophical Magazine Letters, 87(5), 349-359. DOI: 10.1080/09500830701191393.

2007--Mendelev-M-I-Ackland-G-J--Zr-3
M.I. Mendelev, and G.J. Ackland (2007), "Development of an interatomic potential for the simulation of phase transformations in zirconium", Philosophical Magazine Letters, 87(5), 349-359. DOI: 10.1080/09500830701191393.

2006--Kim-Y-M-Lee-B-J-Baskes-M-I--Zr
Y.-M. Kim, B.-J. Lee, and M.I. Baskes (2006), "Modified embedded-atom method interatomic potentials for Ti and Zr", Physical Review B, 74(1), 014101. DOI: 10.1103/physrevb.74.014101.

2004--Zhou-X-W-Johnson-R-A-Wadley-H-N-G--Zr
X.W. Zhou, R.A. Johnson, and H.N.G. Wadley (2004), "Misfit-energy-increasing dislocations in vapor-deposited CoFe/NiFe multilayers", Physical Review B, 69(14), 144113. DOI: 10.1103/physrevb.69.144113.

1995--Ackland-G-J-Wooding-S-J-Bacon-D-J--Zr
G.J. Ackland, S.J. Wooding, and D.J. Bacon (1995), "Defect, surface and displacement-threshold properties of α-zirconium simulated with a many-body potential", Philosophical Magazine A, 71(3), 553-565. DOI: 10.1080/01418619508244468.

2016--Borovikov-V-Mendelev-M-I-King-A-H--fictional-Cu-31
V. Borovikov, M.I. Mendelev, and A.H. King (2016), "Effects of stable and unstable stacking fault energy on dislocation nucleation in nano-crystalline metals", Modelling and Simulation in Materials Science and Engineering, 24(8), 085017. DOI: 10.1088/0965-0393/24/8/085017.

2016--Borovikov-V-Mendelev-M-I-King-A-H--fictional-Cu-32
V. Borovikov, M.I. Mendelev, and A.H. King (2016), "Effects of stable and unstable stacking fault energy on dislocation nucleation in nano-crystalline metals", Modelling and Simulation in Materials Science and Engineering, 24(8), 085017. DOI: 10.1088/0965-0393/24/8/085017.

2016--Borovikov-V-Mendelev-M-I-King-A-H--fictional-Cu-33
V. Borovikov, M.I. Mendelev, and A.H. King (2016), "Effects of stable and unstable stacking fault energy on dislocation nucleation in nano-crystalline metals", Modelling and Simulation in Materials Science and Engineering, 24(8), 085017. DOI: 10.1088/0965-0393/24/8/085017.

2016--Borovikov-V-Mendelev-M-I-King-A-H--fictional-Cu-34
V. Borovikov, M.I. Mendelev, and A.H. King (2016), "Effects of stable and unstable stacking fault energy on dislocation nucleation in nano-crystalline metals", Modelling and Simulation in Materials Science and Engineering, 24(8), 085017. DOI: 10.1088/0965-0393/24/8/085017.

2016--Wilson-S-R-Mendelev-M-I--fictional-Mg
S.R. Wilson, and M.I. Mendelev (2016), "A unified relation for the solid-liquid interface free energy of pure FCC, BCC, and HCP metals", The Journal of Chemical Physics, 144(14), 144707. DOI: 10.1063/1.4946032.

2016--Wilson-S-R-Mendelev-M-I--fictional-W
S.R. Wilson, and M.I. Mendelev (2016), "A unified relation for the solid-liquid interface free energy of pure FCC, BCC, and HCP metals", The Journal of Chemical Physics, 144(14), 144707. DOI: 10.1063/1.4946032.

2015--Borovikov-V-Mendelev-M-I-King-A-H-LeSar-R--fictional-Cu-1
V. Borovikov, M.I. Mendelev, A.H. King, and R. LeSar (2015), "Effect of stacking fault energy on mechanism of plastic deformation in nanotwinned FCC metals", Modelling and Simulation in Materials Science and Engineering, 23(5), 055003. DOI: 10.1088/0965-0393/23/5/055003.

2015--Borovikov-V-Mendelev-M-I-King-A-H-LeSar-R--fictional-Cu-2
V. Borovikov, M.I. Mendelev, A.H. King, and R. LeSar (2015), "Effect of stacking fault energy on mechanism of plastic deformation in nanotwinned FCC metals", Modelling and Simulation in Materials Science and Engineering, 23(5), 055003. DOI: 10.1088/0965-0393/23/5/055003.

2015--Borovikov-V-Mendelev-M-I-King-A-H-LeSar-R--fictional-Cu-3
V. Borovikov, M.I. Mendelev, A.H. King, and R. LeSar (2015), "Effect of stacking fault energy on mechanism of plastic deformation in nanotwinned FCC metals", Modelling and Simulation in Materials Science and Engineering, 23(5), 055003. DOI: 10.1088/0965-0393/23/5/055003.

2015--Borovikov-V-Mendelev-M-I-King-A-H-LeSar-R--fictional-Cu-4
V. Borovikov, M.I. Mendelev, A.H. King, and R. LeSar (2015), "Effect of stacking fault energy on mechanism of plastic deformation in nanotwinned FCC metals", Modelling and Simulation in Materials Science and Engineering, 23(5), 055003. DOI: 10.1088/0965-0393/23/5/055003.

2015--Borovikov-V-Mendelev-M-I-King-A-H-LeSar-R--fictional-Cu-5
V. Borovikov, M.I. Mendelev, A.H. King, and R. LeSar (2015), "Effect of stacking fault energy on mechanism of plastic deformation in nanotwinned FCC metals", Modelling and Simulation in Materials Science and Engineering, 23(5), 055003. DOI: 10.1088/0965-0393/23/5/055003.

2015--Borovikov-V-Mendelev-M-I-King-A-H-LeSar-R--fictional-Cu-6
V. Borovikov, M.I. Mendelev, A.H. King, and R. LeSar (2015), "Effect of stacking fault energy on mechanism of plastic deformation in nanotwinned FCC metals", Modelling and Simulation in Materials Science and Engineering, 23(5), 055003. DOI: 10.1088/0965-0393/23/5/055003.

2015--Borovikov-V-Mendelev-M-I-King-A-H-LeSar-R--fictional-Cu-7
V. Borovikov, M.I. Mendelev, A.H. King, and R. LeSar (2015), "Effect of stacking fault energy on mechanism of plastic deformation in nanotwinned FCC metals", Modelling and Simulation in Materials Science and Engineering, 23(5), 055003. DOI: 10.1088/0965-0393/23/5/055003.

2015--Wilson-S-R-Gunawardana-K-G-S-H-Mendelev-M-I--fictional-Na-2
S.R. Wilson, K.G.S.H. Gunawardana, and M.I. Mendelev (2015), "Solid-liquid interface free energies of pure bcc metals and B2 phases", The Journal of Chemical Physics, 142(13), 134705. DOI: 10.1063/1.4916741.

2015--Wilson-S-R-Gunawardana-K-G-S-H-Mendelev-M-I--fictional-Na-3
S.R. Wilson, K.G.S.H. Gunawardana, and M.I. Mendelev (2015), "Solid-liquid interface free energies of pure bcc metals and B2 phases", The Journal of Chemical Physics, 142(13), 134705. DOI: 10.1063/1.4916741.

2010--Mendelev-M-I-Rahman-M-J-Hoyt-J-J-Asta-M--fictional-Al-1
M.I. Mendelev, M.J. Rahman, J.J. Hoyt, and M. Asta (2010), "Molecular-dynamics study of solid-liquid interface migration in fcc metals", Modelling and Simulation in Materials Science and Engineering, 18(7), 074002. DOI: 10.1088/0965-0393/18/7/074002.

2010--Mendelev-M-I-Rahman-M-J-Hoyt-J-J-Asta-M--fictional-Al-2
M.I. Mendelev, M.J. Rahman, J.J. Hoyt, and M. Asta (2010), "Molecular-dynamics study of solid-liquid interface migration in fcc metals", Modelling and Simulation in Materials Science and Engineering, 18(7), 074002. DOI: 10.1088/0965-0393/18/7/074002.

2010--Mendelev-M-I-Rahman-M-J-Hoyt-J-J-Asta-M--fictional-Al-3
M.I. Mendelev, M.J. Rahman, J.J. Hoyt, and M. Asta (2010), "Molecular-dynamics study of solid-liquid interface migration in fcc metals", Modelling and Simulation in Materials Science and Engineering, 18(7), 074002. DOI: 10.1088/0965-0393/18/7/074002.

2020--Wang-P-Bu-Y-Liu-J-et-al--meta-Ta-Hf-Zr-Ti
P. Wang, Y. Bu, J. Liu, Q. Li, H. Wang, and W. Yang (2020), "Atomic deformation mechanism and interface toughening in metastable high entropy alloy", Materials Today, 37, 64-73. DOI: 10.1016/j.mattod.2020.02.017.

toy

2016--Rajan-V-P-Warner-D-H-Curtin-W-A--fictional-toy-a
V.P. Rajan, D.H. Warner, and W.A. Curtin (2016), "An interatomic pair potential with tunable intrinsic ductility", Modelling and Simulation in Materials Science and Engineering, 24(2), 025005. DOI: 10.1088/0965-0393/24/2/025005.

2016--Rajan-V-P-Warner-D-H-Curtin-W-A--fictional-toy-b
V.P. Rajan, D.H. Warner, and W.A. Curtin (2016), "An interatomic pair potential with tunable intrinsic ductility", Modelling and Simulation in Materials Science and Engineering, 24(2), 025005. DOI: 10.1088/0965-0393/24/2/025005.

2016--Rajan-V-P-Warner-D-H-Curtin-W-A--fictional-toy-c
V.P. Rajan, D.H. Warner, and W.A. Curtin (2016), "An interatomic pair potential with tunable intrinsic ductility", Modelling and Simulation in Materials Science and Engineering, 24(2), 025005. DOI: 10.1088/0965-0393/24/2/025005.

2016--Rajan-V-P-Warner-D-H-Curtin-W-A--fictional-toy-d
V.P. Rajan, D.H. Warner, and W.A. Curtin (2016), "An interatomic pair potential with tunable intrinsic ductility", Modelling and Simulation in Materials Science and Engineering, 24(2), 025005. DOI: 10.1088/0965-0393/24/2/025005.

2016--Rajan-V-P-Warner-D-H-Curtin-W-A--fictional-toy-e
V.P. Rajan, D.H. Warner, and W.A. Curtin (2016), "An interatomic pair potential with tunable intrinsic ductility", Modelling and Simulation in Materials Science and Engineering, 24(2), 025005. DOI: 10.1088/0965-0393/24/2/025005.

2016--Rajan-V-P-Warner-D-H-Curtin-W-A--fictional-toy-f
V.P. Rajan, D.H. Warner, and W.A. Curtin (2016), "An interatomic pair potential with tunable intrinsic ductility", Modelling and Simulation in Materials Science and Engineering, 24(2), 025005. DOI: 10.1088/0965-0393/24/2/025005.

2015--Elliott-R-S-Akerson-A--toy
R.S. Elliott, and A. Akerson (2015), "Efficient "universal" shifted Lennard-Jones model for all KIM API supported species".

2009--Molinero-V-Moore-E-B--water
V. Molinero, and E.B. Moore (2009), "Water Modeled As an Intermediate Element between Carbon and Silicon", The Journal of Physical Chemistry B, 113(13), 4008-4016. DOI: 10.1021/jp805227c.

Date Created: October 5, 2010 | Last updated: July 07, 2022