Ac

2015--Elliott-R-S-Akerson-A--Ac
R.S. Elliott, and A. Akerson (2015), "Efficient "universal" shifted Lennard-Jones model for all KIM API supported species".

Ag

2022--Alvi-S-M-A-A-Faiyad-A-Munshi-M-A-M-et-al--Ag
S.M.A.A. Alvi, A. Faiyad, M.A.M. Munshi, M. Motalab, M.M. Islam, and S. Saha (2022), "Cyclic and tensile deformations of Gold–Silver core shell systems using newly parameterized MEAM potential", Mechanics of Materials 169, 104304. DOI: 10.1016/j.mechmat.2022.104304.

2015--Elliott-R-S-Akerson-A--Ag
R.S. Elliott, and A. Akerson (2015), "Efficient "universal" shifted Lennard-Jones model for all KIM API supported species".

2006--Williams-P-L-Mishin-Y-Hamilton-J-C--Ag
P.L. Williams, Y. Mishin, and J.C. Hamilton (2006), "An embedded-atom potential for the Cu-Ag system", Modelling and Simulation in Materials Science and Engineering 14(5), 817-833. DOI: 10.1088/0965-0393/14/5/002.

2004--Zhou-X-W-Johnson-R-A-Wadley-H-N-G--Ag
X.W. Zhou, R.A. Johnson, and H.N.G. Wadley (2004), "Misfit-energy-increasing dislocations in vapor-deposited CoFe/NiFe multilayers", Physical Review B 69(14), 144113. DOI: 10.1103/physrevb.69.144113.

2003--Lee-B-J-Shim-J-H-Baskes-M-I--Ag
B.-J. Lee, J.-H. Shim, and M.I. Baskes (2003), "Semiempirical atomic potentials for the fcc metals Cu, Ag, Au, Ni, Pd, Pt, Al, and Pb based on first and second nearest-neighbor modified embedded atom method", Physical Review B 68(14), 144112. DOI: 10.1103/physrevb.68.144112.

1996--Jacobsen-K-W-Stoltze-P-Norskov-J-K--Ag
K.W. Jacobsen, P. Stoltze, and J.K. Nørskov (1996), "A semi-empirical effective medium theory for metals and alloys", Surface Science 366(2), 394-402. DOI: 10.1016/0039-6028(96)00816-3.

1989--Adams-J-B-Foiles-S-M-Wolfer-W-G--Ag
J.B. Adams, S.M. Foiles, and W.G. Wolfer (1989), "Self-diffusion and impurity diffusion of fcc metals using the five-frequency model and the Embedded Atom Method", Journal of Materials Research 4(1), 102-112. DOI: 10.1557/jmr.1989.0102.

1987--Ackland-G-J-Tichy-G-Vitek-V-Finnis-M-W--Ag
G.J. Ackland, G. Tichy, V. Vitek, and M.W. Finnis (1987), "Simple N-body potentials for the noble metals and nickel", Philosophical Magazine A 56(6), 735-756. DOI: 10.1080/01418618708204485.

1986--Foiles-S-M-Baskes-M-I-Daw-M-S--Ag
S.M. Foiles, M.I. Baskes, and M.S. Daw (1986), "Embedded-atom-method functions for the fcc metals Cu, Ag, Au, Ni, Pd, Pt, and their alloys", Physical Review B 33(12), 7983-7991. DOI: 10.1103/physrevb.33.7983.

1959--Girifalco-L-A-Weizer-V-G--Ag
L.A. Girifalco, and V.G. Weizer (1959), "Application of the Morse Potential Function to Cubic Metals", Physical Review 114(3), 687-690. DOI: 10.1103/physrev.114.687.

2004--Zhou-X-W-Johnson-R-A-Wadley-H-N-G--Cu-Ag-Au-Ni-Pd-Pt-Al-Pb-Fe-Mo-Ta-W-Mg-Co-Ti-Zr
X.W. Zhou, R.A. Johnson, and H.N.G. Wadley (2004), "Misfit-energy-increasing dislocations in vapor-deposited CoFe/NiFe multilayers", Physical Review B 69(14), 144113. DOI: 10.1103/physrevb.69.144113.

1996--Jacobsen-K-W-Stoltze-P-Norskov-J-K--Al-Ag-Au-Cu-Ni-Pd-Pt
K.W. Jacobsen, P. Stoltze, and J.K. Nørskov (1996), "A semi-empirical effective medium theory for metals and alloys", Surface Science 366(2), 394-402. DOI: 10.1016/0039-6028(96)00816-3.

2022--Alvi-S-M-A-A-Faiyad-A-Munshi-M-A-M-et-al--Ag-Au
S.M.A.A. Alvi, A. Faiyad, M.A.M. Munshi, M. Motalab, M.M. Islam, and S. Saha (2022), "Cyclic and tensile deformations of Gold–Silver core shell systems using newly parameterized MEAM potential", Mechanics of Materials 169, 104304. DOI: 10.1016/j.mechmat.2022.104304.

2004--Zhou-X-W-Johnson-R-A-Wadley-H-N-G--Cu-Ag-Au
X.W. Zhou, R.A. Johnson, and H.N.G. Wadley (2004), "Misfit-energy-increasing dislocations in vapor-deposited CoFe/NiFe multilayers", Physical Review B 69(14), 144113. DOI: 10.1103/physrevb.69.144113.

1990--Ackland-G-J-Vitek-V--Cu-Ag-Au
G.J. Ackland, and V. Vitek (1990), "Many-body potentials and atomic-scale relaxations in noble-metal alloys", Physical Review B 41(15), 10324-10333. DOI: 10.1103/physrevb.41.10324.

1989--Adams-J-B-Foiles-S-M-Wolfer-W-G--Ag-Au-Cu-Ni-Pd-Pt
J.B. Adams, S.M. Foiles, and W.G. Wolfer (1989), "Self-diffusion and impurity diffusion of fcc metals using the five-frequency model and the Embedded Atom Method", Journal of Materials Research 4(1), 102-112. DOI: 10.1557/jmr.1989.0102.

1986--Foiles-S-M-Baskes-M-I-Daw-M-S--Ag-Au-Cu-Ni-Pd-Pt
S.M. Foiles, M.I. Baskes, and M.S. Daw (1986), "Embedded-atom-method functions for the fcc metals Cu, Ag, Au, Ni, Pd, Pt, and their alloys", Physical Review B 33(12), 7983-7991. DOI: 10.1103/physrevb.33.7983.

2009--Kang-K-H-Sa-I-Lee-J-C-et-al--Cu-Ag
K.-H. Kang, I. Sa, J.-C. Lee, E. Fleury, and B.-J. Lee (2009), "Atomistic modeling of the Cu–Zr–Ag bulk metallic glass system", Scripta Materialia 61(8), 801-804. DOI: 10.1016/j.scriptamat.2009.07.002.

2009--Wu-H-H-Trinkle-D-R--Cu-Ag
H.H. Wu, and D.R. Trinkle (2009), "Cu/Ag EAM potential optimized for heteroepitaxial diffusion from ab initio data", Computational Materials Science 47(2), 577-583. DOI: 10.1016/j.commatsci.2009.09.026.

2006--Williams-P-L-Mishin-Y-Hamilton-J-C--Cu-Ag
P.L. Williams, Y. Mishin, and J.C. Hamilton (2006), "An embedded-atom potential for the Cu-Ag system", Modelling and Simulation in Materials Science and Engineering 14(5), 817-833. DOI: 10.1088/0965-0393/14/5/002.

2009--Kang-K-H-Sa-I-Lee-J-C-et-al--Cu-Zr-Ag
K.-H. Kang, I. Sa, J.-C. Lee, E. Fleury, and B.-J. Lee (2009), "Atomistic modeling of the Cu–Zr–Ag bulk metallic glass system", Scripta Materialia 61(8), 801-804. DOI: 10.1016/j.scriptamat.2009.07.002.

2013--Hale-L-M-Wong-B-M-Zimmerman-J-A-Zhou-X-W--Pd-Ag-H-Hybrid
L.M. Hale, B.M. Wong, J.A. Zimmerman, and X.W. Zhou (2013), "Atomistic potentials for palladium-silver hydrides", Modelling and Simulation in Materials Science and Engineering 21(4), 045005. DOI: 10.1088/0965-0393/21/4/045005.

2013--Hale-L-M-Wong-B-M-Zimmerman-J-A-Zhou-X-W--Pd-Ag-H-Morse
L.M. Hale, B.M. Wong, J.A. Zimmerman, and X.W. Zhou (2013), "Atomistic potentials for palladium-silver hydrides", Modelling and Simulation in Materials Science and Engineering 21(4), 045005. DOI: 10.1088/0965-0393/21/4/045005.

2018--Pan-Z-Borovikov-V-Mendelev-M-I-Sansoz-F--Ag-Ni
Z. Pan, V. Borovikov, M.I. Mendelev, and F. Sansoz (2018), "Development of a semi-empirical potential for simulation of Ni solute segregation into grain boundaries in Ag", Modelling and Simulation in Materials Science and Engineering 26(7), 075004. DOI: 10.1088/1361-651x/aadea3.

2009--Kang-K-H-Sa-I-Lee-J-C-et-al--Zr-Ag
K.-H. Kang, I. Sa, J.-C. Lee, E. Fleury, and B.-J. Lee (2009), "Atomistic modeling of the Cu–Zr–Ag bulk metallic glass system", Scripta Materialia 61(8), 801-804. DOI: 10.1016/j.scriptamat.2009.07.002.

2013--Gao-H-Otero-de-la-Roza-A-Aouadi-S-M-et-al--AgTaO3
H. Gao, A. Otero-de-la-Roza, S.M. Aouadi, E.R. Johnson, and A. Martini (2013), "An empirical model for silver tantalate", Modelling and Simulation in Materials Science and Engineering 21(5), 055002. DOI: 10.1088/0965-0393/21/5/055002.

Al

2025--Sharifi-H-Wick-C-D--Al
H. Sharifi, and C.D. Wick (2025), "Developing interatomic potentials for complex concentrated alloys of Cu, Ti, Ni, Cr, Co, Al, Fe, and Mn", Computational Materials Science 248, 113595. DOI: 10.1016/j.commatsci.2024.113595.

2023--Kumar-S-Tahmasbi-H-Ramakrishna-K-et-al--Al
S. Kumar, H. Tahmasbi, K. Ramakrishna, M. Lokamani, S. Nikolov, J. Tranchida, M.A. Wood, and A. Cangi (2023), "Transferable interatomic potential for aluminum from ambient conditions to warm dense matter", Physical Review Research 5(3), 033162. DOI: 10.1103/physrevresearch.5.033162.

2020--Purja-Pun-G-P-Yamakov-V-Hickman-J-et-al--Al
G.P. Purja Pun, V. Yamakov, J. Hickman, E.H. Glaessgen, and Y. Mishin (2020), "Development of a general-purpose machine-learning interatomic potential for aluminum by the physically informed neural network method", Physical Review Materials 4(11), 113807. DOI: 10.1103/physrevmaterials.4.113807.
G.P. Purja Pun, R. Batra, R. Ramprasad, and Y. Mishin (2019), "Physically-informed artificial neural networks for atomistic modeling of materials", Nature Communications 10(1), 2339. DOI: 10.1038/s41467-019-10343-5.

2017--Botu-V-Batra-R-Chapman-J-Ramprasad-R--Al
V. Botu, R. Batra, J. Chapman, and R. Ramprasad (2017), "Machine Learning Force Fields: Construction, Validation, and Outlook", The Journal of Physical Chemistry C 121(1), 511-522. DOI: 10.1021/acs.jpcc.6b10908.

2015--Botu-V-Ramprasad-R--Al
V. Botu, and R. Ramprasad (2015), "Learning scheme to predict atomic forces and accelerate materials simulations", Physical Review B 92(9), 094306. DOI: 10.1103/physrevb.92.094306.

2015--Choudhary-K-Liang-T-Chernatynskiy-A-et-al--Al
K. Choudhary, T. Liang, A. Chernatynskiy, Z. Lu, A. Goyal, S.R. Phillpot, and S.B. Sinnott (2015), "Charge optimized many-body potential for aluminum", Journal of Physics: Condensed Matter 27(1), 015003. DOI: 10.1088/0953-8984/27/1/015003.

2015--Elliott-R-S-Akerson-A--Al
R.S. Elliott, and A. Akerson (2015), "Efficient "universal" shifted Lennard-Jones model for all KIM API supported species".

2015--Pascuet-M-I-Fernandez-J-R--Al
M.I. Pascuet, and J.R. Fernández (2015), "Atomic interaction of the MEAM type for the study of intermetallics in the Al-U alloy", Journal of Nuclear Materials 467, 229-239. DOI: 10.1016/j.jnucmat.2015.09.030.

2009--Winey-J-M-Kubota-A-Gupta-Y-M--Al
J.M. Winey, A. Kubota, and Y.M. Gupta (2009), "A thermodynamic approach to determine accurate potentials for molecular dynamics simulations: thermoelastic response of aluminum", Modelling and Simulation in Materials Science and Engineering 17(5), 055004. DOI: 10.1088/0965-0393/17/5/055004.
J.M. Winey, A. Kubota, and Y.M. Gupta (2010), "Thermodynamic approach to determine accurate potentials for molecular dynamics simulations: thermoelastic response of aluminum", Modelling and Simulation in Materials Science and Engineering 18(2), 029801. DOI: 10.1088/0965-0393/18/2/029801.

2009--Zhakhovskii-V-V-Inogamov-N-A-Petrov-Y-V-et-al--Al
V.V. Zhakhovskii, N.A. Inogamov, Y.V. Petrov, S.I. Ashitkov, and K. Nishihara (2009), "Molecular dynamics simulation of femtosecond ablation and spallation with different interatomic potentials", Applied Surface Science 255(24), 9592-9596. DOI: 10.1016/j.apsusc.2009.04.082.

2008--Mendelev-M-I-Kramer-M-J-Becker-C-A-Asta-M--Al
M.I. Mendelev, M.J. Kramer, C.A. Becker, and M. Asta (2008), "Analysis of semi-empirical interatomic potentials appropriate for simulation of crystalline and liquid Al and Cu", Philosophical Magazine 88(12), 1723-1750. DOI: 10.1080/14786430802206482.

2004--Liu-X-Y-Ercolessi-F-Adams-J-B--Al
X.-Y. Liu, F. Ercolessi, and J.B. Adams (2004), "Aluminium interatomic potential from density functional theory calculations with improved stacking fault energy", Modelling and Simulation in Materials Science and Engineering 12(4), 665-670. DOI: 10.1088/0965-0393/12/4/007.

2004--Zhou-X-W-Johnson-R-A-Wadley-H-N-G--Al
X.W. Zhou, R.A. Johnson, and H.N.G. Wadley (2004), "Misfit-energy-increasing dislocations in vapor-deposited CoFe/NiFe multilayers", Physical Review B 69(14), 144113. DOI: 10.1103/physrevb.69.144113.

2003--Lee-B-J-Shim-J-H-Baskes-M-I--Al
B.-J. Lee, J.-H. Shim, and M.I. Baskes (2003), "Semiempirical atomic potentials for the fcc metals Cu, Ag, Au, Ni, Pd, Pt, Al, and Pb based on first and second nearest-neighbor modified embedded atom method", Physical Review B 68(14), 144112. DOI: 10.1103/physrevb.68.144112.

2003--Zope-R-R-Mishin-Y--Al
R.R. Zope, and Y. Mishin (2003), "Interatomic potentials for atomistic simulations of the Ti-Al system", Physical Review B 68(2), 024102. DOI: 10.1103/physrevb.68.024102.

2001--Zhou-X-W-Wadley-H-N-G-Johnson-R-A-et-al--Al
X.W. Zhou, H.N.G. Wadley, R.A. Johnson, D.J. Larson, N. Tabat, A. Cerezo, A.K. Petford-Long, G.D.W. Smith, P.H. Clifton, R.L. Martens, and T.F. Kelly (2001), "Atomic scale structure of sputtered metal multilayers", Acta Materialia 49(19), 4005-4015. DOI: 10.1016/s1359-6454(01)00287-7.

2000--Sturgeon-J-B-Laird-B-B--Al
J.B. Sturgeon, and B.B. Laird (2000), "Adjusting the melting point of a model system via Gibbs-Duhem integration: Application to a model of aluminum", Physical Review B 62(22), 14720-14727. DOI: 10.1103/physrevb.62.14720.

1999--Mishin-Y-Farkas-D-Mehl-M-J-Papaconstantopoulos-D-A--Al
Y. Mishin, D. Farkas, M.J. Mehl, and D.A. Papaconstantopoulos (1999), "Interatomic potentials for monoatomic metals from experimental data and ab initio calculations", Physical Review B 59(5), 3393-3407. DOI: 10.1103/physrevb.59.3393.

1996--Jacobsen-K-W-Stoltze-P-Norskov-J-K--Al
K.W. Jacobsen, P. Stoltze, and J.K. Nørskov (1996), "A semi-empirical effective medium theory for metals and alloys", Surface Science 366(2), 394-402. DOI: 10.1016/0039-6028(96)00816-3.

1994--Ercolessi-F-B-Adams-J--Al
F. Ercolessi, and J. B Adams (1994), "Interatomic Potentials from First-Principles Calculations: The Force-Matching Method", Europhysics Letters (EPL) 26(8), 583-588. DOI: 10.1209/0295-5075/26/8/005.

1987--Jacobsen-K-W-Norskov-J-K-Puska-M-J--Al
K.W. Jacobsen, J.K. Norskov, and M.J. Puska (1987), "Interatomic interactions in the effective-medium theory", Physical Review B 35(14), 7423-7442. DOI: 10.1103/physrevb.35.7423.

1959--Girifalco-L-A-Weizer-V-G--Al
L.A. Girifalco, and V.G. Weizer (1959), "Application of the Morse Potential Function to Cubic Metals", Physical Review 114(3), 687-690. DOI: 10.1103/physrev.114.687.

2020--Starikov-S-Gordeev-I-Lysogorskiy-Y-et-al--Si-Au-Al
S. Starikov, I. Gordeev, Y. Lysogorskiy, L. Kolotova, and S. Makarov (2020), "Optimized interatomic potential for study of structure and phase transitions in Si-Au and Si-Al systems", Computational Materials Science 184, 109891. DOI: 10.1016/j.commatsci.2020.109891.

2021--Plummer-G-Rathod-H-Srivastava-A-et-al--Ti-Al-C
G. Plummer, H. Rathod, A. Srivastava, M. Radovic, T. Ouisse, M. Yildizhan, P.O. Persson, K. Lambrinou, M.W. Barsoum, and G.J. Tucker (2021), "On the origin of kinking in layered crystalline solids", Materials Today 43, 45-52. DOI: 10.1016/j.mattod.2020.11.014.

2019--Plummer-G-Tucker-G-J--Ti-Al-C
G. Plummer, and G.J. Tucker (2019), "Bond-order potentials for the Ti3AlC2 and Ti3SiC2 MAX phases", Physical Review B 100(21), 214114. DOI: 10.1103/physrevb.100.214114.

2025--Sharifi-H-Wick-C-D--Co-Al
H. Sharifi, and C.D. Wick (2025), "Developing interatomic potentials for complex concentrated alloys of Cu, Ti, Ni, Cr, Co, Al, Fe, and Mn", Computational Materials Science 248, 113595. DOI: 10.1016/j.commatsci.2024.113595.

2015--Purja-Pun-G-P-Yamakov-V-Mishin-Y--Al-Co
G.P. Purja Pun, V. Yamakov, and Y. Mishin (2015), "Interatomic potential for the ternary Ni–Al–Co system and application to atomistic modeling of the B2–L10 martensitic transformation", Modelling and Simulation in Materials Science and Engineering 23(6), 065006. DOI: 10.1088/0965-0393/23/6/065006.

2012--Dong-W-P-Kim-H-K-Ko-W-S-et-al--Co-Al
W.-P. Dong, H.-K. Kim, W.-S. Ko, B.-M. Lee, and B.-J. Lee (2012), "Atomistic modeling of pure Co and Co–Al system", Calphad 38, 7-16. DOI: 10.1016/j.calphad.2012.04.001.

1997--Vailhe-C-Farkas-D--Co-Al
C. Vailhé, and D. Farkas (1997), "Shear faults and dislocation core structures in B2 CoAl", Journal of Materials Research 12(10), 2559-2570. DOI: 10.1557/jmr.1997.0340.

2025--Sharifi-H-Wick-C-D--Cr-Co-Al
H. Sharifi, and C.D. Wick (2025), "Developing interatomic potentials for complex concentrated alloys of Cu, Ti, Ni, Cr, Co, Al, Fe, and Mn", Computational Materials Science 248, 113595. DOI: 10.1016/j.commatsci.2024.113595.

2025--Sharifi-H-Wick-C-D--Fe-Mn-Ni-Ti-Cu-Cr-Co-Al
H. Sharifi, and C.D. Wick (2025), "Developing interatomic potentials for complex concentrated alloys of Cu, Ti, Ni, Cr, Co, Al, Fe, and Mn", Computational Materials Science 248, 113595. DOI: 10.1016/j.commatsci.2024.113595.

2025--Kushnerov-O-I-Ryabtsev-S-I-Bashev-V-F--Co-Cr-Fe-Ni-Mn-Al
O.I. Kushnerov, S.I. Ryabtsev, and V.F. Bashev (2025), "Molecular dynamic simulation of multicomponent CoCrFeNiMn high-entropy alloy thin film deposition", Molecular Crystals and Liquid Crystals, 1–11. DOI: 10.1080/15421406.2025.2504044.

2020--Farkas-D-Caro-A--Fe-Ni-Cr-Co-Al
D. Farkas, and A. Caro (2020), "Model interatomic potentials for Fe–Ni–Cr–Co–Al high-entropy alloys", Journal of Materials Research 35, 3031-3040. DOI: 10.1557/jmr.2020.294.

2025--Sharifi-H-Wick-C-D--Cu-Co-Al
H. Sharifi, and C.D. Wick (2025), "Developing interatomic potentials for complex concentrated alloys of Cu, Ti, Ni, Cr, Co, Al, Fe, and Mn", Computational Materials Science 248, 113595. DOI: 10.1016/j.commatsci.2024.113595.

2025--Sharifi-H-Wick-C-D--Fe-Co-Al
H. Sharifi, and C.D. Wick (2025), "Developing interatomic potentials for complex concentrated alloys of Cu, Ti, Ni, Cr, Co, Al, Fe, and Mn", Computational Materials Science 248, 113595. DOI: 10.1016/j.commatsci.2024.113595.

2025--Sharifi-H-Wick-C-D--Co-Al-Mn
H. Sharifi, and C.D. Wick (2025), "Developing interatomic potentials for complex concentrated alloys of Cu, Ti, Ni, Cr, Co, Al, Fe, and Mn", Computational Materials Science 248, 113595. DOI: 10.1016/j.commatsci.2024.113595.

2025--Sharifi-H-Wick-C-D--Ni-Co-Al
H. Sharifi, and C.D. Wick (2025), "Developing interatomic potentials for complex concentrated alloys of Cu, Ti, Ni, Cr, Co, Al, Fe, and Mn", Computational Materials Science 248, 113595. DOI: 10.1016/j.commatsci.2024.113595.

2015--Kim-Y-K-Jung-W-S-Lee-B-J--Ni-Al-Co
Y.-K. Kim, W.-S. Jung, and B.-J. Lee (2015), "Modified embedded-atom method interatomic potentials for the Ni-Co binary and the Ni-Al-Co ternary systems", Modelling and Simulation in Materials Science and Engineering 23(5), 055004. DOI: 10.1088/0965-0393/23/5/055004.

2015--Purja-Pun-G-P-Yamakov-V-Mishin-Y--Ni-Al-Co
G.P. Purja Pun, V. Yamakov, and Y. Mishin (2015), "Interatomic potential for the ternary Ni–Al–Co system and application to atomistic modeling of the B2–L10 martensitic transformation", Modelling and Simulation in Materials Science and Engineering 23(6), 065006. DOI: 10.1088/0965-0393/23/6/065006.

2006--Brommer-P-Gahler-F--Al-Ni-Co-a
P. Brommer, and F. Gähler (2006), "Effective potentials for quasicrystals fromab-initiodata", Philosophical Magazine 86(6-8), 753-758. DOI: 10.1080/14786430500333349.

2006--Brommer-P-Gahler-F--Al-Ni-Co-b
P. Brommer, and F. Gähler (2006), "Effective potentials for quasicrystals fromab-initiodata", Philosophical Magazine 86(6-8), 753-758. DOI: 10.1080/14786430500333349.

2024--Huang-S-Xiong-Y-Ma-S-et-al--Ni-Al-Co-Ti
S. Huang, Y. Xiong, S. Ma, J. Zhang, H. Fu, B. Xu, J.-J. Kai, and S. Zhao (2024), "Enhancing the irradiation resistance of L12 intermetallics by incorporating multiple principal elements through computational modeling", Journal of Materials Research and Technology 30, 9274–9284. DOI: 10.1016/j.jmrt.2024.06.016.

2025--Sharifi-H-Wick-C-D--Co-Ti-Al
H. Sharifi, and C.D. Wick (2025), "Developing interatomic potentials for complex concentrated alloys of Cu, Ti, Ni, Cr, Co, Al, Fe, and Mn", Computational Materials Science 248, 113595. DOI: 10.1016/j.commatsci.2024.113595.

2025--Sharifi-H-Wick-C-D--Cr-Al
H. Sharifi, and C.D. Wick (2025), "Developing interatomic potentials for complex concentrated alloys of Cu, Ti, Ni, Cr, Co, Al, Fe, and Mn", Computational Materials Science 248, 113595. DOI: 10.1016/j.commatsci.2024.113595.

2025--Sharifi-H-Wick-C-D--Cu-Cr-Al
H. Sharifi, and C.D. Wick (2025), "Developing interatomic potentials for complex concentrated alloys of Cu, Ti, Ni, Cr, Co, Al, Fe, and Mn", Computational Materials Science 248, 113595. DOI: 10.1016/j.commatsci.2024.113595.

2025--Sharifi-H-Wick-C-D--Cr-Al-Fe
H. Sharifi, and C.D. Wick (2025), "Developing interatomic potentials for complex concentrated alloys of Cu, Ti, Ni, Cr, Co, Al, Fe, and Mn", Computational Materials Science 248, 113595. DOI: 10.1016/j.commatsci.2024.113595.

2025--Sharifi-H-Wick-C-D--Cr-Al-Mn
H. Sharifi, and C.D. Wick (2025), "Developing interatomic potentials for complex concentrated alloys of Cu, Ti, Ni, Cr, Co, Al, Fe, and Mn", Computational Materials Science 248, 113595. DOI: 10.1016/j.commatsci.2024.113595.

2025--Sharifi-H-Wick-C-D--Cr-Ni-Al
H. Sharifi, and C.D. Wick (2025), "Developing interatomic potentials for complex concentrated alloys of Cu, Ti, Ni, Cr, Co, Al, Fe, and Mn", Computational Materials Science 248, 113595. DOI: 10.1016/j.commatsci.2024.113595.

2024--Borovikov-V-V-Mendelev-M-I-Smith-T-M-Lawson-J-W--Ni-Al-Cr
V.V. Borovikov, M.I. Mendelev, T.M. Smith, and J.W. Lawson (2024), "Effects of Alloying Elements on Twinning in Ni-Based Superalloys", Superalloys 2024, 1049–1057, Springer Nature Switzerland. DOI: 10.1007/978-3-031-63937-1_97.

2025--Sharifi-H-Wick-C-D--Cr-Ti-Al
H. Sharifi, and C.D. Wick (2025), "Developing interatomic potentials for complex concentrated alloys of Cu, Ti, Ni, Cr, Co, Al, Fe, and Mn", Computational Materials Science 248, 113595. DOI: 10.1016/j.commatsci.2024.113595.

2025--Sharifi-H-Wick-C-D--Cu-Al
H. Sharifi, and C.D. Wick (2025), "Developing interatomic potentials for complex concentrated alloys of Cu, Ti, Ni, Cr, Co, Al, Fe, and Mn", Computational Materials Science 248, 113595. DOI: 10.1016/j.commatsci.2024.113595.

2022--Mahata-A-Mukhopadhyay-T-Asle-Zaeem-M--Al-Cu
A. Mahata, T. Mukhopadhyay, and M. Asle Zaeem (2022), "Modified embedded-atom method interatomic potentials for Al-Cu, Al-Fe and Al-Ni binary alloys: From room temperature to melting point", Computational Materials Science 201, 110902. DOI: 10.1016/j.commatsci.2021.110902.

2016--Zhou-X-W-Ward-D-K-Foster-M-E--Al-Cu
X.W. Zhou, D.K. Ward, and M.E. Foster (2016), "An analytical bond-order potential for the aluminum copper binary system", Journal of Alloys and Compounds 680, 752-767. DOI: 10.1016/j.jallcom.2016.04.055.

2011--Apostol-F-Mishin-Y--Al-Cu
F. Apostol, and Y. Mishin (2011), "Interatomic potential for the Al-Cu system", Physical Review B 83(5), 054116. DOI: 10.1103/physrevb.83.054116.

1999--Liu-X-Y-Liu-C-L-Borucki-L-J--Al-Cu
X.-Y. Liu, C.-L. Liu, and L.J. Borucki (1999), "A new investigation of copper's role in enhancing Al-Cu interconnect electromigration resistance from an atomistic view", Acta Materialia 47(11), 3227-3231. DOI: 10.1016/s1359-6454(99)00186-x.

1996--Cai-J-Ye-Y-Y--Al-Cu
J. Cai, and Y.Y. Ye (1996), "Simple analytical embedded-atom-potential model including a long-range force for fcc metals and their alloys", Physical Review B 54(12), 8398-8410. DOI: 10.1103/physrevb.54.8398.

2025--Sharifi-H-Wick-C-D--Cu-Al-Fe
H. Sharifi, and C.D. Wick (2025), "Developing interatomic potentials for complex concentrated alloys of Cu, Ti, Ni, Cr, Co, Al, Fe, and Mn", Computational Materials Science 248, 113595. DOI: 10.1016/j.commatsci.2024.113595.

2012--Jelinek-B-Groh-S-Horstemeyer-M-F-et-al--Al-Si-Mg-Cu-Fe
B. Jelinek, S. Groh, M.F. Horstemeyer, J. Houze, S.G. Kim, G.J. Wagner, A. Moitra, and M.I. Baskes (2012), "Modified embedded atom method potential for Al, Si, Mg, Cu, and Fe alloys", Physical Review B 85(24), 245102. DOI: 10.1103/physrevb.85.245102.

2018--Zhou-X-W-Ward-D-K-Foster-M-E--Al-Cu-H
X.W. Zhou, D.K. Ward, and M.E. Foster (2018), "A bond-order potential for the Al–Cu–H ternary system", New Journal of Chemistry 42(7), 5215-5228. DOI: 10.1039/c8nj00513c.

2025--Sharifi-H-Wick-C-D--Cu-Al-Mn
H. Sharifi, and C.D. Wick (2025), "Developing interatomic potentials for complex concentrated alloys of Cu, Ti, Ni, Cr, Co, Al, Fe, and Mn", Computational Materials Science 248, 113595. DOI: 10.1016/j.commatsci.2024.113595.

2025--Sharifi-H-Wick-C-D--Cu-Ni-Al
H. Sharifi, and C.D. Wick (2025), "Developing interatomic potentials for complex concentrated alloys of Cu, Ti, Ni, Cr, Co, Al, Fe, and Mn", Computational Materials Science 248, 113595. DOI: 10.1016/j.commatsci.2024.113595.

2025--Sharifi-H-Wick-C-D--Cu-Ti-Al
H. Sharifi, and C.D. Wick (2025), "Developing interatomic potentials for complex concentrated alloys of Cu, Ti, Ni, Cr, Co, Al, Fe, and Mn", Computational Materials Science 248, 113595. DOI: 10.1016/j.commatsci.2024.113595.

2025--Sharifi-H-Wick-C-D--Fe-Al
H. Sharifi, and C.D. Wick (2025), "Developing interatomic potentials for complex concentrated alloys of Cu, Ti, Ni, Cr, Co, Al, Fe, and Mn", Computational Materials Science 248, 113595. DOI: 10.1016/j.commatsci.2024.113595.

2022--Mahata-A-Mukhopadhyay-T-Asle-Zaeem-M--Al-Fe
A. Mahata, T. Mukhopadhyay, and M. Asle Zaeem (2022), "Modified embedded-atom method interatomic potentials for Al-Cu, Al-Fe and Al-Ni binary alloys: From room temperature to melting point", Computational Materials Science 201, 110902. DOI: 10.1016/j.commatsci.2021.110902.

2010--Lee-E-Lee-B-J--Fe-Al
E. Lee, and B.-J. Lee (2010), "Modified embedded-atom method interatomic potential for the Fe–Al system", Journal of Physics: Condensed Matter 22(17), 175702. DOI: 10.1088/0953-8984/22/17/175702.

2005--Mendelev-M-I-Srolovitz-D-J-Ackland-G-J-Han-S--Al-Fe
M.I. Mendelev, D.J. Srolovitz, G.J. Ackland, and S. Han (2005), "Effect of Fe Segregation on the Migration of a Non-Symmetric Σ5 Tilt Grain Boundary in Al", Journal of Materials Research 20(1), 208-218. DOI: 10.1557/jmr.2005.0024.

2025--Sharifi-H-Wick-C-D--Fe-Al-Mn
H. Sharifi, and C.D. Wick (2025), "Developing interatomic potentials for complex concentrated alloys of Cu, Ti, Ni, Cr, Co, Al, Fe, and Mn", Computational Materials Science 248, 113595. DOI: 10.1016/j.commatsci.2024.113595.

2025--Sharifi-H-Wick-C-D--Fe-Ni-Al
H. Sharifi, and C.D. Wick (2025), "Developing interatomic potentials for complex concentrated alloys of Cu, Ti, Ni, Cr, Co, Al, Fe, and Mn", Computational Materials Science 248, 113595. DOI: 10.1016/j.commatsci.2024.113595.

2025--Sharifi-H-Wick-C-D--Fe-Ti-Al
H. Sharifi, and C.D. Wick (2025), "Developing interatomic potentials for complex concentrated alloys of Cu, Ti, Ni, Cr, Co, Al, Fe, and Mn", Computational Materials Science 248, 113595. DOI: 10.1016/j.commatsci.2024.113595.

2011--Ko-W-S-Shim-J-H-Lee-B-J--Al-H
W.-S. Ko, J.-H. Shim, and B.-J. Lee (2011), "Atomistic modeling of the Al-H and Ni-H systems", Journal of Materials Research 26(12), 1552-1560. DOI: 10.1557/jmr.2011.95.

2010--Apostol-F-Mishin-Y--Al-H
F. Apostol, and Y. Mishin (2010), "Angular-dependent interatomic potential for the aluminum-hydrogen system", Physical Review B 82(14), 144115. DOI: 10.1103/physrevb.82.144115.

1995--Angelo-J-E-Moody-N-R-Baskes-M-I--Ni-Al-H
J.E. Angelo, N.R. Moody, and M.I. Baskes (1995), "Trapping of hydrogen to lattice defects in nickel", Modelling and Simulation in Materials Science and Engineering 3(3), 289-307. DOI: 10.1088/0965-0393/3/3/001.

2013--Shim-J-H-Ko-W-S-Kim-K-H-et-al--V-Al-H
J.-H. Shim, W.-S. Ko, K.-H. Kim, H.-S. Lee, Y.-S. Lee, J.-Y. Suh, Y.W. Cho, and B.-J. Lee (2013), "Prediction of hydrogen permeability in V–Al and V–Ni alloys", Journal of Membrane Science 430, 234-241. DOI: 10.1016/j.memsci.2012.12.019.

2022--Fereidonnejad-R-Moghaddam-A-O-Moaddeli-M--Al-Hf
R. Fereidonnejad, A.O. Moghaddam, and M. Moaddeli (2022), "Modified embedded-atom method interatomic potentials for Al-Ti, Al-Ta, Al-Zr, Al-Nb and Al-Hf binary intermetallic systems", Computational Materials Science 213, 111685. DOI: 10.1016/j.commatsci.2022.111685.

2022--Fereidonnejad-R-Moghaddam-A-O-Moaddeli-M--Al-Hf-Nb-Ta-Ti-Zr
R. Fereidonnejad, A.O. Moghaddam, and M. Moaddeli (2022), "Modified embedded-atom method interatomic potentials for Al-Ti, Al-Ta, Al-Zr, Al-Nb and Al-Hf binary intermetallic systems", Computational Materials Science 213, 111685. DOI: 10.1016/j.commatsci.2022.111685.

2009--Kim-Y-M-Kim-N-J-Lee-B-J--Mg-Al
Y.-M. Kim, N.J. Kim, and B.-J. Lee (2009), "Atomistic Modeling of pure Mg and Mg-Al systems", Calphad 33(4), 650-657. DOI: 10.1016/j.calphad.2009.07.004.

2009--Mendelev-M-I-Asta-M-Rahman-M-J-Hoyt-J-J--Al-Mg
M.I. Mendelev, M. Asta, M.J. Rahman, and J.J. Hoyt (2009), "Development of interatomic potentials appropriate for simulation of solid-liquid interface properties in Al-Mg alloys", Philosophical Magazine 89(34-36), 3269-3285. DOI: 10.1080/14786430903260727.

1998--Liu-X-Y-Adams-J-B--Al-Mg
X.-Y. Liu, and J.B. Adams (1998), "Grain-boundary segregation in Al-10%Mg alloys at hot working temperatures", Acta Materialia 46(10), 3467-3476. DOI: 10.1016/s1359-6454(98)00038-x.

1997--Liu-X-Y-Ohotnicky-P-P-Adams-J-B-et-al--Al-Mg
X.-Y. Liu, P.P. Ohotnicky, J.B. Adams, C. Lane Rohrer, and R.W. Hyland (1997), "Anisotropic surface segregation in Al-Mg alloys", Surface Science 373(2-3), 357-370. DOI: 10.1016/s0039-6028(96)01154-5.

2018--Dickel-D-E-Baskes-M-I-Aslam-I-Barrett-C-D--Mg-Al-Zn
D.E. Dickel, M.I. Baskes, I. Aslam, and C.D. Barrett (2018), "New interatomic potential for Mg-Al-Zn alloys with specific application to dilute Mg-based alloys", Modelling and Simulation in Materials Science and Engineering 26(4), 045010. DOI: 10.1088/1361-651x/aabaad.

2025--Sharifi-H-Wick-C-D--Mn-Al
H. Sharifi, and C.D. Wick (2025), "Developing interatomic potentials for complex concentrated alloys of Cu, Ti, Ni, Cr, Co, Al, Fe, and Mn", Computational Materials Science 248, 113595. DOI: 10.1016/j.commatsci.2024.113595.

2025--Sharifi-H-Wick-C-D--Ni-Al-Mn
H. Sharifi, and C.D. Wick (2025), "Developing interatomic potentials for complex concentrated alloys of Cu, Ti, Ni, Cr, Co, Al, Fe, and Mn", Computational Materials Science 248, 113595. DOI: 10.1016/j.commatsci.2024.113595.

2012--Schopf-D-Brommer-P-Frigan-B-Trebin-H-R--Al-Mn-Pd
D. Schopf, P. Brommer, B. Frigan, and H.-R. Trebin (2012), "Embedded atom method potentials for Al-Pd-Mn phases", Physical Review B 85(5), 054201. DOI: 10.1103/physrevb.85.054201.

2025--Sharifi-H-Wick-C-D--Ti-Al-Mn
H. Sharifi, and C.D. Wick (2025), "Developing interatomic potentials for complex concentrated alloys of Cu, Ti, Ni, Cr, Co, Al, Fe, and Mn", Computational Materials Science 248, 113595. DOI: 10.1016/j.commatsci.2024.113595.

2022--Fereidonnejad-R-Moghaddam-A-O-Moaddeli-M--Al-Nb
R. Fereidonnejad, A.O. Moghaddam, and M. Moaddeli (2022), "Modified embedded-atom method interatomic potentials for Al-Ti, Al-Ta, Al-Zr, Al-Nb and Al-Hf binary intermetallic systems", Computational Materials Science 213, 111685. DOI: 10.1016/j.commatsci.2022.111685.

2024--Borovikov-V-V-Mendelev-M-I-Zarkevich-N-A-et-al--Ni-Al-Nb
V.V. Borovikov, M.I. Mendelev, N.A. Zarkevich, T.M. Smith, and J.W. Lawson (2024), "Effect of Nb solutes on the Kolbe mechanism for microtwinning in Ni-based superalloys", International Journal of Plasticity 178, 104004. DOI: 10.1016/j.ijplas.2024.104004.

1996--Farkas-D-Jones-C--Nb-Ti-Al
D. Farkas, and C. Jones (1996), "Interatomic potentials for ternary Nb - Ti - Al alloys", Modelling and Simulation in Materials Science and Engineering 4(1), 23-32. DOI: 10.1088/0965-0393/4/1/004.

2025--Sharifi-H-Wick-C-D--Ni-Al
H. Sharifi, and C.D. Wick (2025), "Developing interatomic potentials for complex concentrated alloys of Cu, Ti, Ni, Cr, Co, Al, Fe, and Mn", Computational Materials Science 248, 113595. DOI: 10.1016/j.commatsci.2024.113595.

2024--Borovikov-V-V-Mendelev-M-I-Zarkevich-N-A-et-al--Ni-Al
V.V. Borovikov, M.I. Mendelev, N.A. Zarkevich, T.M. Smith, and J.W. Lawson (2024), "Effect of Nb solutes on the Kolbe mechanism for microtwinning in Ni-based superalloys", International Journal of Plasticity 178, 104004. DOI: 10.1016/j.ijplas.2024.104004.

2022--Mahata-A-Mukhopadhyay-T-Asle-Zaeem-M--Al-Ni
A. Mahata, T. Mukhopadhyay, and M. Asle Zaeem (2022), "Modified embedded-atom method interatomic potentials for Al-Cu, Al-Fe and Al-Ni binary alloys: From room temperature to melting point", Computational Materials Science 201, 110902. DOI: 10.1016/j.commatsci.2021.110902.

2015--Kumar-A-Chernatynskiy-A-Liang-T-et-al--Al-Ni
A. Kumar, A. Chernatynskiy, T. Liang, K. Choudhary, M.J. Noordhoek, Y.-T. Cheng, S.R. Phillpot, and S.B. Sinnott (2015), "Charge optimized many-body (COMB) potential for dynamical simulation of Ni-Al phases", Journal of Physics: Condensed Matter 27(33), 336302. DOI: 10.1088/0953-8984/27/33/336302.

2009--Purja-Pun-G-P-Mishin-Y--Ni-Al
G.P. Purja Pun, and Y. Mishin (2009), "Development of an interatomic potential for the Ni-Al system", Philosophical Magazine 89(34-36), 3245-3267. DOI: 10.1080/14786430903258184.

2007--Silva-A-C-Agren-J-Clavaguera-Mora-M-T-et-al--Al-Ni
A.C. Silva, J. Ågren, M.T. Clavaguera-Mora, D. Djurovic, T. Gomez-Acebo, B.-J. Lee, Z.-K. Liu, P. Miodownik, and H.J. Seifert (2007), "Applications of computational thermodynamics - the extension from phase equilibrium to phase transformations and other properties", Calphad 31(1), 53-74. DOI: 10.1016/j.calphad.2006.02.006.

2004--Mishin-Y--Ni-Al
Y. Mishin (2004), "Atomistic modeling of the γ and γ'-phases of the Ni-Al system", Acta Materialia 52(6), 1451-1467. DOI: 10.1016/j.actamat.2003.11.026.

2002--Mishin-Y-Mehl-M-J-Papaconstantopoulos-D-A--Ni-Al
Y. Mishin, M.J. Mehl, and D.A. Papaconstantopoulos (2002), "Embedded-atom potential for B2-NiAl", Physical Review B 65(22), 224114. DOI: 10.1103/physrevb.65.224114.

2015--Kumar-A-Chernatynskiy-A-Liang-T-et-al--Al-Ni-O
A. Kumar, A. Chernatynskiy, T. Liang, K. Choudhary, M.J. Noordhoek, Y.-T. Cheng, S.R. Phillpot, and S.B. Sinnott (2015), "Charge optimized many-body (COMB) potential for dynamical simulation of Ni-Al phases", Journal of Physics: Condensed Matter 27(33), 336302. DOI: 10.1088/0953-8984/27/33/336302.

2025--Sharifi-H-Wick-C-D--Ni-Ti-Al
H. Sharifi, and C.D. Wick (2025), "Developing interatomic potentials for complex concentrated alloys of Cu, Ti, Ni, Cr, Co, Al, Fe, and Mn", Computational Materials Science 248, 113595. DOI: 10.1016/j.commatsci.2024.113595.

2017--Kim-Y-K-Kim-H-K-Jung-W-S-Lee-B-J--Ni-Al-Ti
Y.-K. Kim, H.-K. Kim, W.-S. Jung, and B.-J. Lee (2017), "Development and application of Ni-Ti and Ni-Al-Ti 2NN-MEAM interatomic potentials for Ni-base superalloys", Computational Materials Science 139, 225-233. DOI: 10.1016/j.commatsci.2017.08.002.

2015--Choudhary-K-Liang-T-Chernatynskiy-A-et-al--Al-O
K. Choudhary, T. Liang, A. Chernatynskiy, S.R. Phillpot, and S.B. Sinnott (2015), "Charge optimized many-body (COMB) potential for Al2O3 materials, interfaces, and nanostructures", Journal of Physics: Condensed Matter 27(30), 305004. DOI: 10.1088/0953-8984/27/30/305004.

2000--Landa-A-Wynblatt-P-Siegel-D-J-et-al--Al-Pb
A. Landa, P. Wynblatt, D.J. Siegel, J.B. Adams, O.N. Mryasov, and X.-Y. Liu (2000), "Development of glue-type potentials for the Al-Pb system: phase diagram calculation", Acta Materialia 48(8), 1753-1761. DOI: 10.1016/s1359-6454(00)00002-1.
A. Landa, P. Wynblatt, D.J. Siegel, J.B. Adams, O.N. Mryasov, and X.-Y. Liu (2000), "Development of glue-type potentials for the Al–Pb system: phase diagram calculation", Acta Materialia 48(13), 3621. DOI: 10.1016/s1359-6454(00)00158-0.

2018--Jeong-G-U-Park-C-S-Do-H-S-et-al--Pd-Al
G.-U. Jeong, C.S. Park, H.-S. Do, S.-M. Park, and B.-J. Lee (2018), "Second nearest-neighbor modified embedded-atom method interatomic potentials for the Pd-M (M = Al, Co, Cu, Fe, Mo, Ni, Ti) binary systems", Calphad 62, 172-186. DOI: 10.1016/j.calphad.2018.06.006.

2017--Kim-J-S-Seol-D-Ji-J-et-al--Pt-Al
J.-S. Kim, D. Seol, J. Ji, H.-S. Jang, Y. Kim, and B.-J. Lee (2017), "Second nearest-neighbor modified embedded-atom method interatomic potentials for the Pt-M (M = Al, Co, Cu, Mo, Ni, Ti, V) binary systems", Calphad 59, 131-141. DOI: 10.1016/j.calphad.2017.09.005.

2021--Song-H-Mendelev-M-I--Al-Sm
H. Song, and M.I. Mendelev (2021), "Molecular Dynamics Study of Mechanism of Solid-Liquid Interface Migration and Defect Formation in Al3Sm Alloy", JOM 73(8), 2312-2319. DOI: 10.1007/s11837-021-04733-8.

2015--Mendelev-M-I-Zhang-F-Ye-Z-et-al--Al-Sm
M.I. Mendelev, F. Zhang, Z. Ye, Y. Sun, M.C. Nguyen, S.R. Wilson, C.Z. Wang, and K.M. Ho (2015), "Development of interatomic potentials appropriate for simulation of devitrification of Al90Sm10alloy", Modelling and Simulation in Materials Science and Engineering 23(4), 045013. DOI: 10.1088/0965-0393/23/4/045013.

2022--Fereidonnejad-R-Moghaddam-A-O-Moaddeli-M--Al-Ta
R. Fereidonnejad, A.O. Moghaddam, and M. Moaddeli (2022), "Modified embedded-atom method interatomic potentials for Al-Ti, Al-Ta, Al-Zr, Al-Nb and Al-Hf binary intermetallic systems", Computational Materials Science 213, 111685. DOI: 10.1016/j.commatsci.2022.111685.

2025--Sharifi-H-Wick-C-D--Ti-Al
H. Sharifi, and C.D. Wick (2025), "Developing interatomic potentials for complex concentrated alloys of Cu, Ti, Ni, Cr, Co, Al, Fe, and Mn", Computational Materials Science 248, 113595. DOI: 10.1016/j.commatsci.2024.113595.

2022--Fereidonnejad-R-Moghaddam-A-O-Moaddeli-M--Al-Ti
R. Fereidonnejad, A.O. Moghaddam, and M. Moaddeli (2022), "Modified embedded-atom method interatomic potentials for Al-Ti, Al-Ta, Al-Zr, Al-Nb and Al-Hf binary intermetallic systems", Computational Materials Science 213, 111685. DOI: 10.1016/j.commatsci.2022.111685.

2016--Kim-Y-K-Kim-H-K-Jung-W-S-Lee-B-J--Al-Ti
Y.-K. Kim, H.-K. Kim, W.-S. Jung, and B.-J. Lee (2016), "Atomistic modeling of the Ti–Al binary system", Computational Materials Science 119, 1-8. DOI: 10.1016/j.commatsci.2016.03.038.

2003--Zope-R-R-Mishin-Y--Ti-Al
R.R. Zope, and Y. Mishin (2003), "Interatomic potentials for atomistic simulations of the Ti-Al system", Physical Review B 68(2), 024102. DOI: 10.1103/physrevb.68.024102.

2025--Nitol-M-S-Mishra-A-Xu-S-Fensin-S-J--Al-Ti-V
M.S. Nitol, A. Mishra, S. Xu, and S.J. Fensin (2025), "Moment tensor potential and its application in the Ti-Al-V multicomponent system", Physical Review Materials 9(6), 063601. DOI: 10.1103/physrevmaterials.9.063601.

2015--Pascuet-M-I-Fernandez-J-R--Al-U
M.I. Pascuet, and J.R. Fernández (2015), "Atomic interaction of the MEAM type for the study of intermetallics in the Al-U alloy", Journal of Nuclear Materials 467, 229-239. DOI: 10.1016/j.jnucmat.2015.09.030.

2013--Shim-J-H-Ko-W-S-Kim-K-H-et-al--V-Al
J.-H. Shim, W.-S. Ko, K.-H. Kim, H.-S. Lee, Y.-S. Lee, J.-Y. Suh, Y.W. Cho, and B.-J. Lee (2013), "Prediction of hydrogen permeability in V–Al and V–Ni alloys", Journal of Membrane Science 430, 234-241. DOI: 10.1016/j.memsci.2012.12.019.

2022--Fereidonnejad-R-Moghaddam-A-O-Moaddeli-M--Al-Zr
R. Fereidonnejad, A.O. Moghaddam, and M. Moaddeli (2022), "Modified embedded-atom method interatomic potentials for Al-Ti, Al-Ta, Al-Zr, Al-Nb and Al-Hf binary intermetallic systems", Computational Materials Science 213, 111685. DOI: 10.1016/j.commatsci.2022.111685.

Am

2015--Elliott-R-S-Akerson-A--Am
R.S. Elliott, and A. Akerson (2015), "Efficient "universal" shifted Lennard-Jones model for all KIM API supported species".

Ar

2015--Elliott-R-S-Akerson-A--Ar
R.S. Elliott, and A. Akerson (2015), "Efficient "universal" shifted Lennard-Jones model for all KIM API supported species".

2005--Nguyen-T-X-Bhatia-S-K-Nicholson-D--Ar
T.X. Nguyen, S.K. Bhatia, and D. Nicholson (2005), "Prediction of High-Pressure Adsorption Equilibrium of Supercritical Gases Using Density Functional Theory", Langmuir 21(7), 3187-3197. DOI: 10.1021/la047545h.

1972--Jelinek-G-E--Ar
G.E. Jelinek (1972), "Properties of Crystalline Argon, Krypton, and Xenon Based Upon the Born-Huang Method of Homogeneous Deformations. III. The Low-Temperature Limit", Physical Review B 5(8), 3210-3217. DOI: 10.1103/physrevb.5.3210.

1958--Bernardes-N--Ar
N. Bernardes (1958), "Theory of Solid Ne, A, Kr, and Xe at 0°K", Physical Review 112(5), 1534-1539. DOI: 10.1103/physrev.112.1534.

2000--Stuart-S-J-Tutein-A-B-Harrison-J-A--H-He-C-Ar-Xe
S.J. Stuart, A.B. Tutein, and J.A. Harrison (2000), "A reactive potential for hydrocarbons with intermolecular interactions", The Journal of Chemical Physics 112(14), 6472-6486. DOI: 10.1063/1.481208.

1973--Kong-C-L-Chakrabarty-M-R--Ar-Ne
C.L. Kong, and M.R. Chakrabarty (1973), "Combining rules for intermolecular potential parameters. III. Application to the exp 6 potential", The Journal of Physical Chemistry 77(22), 2668-2670. DOI: 10.1021/j100640a019.
W. Hogervorst (1971), "Transport and equilibrium properties of simple gases and forces between like and unlike atoms", Physica 51(1), 77-89. DOI: 10.1016/0031-8914(71)90138-8.

As

2015--Elliott-R-S-Akerson-A--As
R.S. Elliott, and A. Akerson (2015), "Efficient "universal" shifted Lennard-Jones model for all KIM API supported species".

2021--Oliveira-D-S-Cotta-M-A--Ga-As-Au
D.S. Oliveira, and M.A. Cotta (2021), "Role of Group V Atoms during GaAs Nanowire Growth Revealed by Molecular Dynamics Simulations: Implications in the Formation of Sharp Interfaces", ACS Applied Nano Materials 4(3), 2903–2909. DOI: 10.1021/acsanm.1c00057.

2006--Murdick-D-A-Zhou-X-W-Wadley-H-N-G-et-al--Ga-As
D.A. Murdick, X.W. Zhou, H.N.G. Wadley, D. Nguyen-Manh, R. Drautz, and D.G. Pettifor (2006), "Analytic bond-order potential for the gallium arsenide system", Physical Review B 73(4), 045206. DOI: 10.1103/physrevb.73.045206.

2002--Albe-K-Nordlund-K-Nord-J-Kuronen-A--Ga-As
K. Albe, K. Nordlund, J. Nord, and A. Kuronen (2002), "Modeling of compound semiconductors: Analytical bond-order potential for Ga, As, and GaAs", Physical Review B 66(3), 035205. DOI: 10.1103/physrevb.66.035205.

At

2015--Elliott-R-S-Akerson-A--At
R.S. Elliott, and A. Akerson (2015), "Efficient "universal" shifted Lennard-Jones model for all KIM API supported species".

Au

2022--Alvi-S-M-A-A-Faiyad-A-Munshi-M-A-M-et-al--Au
S.M.A.A. Alvi, A. Faiyad, M.A.M. Munshi, M. Motalab, M.M. Islam, and S. Saha (2022), "Cyclic and tensile deformations of Gold–Silver core shell systems using newly parameterized MEAM potential", Mechanics of Materials 169, 104304. DOI: 10.1016/j.mechmat.2022.104304.

2017--Purja-Pun-G-P--Au
G.P. Purja Pun (2017), "to be published".

2015--Elliott-R-S-Akerson-A--Au
R.S. Elliott, and A. Akerson (2015), "Efficient "universal" shifted Lennard-Jones model for all KIM API supported species".

2012--Norman-G-E-Starikov-S-V-Stegailov-V-V--Au
G.E. Norman, S.V. Starikov, and V.V. Stegailov (2012), "Atomistic simulation of laser ablation of gold: Effect of pressure relaxation", Journal of Experimental and Theoretical Physics 114(5), 792-800. DOI: 10.1134/s1063776112040115.
S.V. Starikov, A.Y. Faenov, T.A. Pikuz, I.Y. Skobelev, V.E. Fortov, S. Tamotsu, M. Ishino, M. Tanaka, N. Hasegawa, M. Nishikino, T. Kaihori, T. Imazono, M. Kando, and T. Kawachi (2014), "Soft picosecond X-ray laser nanomodification of gold and aluminum surfaces", Applied Physics B 116(4), 1005-1016. DOI: 10.1007/s00340-014-5789-y.

2010--Olsson-P-A-T--Au
P.A.T. Olsson (2010), "Transverse resonant properties of strained gold nanowires", Journal of Applied Physics 108(3), 034318. DOI: 10.1063/1.3460127.

2009--Zhakhovskii-V-V-Inogamov-N-A-Petrov-Y-V-et-al--Au
V.V. Zhakhovskii, N.A. Inogamov, Y.V. Petrov, S.I. Ashitkov, and K. Nishihara (2009), "Molecular dynamics simulation of femtosecond ablation and spallation with different interatomic potentials", Applied Surface Science 255(24), 9592-9596. DOI: 10.1016/j.apsusc.2009.04.082.

2005--Grochola-G-Russo-S-P-Snook-I-K--Au
G. Grochola, S.P. Russo, and I.K. Snook (2005), "On fitting a gold embedded atom method potential using the force matching method", The Journal of Chemical Physics 123(20), 204719. DOI: 10.1063/1.2124667.

2004--Zhou-X-W-Johnson-R-A-Wadley-H-N-G--Au
X.W. Zhou, R.A. Johnson, and H.N.G. Wadley (2004), "Misfit-energy-increasing dislocations in vapor-deposited CoFe/NiFe multilayers", Physical Review B 69(14), 144113. DOI: 10.1103/physrevb.69.144113.

2003--Lee-B-J-Shim-J-H-Baskes-M-I--Au
B.-J. Lee, J.-H. Shim, and M.I. Baskes (2003), "Semiempirical atomic potentials for the fcc metals Cu, Ag, Au, Ni, Pd, Pt, Al, and Pb based on first and second nearest-neighbor modified embedded atom method", Physical Review B 68(14), 144112. DOI: 10.1103/physrevb.68.144112.

1996--Jacobsen-K-W-Stoltze-P-Norskov-J-K--Au
K.W. Jacobsen, P. Stoltze, and J.K. Nørskov (1996), "A semi-empirical effective medium theory for metals and alloys", Surface Science 366(2), 394-402. DOI: 10.1016/0039-6028(96)00816-3.

1989--Adams-J-B-Foiles-S-M-Wolfer-W-G--Au
J.B. Adams, S.M. Foiles, and W.G. Wolfer (1989), "Self-diffusion and impurity diffusion of fcc metals using the five-frequency model and the Embedded Atom Method", Journal of Materials Research 4(1), 102-112. DOI: 10.1557/jmr.1989.0102.

1987--Ackland-G-J-Tichy-G-Vitek-V-Finnis-M-W--Au
G.J. Ackland, G. Tichy, V. Vitek, and M.W. Finnis (1987), "Simple N-body potentials for the noble metals and nickel", Philosophical Magazine A 56(6), 735-756. DOI: 10.1080/01418618708204485.

1986--Foiles-S-M-Baskes-M-I-Daw-M-S--Au
S.M. Foiles, M.I. Baskes, and M.S. Daw (1986), "Embedded-atom-method functions for the fcc metals Cu, Ag, Au, Ni, Pd, Pt, and their alloys", Physical Review B 33(12), 7983-7991. DOI: 10.1103/physrevb.33.7983.

2009--Guthikonda-V-S-Elliott-R-S--Au-Cd
V.S. Guthikonda, and R.S. Elliott (2009), "An effective interaction potential model for the shape memory alloy AuCd", Continuum Mechanics and Thermodynamics 21(4), 269-295. DOI: 10.1007/s00161-009-0109-1.
V.S. Guthikonda, and R.S. Elliott (2010), "Erratum to: An effective interaction potential model for the shape memory alloy AuCd", Continuum Mechanics and Thermodynamics 23(2), 177-183. DOI: 10.1007/s00161-010-0169-2.

2018--Gola-A-Pastewka-L--Au-Cu
A. Gola, and L. Pastewka (2018), "Embedded atom method potential for studying mechanical properties of binary Cu–Au alloys", Modelling and Simulation in Materials Science and Engineering 26(5), 055006. DOI: 10.1088/1361-651x/aabce4.

2017--OBrien-C-J-Barr-C-M-Price-P-M-et-al--Pt-Au
C.J. O'Brien, C.M. Barr, P.M. Price, K. Hattar, and S.M. Foiles (2017), "Grain boundary phase transformations in PtAu and relevance to thermal stabilization of bulk nanocrystalline metals", Journal of Materials Science 53(4), 2911-2927. DOI: 10.1007/s10853-017-1706-1.

2021--Wang-G-Xu-Y-Qian-P-Su-Y--Au-Rh
G. Wang, Y. Xu, P. Qian, and Y. Su (2021), "ADP potential for the Au-Rh system and its application in element segregation of nanoparticles", Computational Materials Science 186, 110002. DOI: 10.1016/j.commatsci.2020.110002.

2018--Starikov-S-V-Lopanitsyna-N-Y-Smirnova-D-E-Makarov-S-V--Si-Au
S.V. Starikov, N.Y. Lopanitsyna, D.E. Smirnova, and S.V. Makarov (2018), "Atomistic simulation of Si-Au melt crystallization with novel interatomic potential", Computational Materials Science 142, 303-311. DOI: 10.1016/j.commatsci.2017.09.054.

B

2015--Elliott-R-S-Akerson-A--B
R.S. Elliott, and A. Akerson (2015), "Efficient "universal" shifted Lennard-Jones model for all KIM API supported species".

2012--Kinaci-A-Haskins-J-B-Sevik-C-Cagin-T--B-N-C
A. Kınacı, J.B. Haskins, C. Sevik, and T. Çağın (2012), "Thermal conductivity of BN-C nanostructures", Physical Review B 86(11), 115410. DOI: 10.1103/physrevb.86.115410.

2011--Daw-M-S-Lawson-J-W-Bauschlicher-C-W--Hf-B
M.S. Daw, J.W. Lawson, and C.W. Bauschlicher (2011), "Interatomic potentials for Zirconium Diboride and Hafnium Diboride", Computational Materials Science 50(10), 2828-2835. DOI: 10.1016/j.commatsci.2011.04.038.
J.W. Lawson, M.S. Daw, and C.W. Bauschlicher (2011), "Lattice thermal conductivity of ultra high temperature ceramics ZrB2 and HfB2 from atomistic simulations", Journal of Applied Physics 110(8), 083507. DOI: 10.1063/1.3647754.

B-N

2017--Los-J-H-Kroes-J-M-H-Albe-K-et-al--B-N
J.H. Los, J.M.H. Kroes, K. Albe, R.M. Gordillo, M.I. Katsnelson, and A. Fasolino (2017), "Extended Tersoff potential for boron nitride: Energetics and elastic properties of pristine and defective h-BN", Physical Review B 96(18), 184108. DOI: 10.1103/physrevb.96.184108.

2011--Daw-M-S-Lawson-J-W-Bauschlicher-C-W--Zr-B
M.S. Daw, J.W. Lawson, and C.W. Bauschlicher (2011), "Interatomic potentials for Zirconium Diboride and Hafnium Diboride", Computational Materials Science 50(10), 2828-2835. DOI: 10.1016/j.commatsci.2011.04.038.
J.W. Lawson, M.S. Daw, and C.W. Bauschlicher (2011), "Lattice thermal conductivity of ultra high temperature ceramics ZrB2 and HfB2 from atomistic simulations", Journal of Applied Physics 110(8), 083507. DOI: 10.1063/1.3647754.
J.W. Lawson, M.S. Daw, T.H. Squire, and C.W. Bauschlicher (2012), "Computational Modeling of Grain Boundaries in ZrB2: Implications for Lattice Thermal Conductivity", Journal of the American Ceramic Society 95(12), 3971-3978. DOI: 10.1111/jace.12037.

Ba

2015--Elliott-R-S-Akerson-A--Ba
R.S. Elliott, and A. Akerson (2015), "Efficient "universal" shifted Lennard-Jones model for all KIM API supported species".

1959--Girifalco-L-A-Weizer-V-G--Ba
L.A. Girifalco, and V.G. Weizer (1959), "Application of the Morse Potential Function to Cubic Metals", Physical Review 114(3), 687-690. DOI: 10.1103/physrev.114.687.

2024--Pal-S-Mukhopadhyay-S--Ba-Pd
S. Pal, and S. Mukhopadhyay (2024), "Development of embedded-atom method (EAM) potential for Palladium-Barium alloy", Molecular Simulation, 1-10. DOI: 10.1080/08927022.2024.2376327.

Be

2015--Elliott-R-S-Akerson-A--Be
R.S. Elliott, and A. Akerson (2015), "Efficient "universal" shifted Lennard-Jones model for all KIM API supported species".

2013--Agrawal-A-Mishra-R-Ward-L-et-al--Be
A. Agrawal, R. Mishra, L. Ward, K.M. Flores, and W. Windl (2013), "An embedded atom method potential of beryllium", Modelling and Simulation in Materials Science and Engineering 21(8), 085001. DOI: 10.1088/0965-0393/21/8/085001.

2018--Byggmastar-J-Hodille-E-A-Ferro-Y-Nordlund-K--Be-O
J. Byggmästar, E.A. Hodille, Y. Ferro, and K. Nordlund (2018), "Analytical bond order potential for simulations of BeO 1D and 2D nanostructures and plasma-surface interactions", Journal of Physics: Condensed Matter 30(13), 135001. DOI: 10.1088/1361-648x/aaafb3.

Bh

2015--Elliott-R-S-Akerson-A--Bh
R.S. Elliott, and A. Akerson (2015), "Efficient "universal" shifted Lennard-Jones model for all KIM API supported species".

Bi

2021--Zhou-H-Dickel-D-E-Baskes-M-I-et-al--Bi
H. Zhou, D.E. Dickel, M.I. Baskes, S. Mun, and M. Asle Zaeem (2021), "A modified embedded-atom method interatomic potential for bismuth", Modelling and Simulation in Materials Science and Engineering 29(6), 065008. DOI: 10.1088/1361-651x/ac095c.

2015--Elliott-R-S-Akerson-A--Bi
R.S. Elliott, and A. Akerson (2015), "Efficient "universal" shifted Lennard-Jones model for all KIM API supported species".

2012--Belashchenko-D-K--Bi
D.K. Belashchenko (2012), "Computer simulation of the properties of liquid metals: Gallium, lead, and bismuth", Russian Journal of Physical Chemistry A 86(5), 779-790. DOI: 10.1134/s0036024412050056.

Bk

2015--Elliott-R-S-Akerson-A--Bk
R.S. Elliott, and A. Akerson (2015), "Efficient "universal" shifted Lennard-Jones model for all KIM API supported species".

Br

2015--Elliott-R-S-Akerson-A--Br
R.S. Elliott, and A. Akerson (2015), "Efficient "universal" shifted Lennard-Jones model for all KIM API supported species".

2011--Zhou-X-W-Doty-F-P-Yang-P--Li-Na-K-Rb-Cs-F-Cl-Br-I
X.W. Zhou, F.P. Doty, and P. Yang (2011), "Atomistic simulation study of atomic size effects on B1 (NaCl), B2 (CsCl), and B3 (zinc-blende) crystal stability of binary ionic compounds", Computational Materials Science 50(8), 2470-2481. DOI: 10.1016/j.commatsci.2011.03.028.

C

2020--Wen-M-Tadmor-E-B--C-v1
M. Wen, and E.B. Tadmor (2020), "Uncertainty quantification in molecular simulations with dropout neural network potentials", npj Computational Materials 6(1), 124. DOI: 10.1038/s41524-020-00390-8.

2020--Wen-M-Tadmor-E-B--C-v2
M. Wen, and E.B. Tadmor (2020), "Uncertainty quantification in molecular simulations with dropout neural network potentials", npj Computational Materials 6(1), 124. DOI: 10.1038/s41524-020-00390-8.

2020--Wen-M-Tadmor-E-B--C-v3
M. Wen, and E.B. Tadmor (2020), "Uncertainty quantification in molecular simulations with dropout neural network potentials", npj Computational Materials 6(1), 124. DOI: 10.1038/s41524-020-00390-8.

2019--Wen-M-Tadmor-E-B--C
M. Wen, and E.B. Tadmor (2019), "Hybrid neural network potential for multilayer graphene", Physical Review B 100(19), 195419. DOI: 10.1103/physrevb.100.195419.

2015--Elliott-R-S-Akerson-A--C
R.S. Elliott, and A. Akerson (2015), "Efficient "universal" shifted Lennard-Jones model for all KIM API supported species".

2015--Zhou-X-W-Ward-D-K-Foster-M-E--C
X.W. Zhou, D.K. Ward, and M.E. Foster (2015), "An analytical bond-order potential for carbon", Journal of Computational Chemistry 36(23), 1719-1735. DOI: 10.1002/jcc.23949.

2005--Lee-B-J-Lee-J-W--C
B.-J. Lee, and J.W. Lee (2005), "A modified embedded atom method interatomic potential for carbon", Calphad 29(1), 7-16. DOI: 10.1016/j.calphad.2005.02.003.

2003--Los-J-H-Fasolino-A--C
J.H. Los, and A. Fasolino (2003), "Intrinsic long-range bond-order potential for carbon: Performance in Monte Carlo simulations of graphitization", Physical Review B 68(2), 024107. DOI: 10.1103/physrevb.68.024107.

1988--Khor-K-E-Das-Sarma-S--C
K.E. Khor, and S. Das Sarma (1988), "Proposed universal interatomic potential for elemental tetrahedrally bonded semiconductors", Physical Review B 38(5), 3318-3322. DOI: 10.1103/physrevb.38.3318.

1988--Tersoff-J--C
J. Tersoff (1988), "Empirical Interatomic Potential for Carbon, with Applications to Amorphous Carbon", Physical Review Letters 61(25), 2879-2882. DOI: 10.1103/physrevlett.61.2879.

2022--Bonny-G-Bakaev-A-Terentyev-D--Fe-C-Cr
G. Bonny, A. Bakaev, and D. Terentyev (2022), "The combined effect of carbon and chromium enrichment on <1 0 0> loop absorption in iron", Computational Materials Science 211, 111533. DOI: 10.1016/j.commatsci.2022.111533.

2021--Agrawal-A-Mirzaeifar-R--Cu-C
A. Agrawal, and R. Mirzaeifar (2021), "Copper-Graphene Composites; Developing the MEAM Potential and Investigating their Mechanical Properties", Computational Materials Science 188, 110204. DOI: 10.1016/j.commatsci.2020.110204.

2015--Zhou-X-W-Ward-D-K-Foster-M-E--C-Cu
X.W. Zhou, D.K. Ward, and M.E. Foster (2015), "An analytical bond-order potential for carbon", Journal of Computational Chemistry 36(23), 1719-1735. DOI: 10.1002/jcc.23949.

2024--Meng-F-S-Shinzato-S-Zhang-S-et-al--Fe-C-BNNP
F.-S. Meng, S. Shinzato, S. Zhang, K. Matsubara, J.-P. Du, P. Yu, W.-T. Geng, and S. Ogata (2024), "A highly transferable and efficient machine learning interatomic potentials study of α-Fe–C binary system", Acta Materialia 281, 120408. DOI: 10.1016/j.actamat.2024.120408.

2024--Meng-F-S-Shinzato-S-Zhang-S-et-al--Fe-C-DP
F.-S. Meng, S. Shinzato, S. Zhang, K. Matsubara, J.-P. Du, P. Yu, W.-T. Geng, and S. Ogata (2024), "A highly transferable and efficient machine learning interatomic potentials study of α-Fe–C binary system", Acta Materialia 281, 120408. DOI: 10.1016/j.actamat.2024.120408.

2022--Allera-A-Ribeiro-F-Perez-M-Rodney-D--Fe-C
A. Allera, F. Ribeiro, M. Perez, and D. Rodney (2022), "Carbon-induced strengthening of bcc iron at the atomic scale", Physical Review Materials 6(1), 013608. DOI: 10.1103/physrevmaterials.6.013608.

2014--Liyanage-L-S-I-Kim-S-G-Houze-J-et-al--Fe-C
L.S.I. Liyanage, S.-G. Kim, J. Houze, S. Kim, M.A. Tschopp, M.I. Baskes, and M.F. Horstemeyer (2014), "Structural, elastic, and thermal properties of cementite (Fe3C) calculated using a modified embedded atom method", Physical Review B 89(9), 094102. DOI: 10.1103/physrevb.89.094102.

2014--Veiga-R-G-A-Becquart-C-S-Perez-M--Fe-C
R.G.A. Veiga, C.S. Becquart, and M. Perez (2014), "Comments on “Atomistic modeling of an Fe system with a small concentration of C”", Computational Materials Science 82, 118-121. DOI: 10.1016/j.commatsci.2013.09.048.

2013--Henriksson-K-O-E-Bjorkas-C-Nordlund-K--Fe-C
K.O.E. Henriksson, C. Björkas, and K. Nordlund (2013), "Atomistic simulations of stainless steels: a many-body potential for the Fe-Cr-C system", Journal of Physics: Condensed Matter 25(44), 445401. DOI: 10.1088/0953-8984/25/44/445401.

2008--Hepburn-D-J-Ackland-G-J--Fe-C
D.J. Hepburn, and G.J. Ackland (2008), "Metallic-covalent interatomic potential for carbon in iron", Physical Review B 78(16), 165115. DOI: 10.1103/physrevb.78.165115.

2006--Lee-B-J--Fe-C
B.-J. Lee (2006), "A modified embedded-atom method interatomic potential for the Fe–C system", Acta Materialia 54(3), 701-711. DOI: 10.1016/j.actamat.2005.09.034.

2025--Meng-FS-Shinzato-S-Matsubara-K-et-al--Fe-C-H
F-S Meng, S Shinzato, K Matsubara, J-P Du, P Yu, and S Ogata (2025), "A Neural Network Interatomic Potential for the Ternary α-Fe-C-H System: Toward Million-Atom Simulations of Hydrogen Embrittlement in Steel", nearing accepted.

2019--Aslam-I-Baskes-M-I-Dickel-D-E-et-al--Fe-Mn-Si-C
I. Aslam, M.I. Baskes, D.E. Dickel, S. Adibi, B. Li, H. Rhee, M. Asle Zaeem, and M.F. Horstemeyer (2019), "Thermodynamic and kinetic behavior of low-alloy steels: An atomic level study using an Fe-Mn-Si-C modified embedded atom method (MEAM) potential", Materialia 8, 100473. DOI: 10.1016/j.mtla.2019.100473.

2010--Kim-H-K-Jung-W-S-Lee-B-J--Fe-Nb-C
H.-K. Kim, W.-S. Jung, and B.-J. Lee (2010), "Modified embedded-atom method interatomic potentials for the Nb-C, Nb-N, Fe-Nb-C, and Fe-Nb-N systems", Journal of Materials Research 25(7), 1288-1297. DOI: 10.1557/jmr.2010.0182.

2009--Kim-H-K-Jung-W-S-Lee-B-J--Fe-Ti-C
H.-K. Kim, W.-S. Jung, and B.-J. Lee (2009), "Modified embedded-atom method interatomic potentials for the Fe-Ti-C and Fe-Ti-N ternary systems", Acta Materialia 57(11), 3140-3147. DOI: 10.1016/j.actamat.2009.03.019.

C-H

2024--Willman-J-T-Perriot-R-Ticknor-C--C-H
J.T. Willman, R. Perriot, and C. Ticknor (2024), "Atomic cluster expansion potential for large scale simulations of hydrocarbons under shock compression", The Journal of Chemical Physics 161(6), 064303. DOI: 10.1063/5.0213560.

2022--Fthenakis-Z-G-Petsalakis-I-D-Tozzini-V-Lathiotakis-N-N--C-H-O-N
Z.G. Fthenakis, I.D. Petsalakis, V. Tozzini, and N.N. Lathiotakis (2022), "Evaluating the performance of ReaxFF potentials for sp2 carbon systems (graphene, carbon nanotubes, fullerenes) and a new ReaxFF potential", Frontiers in Chemistry 10, 951261. DOI: 10.3389/fchem.2022.951261.

2008--Chenoweth-K-van-Duin-A-C-T-Goddard-W-A--C-H-O
K. Chenoweth, A.C.T. van Duin, and W.A. Goddard (2008), "ReaxFF Reactive Force Field for Molecular Dynamics Simulations of Hydrocarbon Oxidation", The Journal of Physical Chemistry A 112(5), 1040-1053. DOI: 10.1021/jp709896w.

2010--Kim-H-K-Jung-W-S-Lee-B-J--Nb-C
H.-K. Kim, W.-S. Jung, and B.-J. Lee (2010), "Modified embedded-atom method interatomic potentials for the Nb-C, Nb-N, Fe-Nb-C, and Fe-Nb-N systems", Journal of Materials Research 25(7), 1288-1297. DOI: 10.1557/jmr.2010.0182.

2024--Leimeroth-N-Rohrer-J-Albe-K--Si-O-C
N. Leimeroth, J. Rohrer, and K. Albe (2024), "Structure–property relations of silicon oxycarbides studied using a machine learning interatomic potential", Journal of the American Ceramic Society 107(10), 6896–6910. DOI: 10.1111/jace.19932.

2020--Jeong-G-U-Lee-B-J--Pd-C
G.-U. Jeong, and B.-J. Lee (2020), "Interatomic potentials for Pt-C and Pd-C systems and a study of structure-adsorption relationship in large Pt/graphene system", Computational Materials Science 185, 109946. DOI: 10.1016/j.commatsci.2020.109946.

2020--Jeong-G-U-Lee-B-J--Pt-C
G.-U. Jeong, and B.-J. Lee (2020), "Interatomic potentials for Pt-C and Pd-C systems and a study of structure-adsorption relationship in large Pt/graphene system", Computational Materials Science 185, 109946. DOI: 10.1016/j.commatsci.2020.109946.

2002--Albe-K-Nordlund-K-Averback-R-S--Pt-C
K. Albe, K. Nordlund, and R.S. Averback (2002), "Modeling the metal-semiconductor interaction: Analytical bond-order potential for platinum-carbon", Physical Review B 65(19), 195124. DOI: 10.1103/physrevb.65.195124.

2014--Kang-K-H-Eun-T-Jun-M-C-Lee-B-J--Si-C
K.-H. Kang, T. Eun, M.-C. Jun, and B.-J. Lee (2014), "Governing factors for the formation of 4H or 6H-SiC polytype during SiC crystal growth: An atomistic computational approach", Journal of Crystal Growth 389, 120-133. DOI: 10.1016/j.jcrysgro.2013.12.007.

2012--Jiang-C-Morgan-D-Szlufarska-I--Si-C
C. Jiang, D. Morgan, and I. Szlufarska (2012), "Carbon tri-interstitial defect: A model for the DII center", Physical Review B 86(14), 144118. DOI: 10.1103/physrevb.86.144118.

2007--Vashishta-P-Kalia-R-K-Nakano-A-Rino-J-P--Si-C
P. Vashishta, R.K. Kalia, A. Nakano, and J.P. Rino (2007), "Interaction potential for silicon carbide: A molecular dynamics study of elastic constants and vibrational density of states for crystalline and amorphous silicon carbide", Journal of Applied Physics 101(10), 103515. DOI: 10.1063/1.2724570.

2005--Erhart-P-Albe-K--Si-C-I
P. Erhart, and K. Albe (2005), "Analytical potential for atomistic simulations of silicon, carbon, and silicon carbide", Physical Review B 71(3), 035211. DOI: 10.1103/physrevb.71.035211.

2005--Erhart-P-Albe-K--Si-C-II
P. Erhart, and K. Albe (2005), "Analytical potential for atomistic simulations of silicon, carbon, and silicon carbide", Physical Review B 71(3), 035211. DOI: 10.1103/physrevb.71.035211.

1998--Devanathan-R-Diaz-de-la-Rubia-T-Weber-W-J--Si-C
R. Devanathan, T. Diaz de la Rubia, and W.J. Weber (1998), "Displacement threshold energies in β-SiC", Journal of Nuclear Materials 253(1-3), 47-52. DOI: 10.1016/s0022-3115(97)00304-8.

1994--Tersoff-J--Si-C
J. Tersoff (1994), "Chemical order in amorphous silicon carbide", Physical Review B 49(23), 16349-16352. DOI: 10.1103/physrevb.49.16349.

1990--Tersoff-J--Si-C
J. Tersoff (1990), "Carbon defects and defect reactions in silicon", Physical Review Letters 64(15), 1757-1760. DOI: 10.1103/physrevlett.64.1757.

1989--Tersoff-J--Si-C
J. Tersoff (1989), "Modeling solid-state chemistry: Interatomic potentials for multicomponent systems", Physical Review B 39(8), 5566-5568. DOI: 10.1103/physrevb.39.5566.
J. Tersoff (1990), "Erratum: Modeling solid-state chemistry: Interatomic potentials for multicomponent systems", Physical Review B 41(5), 3248-3248. DOI: 10.1103/physrevb.41.3248.2.

2019--Plummer-G-Tucker-G-J--Ti-Si-C
G. Plummer, and G.J. Tucker (2019), "Bond-order potentials for the Ti3AlC2 and Ti3SiC2 MAX phases", Physical Review B 100(21), 214114. DOI: 10.1103/physrevb.100.214114.

2008--Kim-Y-M-Lee-B-J--Ti-C
Y.-M. Kim, and B.-J. Lee (2008), "Modified embedded-atom method interatomic potentials for the Ti-C and Ti-N binary systems", Acta Materialia 56(14), 3481-3489. DOI: 10.1016/j.actamat.2008.03.027.

2023--Sikorski-E-L-Cusentino-M-A-McCarthy-M-J-et-al--W-Zr-C
E.L. Sikorski, M.A. Cusentino, M.J. McCarthy, J. Tranchida, M.A. Wood, and A.P. Thompson (2023), "Machine learned interatomic potential for dispersion strengthened plasma facing components", The Journal of Chemical Physics 158(11), 114101. DOI: 10.1063/5.0135269.

CH

2014--Nouranian-S-Tschopp-M-A-Gwaltney-S-R-et-al--CH
S. Nouranian, M.A. Tschopp, S.R. Gwaltney, M.I. Baskes, and M.F. Horstemeyer (2014), "An interatomic potential for saturated hydrocarbons based on the modified embedded-atom method", Physical Chemistry Chemical Physics 16(13), 6233-6249. DOI: 10.1039/c4cp00027g.

Ca

2015--Elliott-R-S-Akerson-A--Ca
R.S. Elliott, and A. Akerson (2015), "Efficient "universal" shifted Lennard-Jones model for all KIM API supported species".

2015--Kim-K-H-Jeon-J-B-Lee-B-J--Ca
K.-H. Kim, J.B. Jeon, and B.-J. Lee (2015), "Modified embedded-atom method interatomic potentials for Mg-X (X=Y, Sn, Ca) binary systems", Calphad 48, 27-34. DOI: 10.1016/j.calphad.2014.10.001.

1959--Girifalco-L-A-Weizer-V-G--Ca
L.A. Girifalco, and V.G. Weizer (1959), "Application of the Morse Potential Function to Cubic Metals", Physical Review 114(3), 687-690. DOI: 10.1103/physrev.114.687.

2007--Brommer-P-Gahler-F-Mihalkovic-M--Ca-Cd
P. Brommer, F. Gähler, and M. Mihalkovic̆ (2007), "Ordering and correlation of cluster orientations in CaCd6", Philosophical Magazine 87(18-21), 2671-2677. DOI: 10.1080/14786430701361370.

2015--Kim-K-H-Jeon-J-B-Lee-B-J--Mg-Ca
K.-H. Kim, J.B. Jeon, and B.-J. Lee (2015), "Modified embedded-atom method interatomic potentials for Mg-X (X=Y, Sn, Ca) binary systems", Calphad 48, 27-34. DOI: 10.1016/j.calphad.2014.10.001.

2019--Jang-H-S-Seol-D-Lee-B-J--Mg-Zn-Ca
H.-S. Jang, D. Seol, and B.-J. Lee (2019), "Modified embedded-atom method interatomic potential for the Mg–Zn–Ca ternary system", Calphad 67, 101674. DOI: 10.1016/j.calphad.2019.101674.

Cd

2015--Elliott-R-S-Akerson-A--Cd
R.S. Elliott, and A. Akerson (2015), "Efficient "universal" shifted Lennard-Jones model for all KIM API supported species".

2013--Zhou-X-W-Ward-D-K-Martin-J-E-et-al--Zn-Cd-Hg-S-Se-Te
X.W. Zhou, D.K. Ward, J.E. Martin, F.B. van Swol, J.L. Cruz-Campa, and D. Zubia (2013), "Stillinger-Weber potential for the II-VI elements Zn-Cd-Hg-S-Se-Te", Physical Review B 88(8), 085309. DOI: 10.1103/physrevb.88.085309.

2014--Zhou-X-W-Foster-M-E-van-Swol-F-B-et-al--Cd-Te-Se
X.W. Zhou, M.E. Foster, F.B. van Swol, J.E. Martin, and B.M. Wong (2014), "Analytical Bond-Order Potential for the Cd-Te-Se Ternary System", The Journal of Physical Chemistry C 118(35), 20661-20679. DOI: 10.1021/jp505915u.

2012--Ward-D-K-Zhou-X-W-Wong-B-M-et-al--Cd-Te
D.K. Ward, X.W. Zhou, B.M. Wong, F.P. Doty, and J.A. Zimmerman (2012), "Analytical bond-order potential for the cadmium telluride binary system", Physical Review B 85(11), 115206. DOI: 10.1103/physrevb.85.115206.

1989--Wang-Z-Q-Stroud-D-Markworth-A-J--Cd-Te
Z.Q. Wang, D. Stroud, and A.J. Markworth (1989), "Monte Carlo study of the liquid CdTe surface", Physical Review B 40(5), 3129-3132. DOI: 10.1103/physrevb.40.3129.

2013--Ward-D-K-Zhou-X-Wong-B-M-Doty-F-P--Cd-Te-Zn
D.K. Ward, X. Zhou, B.M. Wong, and F.P. Doty (2013), "A refined parameterization of the analytical Cd-Zn-Te bond-order potential", Journal of Molecular Modeling 19(12), 5469-5477. DOI: 10.1007/s00894-013-2004-8.

2012--Ward-D-K-Zhou-X-W-Wong-B-M-et-al--Cd-Te-Zn
D.K. Ward, X.W. Zhou, B.M. Wong, F.P. Doty, and J.A. Zimmerman (2012), "Analytical bond-order potential for the Cd-Zn-Te ternary system", Physical Review B 86(24), 245203. DOI: 10.1103/physrevb.86.245203.

Ce

2023--Kizzire-D-G-Greenhalgh-A-D-Neveau-M-L-et-al--Ce
D.G. Kizzire, A.D. Greenhalgh, M.L. Neveau, C.M. Pekol, M.J. Thompson, O. Rios, and D.J. Keffer (2023), "Modified embedded atom method interatomic potential for FCC γ-cerium", Computational Materials Science 230, 112454. DOI: 10.1016/j.commatsci.2023.112454.

2015--Elliott-R-S-Akerson-A--Ce
R.S. Elliott, and A. Akerson (2015), "Efficient "universal" shifted Lennard-Jones model for all KIM API supported species".

2015--Broqvist-P-Kullgren-J-Wolf-M-J-et-al--Ce-O
P. Broqvist, J. Kullgren, M.J. Wolf, A.C.T. van Duin, and K. Hermansson (2015), "ReaxFF Force-Field for Ceria Bulk, Surfaces, and Nanoparticles", The Journal of Physical Chemistry C 119(24), 13598-13609. DOI: 10.1021/acs.jpcc.5b01597.

Cf

2015--Elliott-R-S-Akerson-A--Cf
R.S. Elliott, and A. Akerson (2015), "Efficient "universal" shifted Lennard-Jones model for all KIM API supported species".

Cl

2015--Elliott-R-S-Akerson-A--Cl
R.S. Elliott, and A. Akerson (2015), "Efficient "universal" shifted Lennard-Jones model for all KIM API supported species".

2022--Guo-J-Ward-L-Babuji-Y-et-al--Li-K-Cl
J. Guo, L. Ward, Y. Babuji, N. Hoyt, M. Williamson, I. Foster, N. Jackson, C. Benmore, and G. Sivaraman (2022), "Composition-transferable machine learning potential for LiCl-KCl molten salts validated by high-energy x-ray diffraction", Physical Review B 106(1), 014209. DOI: 10.1103/physrevb.106.014209.

2021--Sivaraman-G-Guo-J-Ward-L-et-al--Li-Cl
G. Sivaraman, J. Guo, L. Ward, N. Hoyt, M. Williamson, I. Foster, C. Benmore, and N. Jackson (2021), "Automated Development of Molten Salt Machine Learning Potentials: Application to LiCl", The Journal of Physical Chemistry Letters 12(17), 4278-4285. DOI: 10.1021/acs.jpclett.1c00901.

2024--Kalika-E-B-Verkhovtsev-A-V-Maslov-M-M-et-al--Ni-Cl
E.B. Kalika, A.V. Verkhovtsev, M.M. Maslov, K.P. Katin, and A.V. Solov'yov (2024), "Computational characterization of novel nanostructured materials: A case study of NiCl2", Computational Materials Science 239, 112975. DOI: 10.1016/j.commatsci.2024.112975.

Cm

2015--Elliott-R-S-Akerson-A--Cm
R.S. Elliott, and A. Akerson (2015), "Efficient "universal" shifted Lennard-Jones model for all KIM API supported species".

Cn

2015--Elliott-R-S-Akerson-A--Cn
R.S. Elliott, and A. Akerson (2015), "Efficient "universal" shifted Lennard-Jones model for all KIM API supported species".

Co

2025--Sharifi-H-Wick-C-D--Co
H. Sharifi, and C.D. Wick (2025), "Developing interatomic potentials for complex concentrated alloys of Cu, Ti, Ni, Cr, Co, Al, Fe, and Mn", Computational Materials Science 248, 113595. DOI: 10.1016/j.commatsci.2024.113595.

2015--Elliott-R-S-Akerson-A--Co
R.S. Elliott, and A. Akerson (2015), "Efficient "universal" shifted Lennard-Jones model for all KIM API supported species".

2012--Dong-W-P-Kim-H-K-Ko-W-S-et-al--Co
W.-P. Dong, H.-K. Kim, W.-S. Ko, B.-M. Lee, and B.-J. Lee (2012), "Atomistic modeling of pure Co and Co–Al system", Calphad 38, 7-16. DOI: 10.1016/j.calphad.2012.04.001.

2012--Purja-Pun-G-P-Mishin-Y--Co
G.P. Purja Pun, and Y. Mishin (2012), "Embedded-atom potential for hcp and fcc cobalt", Physical Review B 86(13), 134116. DOI: 10.1103/physrevb.86.134116.

2004--Zhou-X-W-Johnson-R-A-Wadley-H-N-G--Co
X.W. Zhou, R.A. Johnson, and H.N.G. Wadley (2004), "Misfit-energy-increasing dislocations in vapor-deposited CoFe/NiFe multilayers", Physical Review B 69(14), 144113. DOI: 10.1103/physrevb.69.144113.

2025--Sharifi-H-Wick-C-D--Cr-Co
H. Sharifi, and C.D. Wick (2025), "Developing interatomic potentials for complex concentrated alloys of Cu, Ti, Ni, Cr, Co, Al, Fe, and Mn", Computational Materials Science 248, 113595. DOI: 10.1016/j.commatsci.2024.113595.

2017--Choi-W-M-Kim-Y-Seol-D-Lee-B-J--Co-Cr
W.-M. Choi, Y. Kim, D. Seol, and B.-J. Lee (2017), "Modified embedded-atom method interatomic potentials for the Co-Cr, Co-Fe, Co-Mn, Cr-Mn and Mn-Ni binary systems", Computational Materials Science 130, 121-129. DOI: 10.1016/j.commatsci.2017.01.002.

2025--Sharifi-H-Wick-C-D--Cu-Cr-Co
H. Sharifi, and C.D. Wick (2025), "Developing interatomic potentials for complex concentrated alloys of Cu, Ti, Ni, Cr, Co, Al, Fe, and Mn", Computational Materials Science 248, 113595. DOI: 10.1016/j.commatsci.2024.113595.

2021--Deluigi-O-R-Pasianot-R-C-Valencia-F-J-et-al--Fe-Ni-Cr-Co-Cu
O.R. Deluigi, R.C. Pasianot, F.J. Valencia, A. Caro, D. Farkas, and E.M. Bringa (2021), "Simulations of primary damage in a High Entropy Alloy: Probing enhanced radiation resistance", Acta Materialia 213, 116951. DOI: 10.1016/j.actamat.2021.116951.

2018--Farkas-D-Caro-A--Fe-Ni-Cr-Co-Cu
D. Farkas, and A. Caro (2018), "Model interatomic potentials and lattice strain in a high-entropy alloy", Journal of Materials Research 33(19), 3218-3225. DOI: 10.1557/jmr.2018.245.

2025--Sharifi-H-Wick-C-D--Cr-Co-Fe
H. Sharifi, and C.D. Wick (2025), "Developing interatomic potentials for complex concentrated alloys of Cu, Ti, Ni, Cr, Co, Al, Fe, and Mn", Computational Materials Science 248, 113595. DOI: 10.1016/j.commatsci.2024.113595.

2020--Groger-R-Vitek-V-Dlouhy-A--Co-Cr-Fe-Mn-Ni
R. Gröger, V. Vitek, and A. Dlouhý (2020), "Effective pair potential for random fcc CoCrFeMnNi alloys", Modelling and Simulation in Materials Science and Engineering 28(7), 075006. DOI: 10.1088/1361-651x/ab7f8b.

2018--Choi-W-M-Jo-Y-H-Sohn-S-S-et-al--Co-Ni-Cr-Fe-Mn
W.-M. Choi, Y.H. Jo, S.S. Sohn, S. Lee, and B.-J. Lee (2018), "Understanding the physical metallurgy of the CoCrFeMnNi high-entropy alloy: an atomistic simulation study", npj Computational Materials 4(1), 1. DOI: 10.1038/s41524-017-0060-9.

2023--Liang-A-Goodelman-D-C-Hodge-A-M-et-al--Fe-Ni-Cr-Co-Ti
A. Liang, D.C. Goodelman, A.M. Hodge, D. Farkas, and P.S. Branicio (2023), "CoFeNiTix and CrFeNiTix high entropy alloy thin films microstructure formation", Acta Materialia 257, 119163. DOI: 10.1016/j.actamat.2023.119163.

2025--Sharifi-H-Wick-C-D--Cr-Co-Mn
H. Sharifi, and C.D. Wick (2025), "Developing interatomic potentials for complex concentrated alloys of Cu, Ti, Ni, Cr, Co, Al, Fe, and Mn", Computational Materials Science 248, 113595. DOI: 10.1016/j.commatsci.2024.113595.

2025--Sharifi-H-Wick-C-D--Cr-Ni-Co
H. Sharifi, and C.D. Wick (2025), "Developing interatomic potentials for complex concentrated alloys of Cu, Ti, Ni, Cr, Co, Al, Fe, and Mn", Computational Materials Science 248, 113595. DOI: 10.1016/j.commatsci.2024.113595.

2024--Mendelev-M-I--Ni-Co-Cr
M.I. Mendelev (2024), "to be published".

2025--Sharifi-H-Wick-C-D--Cr-Ni-Co-W
H. Sharifi, and C.D. Wick (2025), "The effects of the W on the phase segregation and shear strength of CrNiCo: A molecular dynamics study", Computational Materials Science 253, 113877. DOI: 10.1016/j.commatsci.2025.113877.

2025--Sharifi-H-Wick-C-D--Cr-Ti-Co
H. Sharifi, and C.D. Wick (2025), "Developing interatomic potentials for complex concentrated alloys of Cu, Ti, Ni, Cr, Co, Al, Fe, and Mn", Computational Materials Science 248, 113595. DOI: 10.1016/j.commatsci.2024.113595.

2025--Sharifi-H-Wick-C-D--W-Cr-Co
H. Sharifi, and C.D. Wick (2025), "The effects of the W on the phase segregation and shear strength of CrNiCo: A molecular dynamics study", Computational Materials Science 253, 113877. DOI: 10.1016/j.commatsci.2025.113877.

2025--Sharifi-H-Wick-C-D--Co-Cu
H. Sharifi, and C.D. Wick (2025), "Developing interatomic potentials for complex concentrated alloys of Cu, Ti, Ni, Cr, Co, Al, Fe, and Mn", Computational Materials Science 248, 113595. DOI: 10.1016/j.commatsci.2024.113595.

2020--Wang-J-Oh-S-H-Lee-B-J--Cu-Co
J. Wang, S.-H. Oh, and B.-J. Lee (2020), "Second-nearest-neighbor modified embedded-atom method interatomic potential for Cu-M (M = Co, Mo) binary systems", Computational Materials Science 178, 109627. DOI: 10.1016/j.commatsci.2020.109627.

2025--Sharifi-H-Wick-C-D--Cu-Co-Fe
H. Sharifi, and C.D. Wick (2025), "Developing interatomic potentials for complex concentrated alloys of Cu, Ti, Ni, Cr, Co, Al, Fe, and Mn", Computational Materials Science 248, 113595. DOI: 10.1016/j.commatsci.2024.113595.

2025--Sharifi-H-Wick-C-D--Cu-Co-Mn
H. Sharifi, and C.D. Wick (2025), "Developing interatomic potentials for complex concentrated alloys of Cu, Ti, Ni, Cr, Co, Al, Fe, and Mn", Computational Materials Science 248, 113595. DOI: 10.1016/j.commatsci.2024.113595.

2025--Sharifi-H-Wick-C-D--Cu-Ni-Co
H. Sharifi, and C.D. Wick (2025), "Developing interatomic potentials for complex concentrated alloys of Cu, Ti, Ni, Cr, Co, Al, Fe, and Mn", Computational Materials Science 248, 113595. DOI: 10.1016/j.commatsci.2024.113595.

2025--Sharifi-H-Wick-C-D--Cu-Ti-Co
H. Sharifi, and C.D. Wick (2025), "Developing interatomic potentials for complex concentrated alloys of Cu, Ti, Ni, Cr, Co, Al, Fe, and Mn", Computational Materials Science 248, 113595. DOI: 10.1016/j.commatsci.2024.113595.

2025--Sharifi-H-Wick-C-D--Fe-Co
H. Sharifi, and C.D. Wick (2025), "Developing interatomic potentials for complex concentrated alloys of Cu, Ti, Ni, Cr, Co, Al, Fe, and Mn", Computational Materials Science 248, 113595. DOI: 10.1016/j.commatsci.2024.113595.

2017--Choi-W-M-Kim-Y-Seol-D-Lee-B-J--Co-Fe
W.-M. Choi, Y. Kim, D. Seol, and B.-J. Lee (2017), "Modified embedded-atom method interatomic potentials for the Co-Cr, Co-Fe, Co-Mn, Cr-Mn and Mn-Ni binary systems", Computational Materials Science 130, 121-129. DOI: 10.1016/j.commatsci.2017.01.002.

2025--Sharifi-H-Wick-C-D--Fe-Co-Mn
H. Sharifi, and C.D. Wick (2025), "Developing interatomic potentials for complex concentrated alloys of Cu, Ti, Ni, Cr, Co, Al, Fe, and Mn", Computational Materials Science 248, 113595. DOI: 10.1016/j.commatsci.2024.113595.

2025--Sharifi-H-Wick-C-D--Fe-Ni-Co
H. Sharifi, and C.D. Wick (2025), "Developing interatomic potentials for complex concentrated alloys of Cu, Ti, Ni, Cr, Co, Al, Fe, and Mn", Computational Materials Science 248, 113595. DOI: 10.1016/j.commatsci.2024.113595.

2025--Sharifi-H-Wick-C-D--Fe-Ti-Co
H. Sharifi, and C.D. Wick (2025), "Developing interatomic potentials for complex concentrated alloys of Cu, Ti, Ni, Cr, Co, Al, Fe, and Mn", Computational Materials Science 248, 113595. DOI: 10.1016/j.commatsci.2024.113595.

2018--Lee-E-Lee-K-R-Lee-B-J--Li-Co-O
E. Lee, K.-R. Lee, and B.-J. Lee (2018), "An interatomic potential for the Li-Co-O ternary system", Computational Materials Science 142, 47-58. DOI: 10.1016/j.commatsci.2017.10.010.

2025--Sharifi-H-Wick-C-D--Co-Mn
H. Sharifi, and C.D. Wick (2025), "Developing interatomic potentials for complex concentrated alloys of Cu, Ti, Ni, Cr, Co, Al, Fe, and Mn", Computational Materials Science 248, 113595. DOI: 10.1016/j.commatsci.2024.113595.

2017--Choi-W-M-Kim-Y-Seol-D-Lee-B-J--Co-Mn
W.-M. Choi, Y. Kim, D. Seol, and B.-J. Lee (2017), "Modified embedded-atom method interatomic potentials for the Co-Cr, Co-Fe, Co-Mn, Cr-Mn and Mn-Ni binary systems", Computational Materials Science 130, 121-129. DOI: 10.1016/j.commatsci.2017.01.002.

2025--Sharifi-H-Wick-C-D--Ni-Co-Mn
H. Sharifi, and C.D. Wick (2025), "Developing interatomic potentials for complex concentrated alloys of Cu, Ti, Ni, Cr, Co, Al, Fe, and Mn", Computational Materials Science 248, 113595. DOI: 10.1016/j.commatsci.2024.113595.

2025--Sharifi-H-Wick-C-D--Co-Ti-Mn
H. Sharifi, and C.D. Wick (2025), "Developing interatomic potentials for complex concentrated alloys of Cu, Ti, Ni, Cr, Co, Al, Fe, and Mn", Computational Materials Science 248, 113595. DOI: 10.1016/j.commatsci.2024.113595.

2025--Sharifi-H-Wick-C-D--Co-Ni
H. Sharifi, and C.D. Wick (2025), "Developing interatomic potentials for complex concentrated alloys of Cu, Ti, Ni, Cr, Co, Al, Fe, and Mn", Computational Materials Science 248, 113595. DOI: 10.1016/j.commatsci.2024.113595.

2016--Beland-L-K-Lu-C-Osetskiy-Y-N-et-al--Ni-Co
L.K. Béland, C. Lu, Y.N. Osetskiy, G.D. Samolyuk, A. Caro, L. Wang, and R.E. Stoller (2016), "Features of primary damage by high energy displacement cascades in concentrated Ni-based alloys", Journal of Applied Physics 119(8), 085901. DOI: 10.1063/1.4942533.

2015--Kim-Y-K-Jung-W-S-Lee-B-J--Ni-Co
Y.-K. Kim, W.-S. Jung, and B.-J. Lee (2015), "Modified embedded-atom method interatomic potentials for the Ni-Co binary and the Ni-Al-Co ternary systems", Modelling and Simulation in Materials Science and Engineering 23(5), 055004. DOI: 10.1088/0965-0393/23/5/055004.

2015--Purja-Pun-G-P-Yamakov-V-Mishin-Y--Ni-Co
G.P. Purja Pun, V. Yamakov, and Y. Mishin (2015), "Interatomic potential for the ternary Ni–Al–Co system and application to atomistic modeling of the B2–L10 martensitic transformation", Modelling and Simulation in Materials Science and Engineering 23(6), 065006. DOI: 10.1088/0965-0393/23/6/065006.

2025--Sharifi-H-Wick-C-D--Ni-Ti-Co
H. Sharifi, and C.D. Wick (2025), "Developing interatomic potentials for complex concentrated alloys of Cu, Ti, Ni, Cr, Co, Al, Fe, and Mn", Computational Materials Science 248, 113595. DOI: 10.1016/j.commatsci.2024.113595.

2025--Sharifi-H-Wick-C-D--W-Ni-Co
H. Sharifi, and C.D. Wick (2025), "The effects of the W on the phase segregation and shear strength of CrNiCo: A molecular dynamics study", Computational Materials Science 253, 113877. DOI: 10.1016/j.commatsci.2025.113877.

2018--Jeong-G-U-Park-C-S-Do-H-S-et-al--Pd-Co
G.-U. Jeong, C.S. Park, H.-S. Do, S.-M. Park, and B.-J. Lee (2018), "Second nearest-neighbor modified embedded-atom method interatomic potentials for the Pd-M (M = Al, Co, Cu, Fe, Mo, Ni, Ti) binary systems", Calphad 62, 172-186. DOI: 10.1016/j.calphad.2018.06.006.

2017--Kim-J-S-Seol-D-Ji-J-et-al--Pt-Co
J.-S. Kim, D. Seol, J. Ji, H.-S. Jang, Y. Kim, and B.-J. Lee (2017), "Second nearest-neighbor modified embedded-atom method interatomic potentials for the Pt-M (M = Al, Co, Cu, Mo, Ni, Ti, V) binary systems", Calphad 59, 131-141. DOI: 10.1016/j.calphad.2017.09.005.

2025--Sharifi-H-Wick-C-D--Co-Ti
H. Sharifi, and C.D. Wick (2025), "Developing interatomic potentials for complex concentrated alloys of Cu, Ti, Ni, Cr, Co, Al, Fe, and Mn", Computational Materials Science 248, 113595. DOI: 10.1016/j.commatsci.2024.113595.

2020--Oh-S-H-Seol-D-Lee-B-J--Co-Ti
S.-H. Oh, D. Seol, and B.-J. Lee (2020), "Second nearest-neighbor modified embedded-atom method interatomic potentials for the Co-M (M = Ti, V) binary systems", Calphad 70, 101791. DOI: 10.1016/j.calphad.2020.101791.

2020--Oh-S-H-Seol-D-Lee-B-J--Co-V
S.-H. Oh, D. Seol, and B.-J. Lee (2020), "Second nearest-neighbor modified embedded-atom method interatomic potentials for the Co-M (M = Ti, V) binary systems", Calphad 70, 101791. DOI: 10.1016/j.calphad.2020.101791.

2025--Sharifi-H-Wick-C-D--Co-W
H. Sharifi, and C.D. Wick (2025), "The effects of the W on the phase segregation and shear strength of CrNiCo: A molecular dynamics study", Computational Materials Science 253, 113877. DOI: 10.1016/j.commatsci.2025.113877.

2025--Ostovari-Moghaddam-A-Fereidonnejad-R-Moaddeli-M-et-al--Zr-Co
A. Ostovari Moghaddam, R. Fereidonnejad, M. Moaddeli, D. Mikhailov, A.S. Vasenko, and E. Trofimov (2025), "Second nearest-neighbor modified embedded-atom method interatomic potentials for the Zr-X (X = Co, Fe, Ni) binary alloys", Computational Materials Science 247, 113534. DOI: 10.1016/j.commatsci.2024.113534.

Cr

2025--Sharifi-H-Wick-C-D--Cr
H. Sharifi, and C.D. Wick (2025), "Developing interatomic potentials for complex concentrated alloys of Cu, Ti, Ni, Cr, Co, Al, Fe, and Mn", Computational Materials Science 248, 113595. DOI: 10.1016/j.commatsci.2024.113595.

2018--Howells-C-A-Mishin-Y--Cr
C.A. Howells, and Y. Mishin (2018), "Angular-dependent interatomic potential for the binary Ni-Cr system", Modelling and Simulation in Materials Science and Engineering 26(8), 085008. DOI: 10.1088/1361-651x/aae400.

2017--Choi-W-M-Kim-Y-Seol-D-Lee-B-J--Cr
W.-M. Choi, Y. Kim, D. Seol, and B.-J. Lee (2017), "Modified embedded-atom method interatomic potentials for the Co-Cr, Co-Fe, Co-Mn, Cr-Mn and Mn-Ni binary systems", Computational Materials Science 130, 121-129. DOI: 10.1016/j.commatsci.2017.01.002.

2015--Elliott-R-S-Akerson-A--Cr
R.S. Elliott, and A. Akerson (2015), "Efficient "universal" shifted Lennard-Jones model for all KIM API supported species".

2001--Lee-B-J-Baskes-M-I-Kim-H-Cho-Y-K--Cr
B.-J. Lee, M.I. Baskes, H. Kim, and Y.K. Cho (2001), "Second nearest-neighbor modified embedded atom method potentials for bcc transition metals", Physical Review B 64(18), 184102. DOI: 10.1103/physrevb.64.184102.

1959--Girifalco-L-A-Weizer-V-G--Cr
L.A. Girifalco, and V.G. Weizer (1959), "Application of the Morse Potential Function to Cubic Metals", Physical Review 114(3), 687-690. DOI: 10.1103/physrev.114.687.

2025--Sharifi-H-Wick-C-D--Cu-Cr
H. Sharifi, and C.D. Wick (2025), "Developing interatomic potentials for complex concentrated alloys of Cu, Ti, Ni, Cr, Co, Al, Fe, and Mn", Computational Materials Science 248, 113595. DOI: 10.1016/j.commatsci.2024.113595.

2025--Sharifi-H-Wick-C-D--Cu-Cr-Fe
H. Sharifi, and C.D. Wick (2025), "Developing interatomic potentials for complex concentrated alloys of Cu, Ti, Ni, Cr, Co, Al, Fe, and Mn", Computational Materials Science 248, 113595. DOI: 10.1016/j.commatsci.2024.113595.

2025--Sharifi-H-Wick-C-D--Cu-Cr-Mn
H. Sharifi, and C.D. Wick (2025), "Developing interatomic potentials for complex concentrated alloys of Cu, Ti, Ni, Cr, Co, Al, Fe, and Mn", Computational Materials Science 248, 113595. DOI: 10.1016/j.commatsci.2024.113595.

2025--Sharifi-H-Wick-C-D--Cr-Ni-Cu
H. Sharifi, and C.D. Wick (2025), "Developing interatomic potentials for complex concentrated alloys of Cu, Ti, Ni, Cr, Co, Al, Fe, and Mn", Computational Materials Science 248, 113595. DOI: 10.1016/j.commatsci.2024.113595.

2025--Sharifi-H-Wick-C-D--Cu-Ti-Cr
H. Sharifi, and C.D. Wick (2025), "Developing interatomic potentials for complex concentrated alloys of Cu, Ti, Ni, Cr, Co, Al, Fe, and Mn", Computational Materials Science 248, 113595. DOI: 10.1016/j.commatsci.2024.113595.

2025--Sharifi-H-Wick-C-D--Cr-Fe
H. Sharifi, and C.D. Wick (2025), "Developing interatomic potentials for complex concentrated alloys of Cu, Ti, Ni, Cr, Co, Al, Fe, and Mn", Computational Materials Science 248, 113595. DOI: 10.1016/j.commatsci.2024.113595.

2015--Eich-S-M-Beinke-D-Schmitz-G--Fe-Cr
S.M. Eich, D. Beinke, and G. Schmitz (2015), "Embedded-atom potential for an accurate thermodynamic description of the iron-chromium system", Computational Materials Science 104, 185-192. DOI: 10.1016/j.commatsci.2015.03.047.

2011--Bonny-G-Pasianot-R-C-Terentyev-D-Malerba-L--Fe-Cr
G. Bonny, R.C. Pasianot, D. Terentyev, and L. Malerba (2011), "Iron chromium potential to model high-chromium ferritic alloys", Philosophical Magazine 91(12), 1724-1746. DOI: 10.1080/14786435.2010.545780.

2009--Stukowski-A-Sadigh-B-Erhart-P-Caro-A--Fe-Cr
A. Stukowski, B. Sadigh, P. Erhart, and A. Caro (2009), "Efficient implementation of the concentration-dependent embedded atom method for molecular-dynamics and Monte-Carlo simulations", Modelling and Simulation in Materials Science and Engineering 17(7), 075005. DOI: 10.1088/0965-0393/17/7/075005.

2005--Olsson-P-Wallenius-J-Domain-C-et-al--Fe-Cr
P. Olsson, J. Wallenius, C. Domain, K. Nordlund, and L. Malerba (2005), "Two-band modeling of α-prime phase formation in Fe-Cr", Physical Review B 72(21), 214119. DOI: 10.1103/physrevb.72.214119.
P. Olsson, J. Wallenius, C. Domain, K. Nordlund, and L. Malerba (2006), "Erratum: Two-band modeling of α-prime phase formation in Fe-Cr [Phys. Rev. B 72, 214119 (2005)]", Physical Review B 74(22), 229906. DOI: 10.1103/physrevb.74.229906.

2005--Wallenius-J-Olsson-P-Lagerstedt-C--Fe-Cr
J. Wallenius, P. Olsson, and C. Lagerstedt (2005), "Relation between thermal expansion and interstitial formation energy in pure Fe and Cr", Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms 228(1-4), 122-125. DOI: 10.1016/j.nimb.2004.10.032.

2001--Lee-B-J-Shim-J-H-Park-H-M--Fe-Cr
B.-J. Lee, J.-H. Shim, and H.M. Park (2001), "A semi-empirical atomic potential for the Fe-Cr binary system", Calphad 25(4), 527-534. DOI: 10.1016/s0364-5916(02)00005-6.

2022--Starikov-S-Smirnova-D-Pradhan-T-et-al--Fe-Cr-H
S. Starikov, D. Smirnova, T. Pradhan, I. Gordeev, R. Drautz, and M. Mrovec (2022), "Angular-dependent interatomic potential for large-scale atomistic simulation of the Fe-Cr-H ternary system", Physical Review Materials 6(4), 043604. DOI: 10.1103/physrevmaterials.6.043604.

2025--Sharifi-H-Wick-C-D--Cr-Fe-Mn
H. Sharifi, and C.D. Wick (2025), "Developing interatomic potentials for complex concentrated alloys of Cu, Ti, Ni, Cr, Co, Al, Fe, and Mn", Computational Materials Science 248, 113595. DOI: 10.1016/j.commatsci.2024.113595.

2022--Daramola-A-Bonny-G-Adjanor-G-et-al--Fe-Ni-Cr-Mn
A. Daramola, G. Bonny, G. Adjanor, C. Domain, G. Monnet, and A. Fraczkiewicz (2022), "Development of a plasticity-oriented interatomic potential for CrFeMnNi high entropy alloys", Computational Materials Science 203, 111165. DOI: 10.1016/j.commatsci.2021.111165.

2025--Sharifi-H-Wick-C-D--Cr-Ni-Fe
H. Sharifi, and C.D. Wick (2025), "Developing interatomic potentials for complex concentrated alloys of Cu, Ti, Ni, Cr, Co, Al, Fe, and Mn", Computational Materials Science 248, 113595. DOI: 10.1016/j.commatsci.2024.113595.

2019--Mendelev-M-I--Fe-Ni-Cr
M.I. Mendelev (2019), "to be published".

2018--Zhou-X-W-Foster-M-E-Sills-R-B--Fe-Ni-Cr
X.W. Zhou, M.E. Foster, and R.B. Sills (2018), "An Fe-Ni-Cr embedded atom method potential for austenitic and ferritic systems", Journal of Computational Chemistry 39(29), 2420-2431. DOI: 10.1002/jcc.25573.

2017--Beland-L-K-Tamm-A-Mu-S-et-al--Fe-Ni-Cr
L.K. Béland, A. Tamm, S. Mu, G.D. Samolyuk, Y.N. Osetsky, A. Aabloo, M. Klintenberg, A. Caro, and R.E. Stoller (2017), "Accurate classical short-range forces for the study of collision cascades in Fe–Ni–Cr", Computer Physics Communications 219, 11-19. DOI: 10.1016/j.cpc.2017.05.001.

2017--Bonny-G-Bakaev-A-Olsson-P-et-al--Fe-Cr-Ni
G. Bonny, A. Bakaev, P. Olsson, C. Domain, E.E. Zhurkin, and M. Posselt (2017), "Interatomic potential to study the formation of NiCr clusters in high Cr ferritic steels", Journal of Nuclear Materials 484, 42-50. DOI: 10.1016/j.jnucmat.2016.11.017.

2017--Wu-C-Lee-B-J-Su-X--Ni-Cr-Fe
C. Wu, B.-J. Lee, and X. Su (2017), "Modified embedded-atom interatomic potential for Fe-Ni, Cr-Ni and Fe-Cr-Ni systems", Calphad 57, 98-106. DOI: 10.1016/j.calphad.2017.03.007.

2013--Bonny-G-Castin-N-Terentyev-D--Fe-Ni-Cr
G. Bonny, N. Castin, and D. Terentyev (2013), "Interatomic potential for studying ageing under irradiation in stainless steels: the FeNiCr model alloy", Modelling and Simulation in Materials Science and Engineering 21(8), 085004. DOI: 10.1088/0965-0393/21/8/085004.

2011--Bonny-G-Terentyev-D-Pasianot-R-C-et-al--Fe-Ni-Cr
G. Bonny, D. Terentyev, R.C. Pasianot, S. Poncé, and A. Bakaev (2011), "Interatomic potential to study plasticity in stainless steels: the FeNiCr model alloy", Modelling and Simulation in Materials Science and Engineering 19(8), 085008. DOI: 10.1088/0965-0393/19/8/085008.

2021--Arora-G-Bonny-G-Castin-N-Aidhy-D-S--Fe-Ni-Cr-Pd
G. Arora, G. Bonny, N. Castin, and D.S. Aidhy (2021), "Effect of different point-defect energetics in Ni80X20 (X=Fe, Pd) on contrasting vacancy cluster formation from atomistic simulations", Materialia 15, 100974. DOI: 10.1016/j.mtla.2020.100974.

2018--Bonny-G-Chakraborty-D-Pandey-S-et-al--Ni-Fe-Cr-Pd
G. Bonny, D. Chakraborty, S. Pandey, A. Manzoor, N. Castin, S.R. Phillpot, and D.S. Aidhy (2018), "Classical interatomic potential for quaternary Ni-Fe-Cr-Pd solid solution alloys", Modelling and Simulation in Materials Science and Engineering 26(6), 065014. DOI: 10.1088/1361-651x/aad2e7.

2025--Sharifi-H-Wick-C-D--Cr-Ti-Fe
H. Sharifi, and C.D. Wick (2025), "Developing interatomic potentials for complex concentrated alloys of Cu, Ti, Ni, Cr, Co, Al, Fe, and Mn", Computational Materials Science 248, 113595. DOI: 10.1016/j.commatsci.2024.113595.

2013--Bonny-G-Castin-N-Bullens-J-et-al--Fe-Cr-W
G. Bonny, N. Castin, J. Bullens, A. Bakaev, T.C.P. Klaver, and D. Terentyev (2013), "On the mobility of vacancy clusters in reduced activation steels: an atomistic study in the Fe-Cr-W model alloy", Journal of Physics: Condensed Matter 25(31), 315401. DOI: 10.1088/0953-8984/25/31/315401.

2025--Sharifi-H-Wick-C-D--Cr-Mn
H. Sharifi, and C.D. Wick (2025), "Developing interatomic potentials for complex concentrated alloys of Cu, Ti, Ni, Cr, Co, Al, Fe, and Mn", Computational Materials Science 248, 113595. DOI: 10.1016/j.commatsci.2024.113595.

2017--Choi-W-M-Kim-Y-Seol-D-Lee-B-J--Cr-Mn
W.-M. Choi, Y. Kim, D. Seol, and B.-J. Lee (2017), "Modified embedded-atom method interatomic potentials for the Co-Cr, Co-Fe, Co-Mn, Cr-Mn and Mn-Ni binary systems", Computational Materials Science 130, 121-129. DOI: 10.1016/j.commatsci.2017.01.002.

2025--Sharifi-H-Wick-C-D--Cr-Ni-Mn
H. Sharifi, and C.D. Wick (2025), "Developing interatomic potentials for complex concentrated alloys of Cu, Ti, Ni, Cr, Co, Al, Fe, and Mn", Computational Materials Science 248, 113595. DOI: 10.1016/j.commatsci.2024.113595.

2025--Sharifi-H-Wick-C-D--Cr-Ti-Mn
H. Sharifi, and C.D. Wick (2025), "Developing interatomic potentials for complex concentrated alloys of Cu, Ti, Ni, Cr, Co, Al, Fe, and Mn", Computational Materials Science 248, 113595. DOI: 10.1016/j.commatsci.2024.113595.

2025--Sharifi-H-Wick-C-D--Cr-Ni
H. Sharifi, and C.D. Wick (2025), "Developing interatomic potentials for complex concentrated alloys of Cu, Ti, Ni, Cr, Co, Al, Fe, and Mn", Computational Materials Science 248, 113595. DOI: 10.1016/j.commatsci.2024.113595.

2018--Howells-C-A-Mishin-Y--Cr-Ni
C.A. Howells, and Y. Mishin (2018), "Angular-dependent interatomic potential for the binary Ni-Cr system", Modelling and Simulation in Materials Science and Engineering 26(8), 085008. DOI: 10.1088/1361-651x/aae400.

2017--Wu-C-Lee-B-J-Su-X--Ni-Cr
C. Wu, B.-J. Lee, and X. Su (2017), "Modified embedded-atom interatomic potential for Fe-Ni, Cr-Ni and Fe-Cr-Ni systems", Calphad 57, 98-106. DOI: 10.1016/j.calphad.2017.03.007.

2025--Sharifi-H-Wick-C-D--Cr-Ti-Ni
H. Sharifi, and C.D. Wick (2025), "Developing interatomic potentials for complex concentrated alloys of Cu, Ti, Ni, Cr, Co, Al, Fe, and Mn", Computational Materials Science 248, 113595. DOI: 10.1016/j.commatsci.2024.113595.

2025--Sharifi-H-Wick-C-D--W-Cr-Ni
H. Sharifi, and C.D. Wick (2025), "The effects of the W on the phase segregation and shear strength of CrNiCo: A molecular dynamics study", Computational Materials Science 253, 113877. DOI: 10.1016/j.commatsci.2025.113877.

2025--Sharifi-H-Wick-C-D--Cr-Ti
H. Sharifi, and C.D. Wick (2025), "Developing interatomic potentials for complex concentrated alloys of Cu, Ti, Ni, Cr, Co, Al, Fe, and Mn", Computational Materials Science 248, 113595. DOI: 10.1016/j.commatsci.2024.113595.

2025--Sharifi-H-Wick-C-D--Cr-W
H. Sharifi, and C.D. Wick (2025), "The effects of the W on the phase segregation and shear strength of CrNiCo: A molecular dynamics study", Computational Materials Science 253, 113877. DOI: 10.1016/j.commatsci.2025.113877.

Cs

2016--Nichol-A-Ackland-G-J--Cs
A. Nichol, and G.J. Ackland (2016), "Property trends in simple metals: An empirical potential approach", Physical Review B 93(18), 184101. DOI: 10.1103/physrevb.93.184101.

2015--Elliott-R-S-Akerson-A--Cs
R.S. Elliott, and A. Akerson (2015), "Efficient "universal" shifted Lennard-Jones model for all KIM API supported species".

1959--Girifalco-L-A-Weizer-V-G--Cs
L.A. Girifalco, and V.G. Weizer (1959), "Application of the Morse Potential Function to Cubic Metals", Physical Review 114(3), 687-690. DOI: 10.1103/physrev.114.687.

Cu

2025--Sharifi-H-Wick-C-D--Cu
H. Sharifi, and C.D. Wick (2025), "Developing interatomic potentials for complex concentrated alloys of Cu, Ti, Ni, Cr, Co, Al, Fe, and Mn", Computational Materials Science 248, 113595. DOI: 10.1016/j.commatsci.2024.113595.

2023--Cioni-M-Polino-D-Rapetti-D-et-al--Cu
M. Cioni, D. Polino, D. Rapetti, L. Pesce, M. Delle Piane, and G.M. Pavan (2023), "Innate dynamics and identity crisis of a metal surface unveiled by machine learning of atomic environments", The Journal of Chemical Physics 158(12), 124701. DOI: 10.1063/5.0139010.

2020--Zuo-Y-Chen-C-Li-X-et-al--Cu-SNAP
Y. Zuo, C. Chen, X. Li, Z. Deng, Y. Chen, J. Behler, G. Csányi, A.V. Shapeev, A.P. Thompson, M.A. Wood, and S.P. Ong (2020), "Performance and Cost Assessment of Machine Learning Interatomic Potentials", The Journal of Physical Chemistry A 124(4), 731-745. DOI: 10.1021/acs.jpca.9b08723.

2020--Zuo-Y-Chen-C-Li-X-et-al--Cu-qSNAP
Y. Zuo, C. Chen, X. Li, Z. Deng, Y. Chen, J. Behler, G. Csányi, A.V. Shapeev, A.P. Thompson, M.A. Wood, and S.P. Ong (2020), "Performance and Cost Assessment of Machine Learning Interatomic Potentials", The Journal of Physical Chemistry A 124(4), 731-745. DOI: 10.1021/acs.jpca.9b08723.

2018--Etesami-S-A-Asadi-E--Cu
S.A. Etesami, and E. Asadi (2018), "Molecular dynamics for near melting temperatures simulations of metals using modified embedded-atom method", Journal of Physics and Chemistry of Solids 112, 61-72. DOI: 10.1016/j.jpcs.2017.09.001.

2018--Li-X-G-Hu-C-Chen-C-et-al--Cu
X.-G. Li, C. Hu, C. Chen, Z. Deng, J. Luo, and S.P. Ong (2018), "Quantum-accurate spectral neighbor analysis potential models for Ni-Mo binary alloys and fcc metals", Physical Review B 98(9), 094104. DOI: 10.1103/physrevb.98.094104.

2015--Asadi-E-Asle-Zaeem-M-Nouranian-S-Baskes-M-I--Cu
E. Asadi, M. Asle Zaeem, S. Nouranian, and M.I. Baskes (2015), "Two-phase solid-liquid coexistence of Ni, Cu, and Al by molecular dynamics simulations using the modified embedded-atom method", Acta Materialia 86, 169-181. DOI: 10.1016/j.actamat.2014.12.010.

2015--Elliott-R-S-Akerson-A--Cu
R.S. Elliott, and A. Akerson (2015), "Efficient "universal" shifted Lennard-Jones model for all KIM API supported species".

2013--Mendelev-M-I-King-A-H--Cu
M.I. Mendelev, and A.H. King (2013), "The interactions of self-interstitials with twin boundaries", Philosophical Magazine 93(10-12), 1268-1278. DOI: 10.1080/14786435.2012.747012.

2008--Mendelev-M-I-Kramer-M-J-Becker-C-A-Asta-M--Cu
M.I. Mendelev, M.J. Kramer, C.A. Becker, and M. Asta (2008), "Analysis of semi-empirical interatomic potentials appropriate for simulation of crystalline and liquid Al and Cu", Philosophical Magazine 88(12), 1723-1750. DOI: 10.1080/14786430802206482.

2004--Zhou-X-W-Johnson-R-A-Wadley-H-N-G--Cu
X.W. Zhou, R.A. Johnson, and H.N.G. Wadley (2004), "Misfit-energy-increasing dislocations in vapor-deposited CoFe/NiFe multilayers", Physical Review B 69(14), 144113. DOI: 10.1103/physrevb.69.144113.

2003--Lee-B-J-Shim-J-H-Baskes-M-I--Cu
B.-J. Lee, J.-H. Shim, and M.I. Baskes (2003), "Semiempirical atomic potentials for the fcc metals Cu, Ag, Au, Ni, Pd, Pt, Al, and Pb based on first and second nearest-neighbor modified embedded atom method", Physical Review B 68(14), 144112. DOI: 10.1103/physrevb.68.144112.

2001--Mishin-Y-Mehl-M-J-Papaconstantopoulos-D-A-et-al--Cu-1
Y. Mishin, M.J. Mehl, D.A. Papaconstantopoulos, A.F. Voter, and J.D. Kress (2001), "Structural stability and lattice defects in copper: Ab initio, tight-binding, and embedded-atom calculations", Physical Review B 63(22), 224106. DOI: 10.1103/physrevb.63.224106.

2001--Mishin-Y-Mehl-M-J-Papaconstantopoulos-D-A-et-al--Cu-2
Y. Mishin, M.J. Mehl, D.A. Papaconstantopoulos, A.F. Voter, and J.D. Kress (2001), "Structural stability and lattice defects in copper: Ab initio, tight-binding, and embedded-atom calculations", Physical Review B 63(22), 224106. DOI: 10.1103/physrevb.63.224106.

2001--Zhou-X-W-Wadley-H-N-G-Johnson-R-A-et-al--Cu
X.W. Zhou, H.N.G. Wadley, R.A. Johnson, D.J. Larson, N. Tabat, A. Cerezo, A.K. Petford-Long, G.D.W. Smith, P.H. Clifton, R.L. Martens, and T.F. Kelly (2001), "Atomic scale structure of sputtered metal multilayers", Acta Materialia 49(19), 4005-4015. DOI: 10.1016/s1359-6454(01)00287-7.

1996--Jacobsen-K-W-Stoltze-P-Norskov-J-K--Cu
K.W. Jacobsen, P. Stoltze, and J.K. Nørskov (1996), "A semi-empirical effective medium theory for metals and alloys", Surface Science 366(2), 394-402. DOI: 10.1016/0039-6028(96)00816-3.

1990--Ackland-G-J-Vitek-V--Cu
G.J. Ackland, and V. Vitek (1990), "Many-body potentials and atomic-scale relaxations in noble-metal alloys", Physical Review B 41(15), 10324-10333. DOI: 10.1103/physrevb.41.10324.

1989--Adams-J-B-Foiles-S-M-Wolfer-W-G--Cu
J.B. Adams, S.M. Foiles, and W.G. Wolfer (1989), "Self-diffusion and impurity diffusion of fcc metals using the five-frequency model and the Embedded Atom Method", Journal of Materials Research 4(1), 102-112. DOI: 10.1557/jmr.1989.0102.

1988--Johnson-R-A--Cu
R.A. Johnson (1988), "Analytic nearest-neighbor model for fcc metals", Physical Review B 37(8), 3924-3931. DOI: 10.1103/physrevb.37.3924.

1987--Ackland-G-J-Tichy-G-Vitek-V-Finnis-M-W--Cu
G.J. Ackland, G. Tichy, V. Vitek, and M.W. Finnis (1987), "Simple N-body potentials for the noble metals and nickel", Philosophical Magazine A 56(6), 735-756. DOI: 10.1080/01418618708204485.

1986--Foiles-S-M-Baskes-M-I-Daw-M-S--Cu
S.M. Foiles, M.I. Baskes, and M.S. Daw (1986), "Embedded-atom-method functions for the fcc metals Cu, Ag, Au, Ni, Pd, Pt, and their alloys", Physical Review B 33(12), 7983-7991. DOI: 10.1103/physrevb.33.7983.

1981--MacDonald-R-A-MacDonald-W-M--Cu
R.A. MacDonald, and W.M. MacDonald (1981), "Thermodynamic properties of fcc metals at high temperatures", Physical Review B 24(4), 1715-1724. DOI: 10.1103/physrevb.24.1715.

1959--Girifalco-L-A-Weizer-V-G--Cu
L.A. Girifalco, and V.G. Weizer (1959), "Application of the Morse Potential Function to Cubic Metals", Physical Review 114(3), 687-690. DOI: 10.1103/physrev.114.687.

2025--Sharifi-H-Wick-C-D--Cu-Fe
H. Sharifi, and C.D. Wick (2025), "Developing interatomic potentials for complex concentrated alloys of Cu, Ti, Ni, Cr, Co, Al, Fe, and Mn", Computational Materials Science 248, 113595. DOI: 10.1016/j.commatsci.2024.113595.

2005--Lee-B-J-Wirth-B-D-Shim-J-H-et-al--Fe-Cu
B.-J. Lee, B.D. Wirth, J.-H. Shim, J. Kwon, S.C. Kwon, and J.-H. Hong (2005), "Modified embedded-atom method interatomic potential for the Fe-Cu alloy system and cascade simulations on pure Fe and Fe-Cu alloys", Physical Review B 71(18), 184205. DOI: 10.1103/physrevb.71.184205.

2025--Sharifi-H-Wick-C-D--Cu-Fe-Mn
H. Sharifi, and C.D. Wick (2025), "Developing interatomic potentials for complex concentrated alloys of Cu, Ti, Ni, Cr, Co, Al, Fe, and Mn", Computational Materials Science 248, 113595. DOI: 10.1016/j.commatsci.2024.113595.

2013--Bonny-G-Terentyev-D-Bakaev-A-et-al--Fe-Cu-Ni-Mn
G. Bonny, D. Terentyev, A. Bakaev, E.E. Zhurkin, M. Hou, D. Van Neck, and L. Malerba (2013), "On the thermal stability of late blooming phases in reactor pressure vessel steels: An atomistic study", Journal of Nuclear Materials 442(1-3), 282-291. DOI: 10.1016/j.jnucmat.2013.08.018.

2025--Sharifi-H-Wick-C-D--Cu-Ni-Fe
H. Sharifi, and C.D. Wick (2025), "Developing interatomic potentials for complex concentrated alloys of Cu, Ti, Ni, Cr, Co, Al, Fe, and Mn", Computational Materials Science 248, 113595. DOI: 10.1016/j.commatsci.2024.113595.

2023--Tramontina-D-R-Deluigi-O-R-Pinzon-R-et-al--Fe-Cu-Ni
D.R. Tramontina, O.R. Deluigi, R. Pinzón, J. Rojas-Nunez, F.J. Valencia, R.C. Pasianot, S.E. Baltazar, R.I. Gonzalez, and E.M. Bringa (2023), "Probing radiation resistance in simulated metallic core–shell nanoparticles", Computational Materials Science 227, 112304. DOI: 10.1016/j.commatsci.2023.112304.

2009--Bonny-G-Pasianot-R-C-Castin-N-Malerba-L--Fe-Cu-Ni
G. Bonny, R.C. Pasianot, N. Castin, and L. Malerba (2009), "Ternary Fe-Cu-Ni many-body potential to model reactor pressure vessel steels: First validation by simulated thermal annealing", Philosophical Magazine 89(34-36), 3531-3546. DOI: 10.1080/14786430903299824.

2025--Sharifi-H-Wick-C-D--Cu-Ti-Fe
H. Sharifi, and C.D. Wick (2025), "Developing interatomic potentials for complex concentrated alloys of Cu, Ti, Ni, Cr, Co, Al, Fe, and Mn", Computational Materials Science 248, 113595. DOI: 10.1016/j.commatsci.2024.113595.

2015--Zhou-X-W-Ward-D-K-Foster-M-Zimmerman-J-A--Cu-H
X.W. Zhou, D.K. Ward, M. Foster, and J.A. Zimmerman (2015), "An analytical bond-order potential for the copper-hydrogen binary system", Journal of Materials Science 50(7), 2859-2875. DOI: 10.1007/s10853-015-8848-9.

2004--Bailey-N-P-Schiotz-J-Jacobsen-K-W--Cu-Mg
N.P. Bailey, J. Schiøtz, and K.W. Jacobsen (2004), "Simulation of Cu-Mg metallic glass: Thermodynamics and structure", Physical Review B 69(14), 144205. DOI: 10.1103/physrevb.69.144205.
N.P. Bailey, J. Schiøtz, and K.W. Jacobsen (2017), "Erratum: Simulation of Cu-Mg metallic glass: Thermodynamics and structure [Phys. Rev. B \n69\n, 144205 (2004)]", Physical Review B 96(5), 059904. DOI: 10.1103/physrevb.96.059904.

2025--Sharifi-H-Wick-C-D--Cu-Mn
H. Sharifi, and C.D. Wick (2025), "Developing interatomic potentials for complex concentrated alloys of Cu, Ti, Ni, Cr, Co, Al, Fe, and Mn", Computational Materials Science 248, 113595. DOI: 10.1016/j.commatsci.2024.113595.

2025--Sharifi-H-Wick-C-D--Cu-Ni-Mn
H. Sharifi, and C.D. Wick (2025), "Developing interatomic potentials for complex concentrated alloys of Cu, Ti, Ni, Cr, Co, Al, Fe, and Mn", Computational Materials Science 248, 113595. DOI: 10.1016/j.commatsci.2024.113595.

2025--Sharifi-H-Wick-C-D--Cu-Ti-Mn
H. Sharifi, and C.D. Wick (2025), "Developing interatomic potentials for complex concentrated alloys of Cu, Ti, Ni, Cr, Co, Al, Fe, and Mn", Computational Materials Science 248, 113595. DOI: 10.1016/j.commatsci.2024.113595.

2020--Wang-J-Oh-S-H-Lee-B-J--Cu-Mo
J. Wang, S.-H. Oh, and B.-J. Lee (2020), "Second-nearest-neighbor modified embedded-atom method interatomic potential for Cu-M (M = Co, Mo) binary systems", Computational Materials Science 178, 109627. DOI: 10.1016/j.commatsci.2020.109627.

2020--Miraz-A-S-M-Dhariwal-N-Meng-W-J-et-al--Cu-N-Ti
A.S.M. Miraz, N. Dhariwal, W.J. Meng, B.R. Ramachandran, and C.D. Wick (2020), "Development and application of interatomic potentials to study the stability and shear strength of Ti/TiN and Cu/TiN interfaces", Materials & Design 196, 109123. DOI: 10.1016/j.matdes.2020.109123.

2025--Sharifi-H-Wick-C-D--Cu-Ni
H. Sharifi, and C.D. Wick (2025), "Developing interatomic potentials for complex concentrated alloys of Cu, Ti, Ni, Cr, Co, Al, Fe, and Mn", Computational Materials Science 248, 113595. DOI: 10.1016/j.commatsci.2024.113595.

2019--Fischer-F-Schmitz-G-Eich-S-M--Cu-Ni
F. Fischer, G. Schmitz, and S.M. Eich (2019), "A systematic study of grain boundary segregation and grain boundary formation energy using a new copper–nickel embedded-atom potential", Acta Materialia 176, 220-231. DOI: 10.1016/j.actamat.2019.06.027.

2013--Onat-B-Durukanoglu-S--Cu-Ni
B. Onat, and S. Durukanoğlu (2013), "An optimized interatomic potential for Cu–Ni alloys with the embedded-atom method", Journal of Physics: Condensed Matter 26(3), 035404. DOI: 10.1088/0953-8984/26/3/035404.

2004--Lee-B-J-Shim-J-H--Cu-Ni
B.-J. Lee, and J.-H. Shim (2004), "A modified embedded atom method interatomic potential for the Cu–Ni system", Calphad 28(2), 125-132. DOI: 10.1016/j.calphad.2004.06.001.

1985--Foiles-S-M--Ni-Cu
S.M. Foiles (1985), "Calculation of the surface segregation of Ni-Cu alloys with the use of the embedded-atom method", Physical Review B 32(12), 7685-7693. DOI: 10.1103/physrevb.32.7685.

2025--Sharifi-H-Wick-C-D--Cu-Ti-Ni
H. Sharifi, and C.D. Wick (2025), "Developing interatomic potentials for complex concentrated alloys of Cu, Ti, Ni, Cr, Co, Al, Fe, and Mn", Computational Materials Science 248, 113595. DOI: 10.1016/j.commatsci.2024.113595.

2003--Hoyt-J-J-Garvin-J-W-Webb-E-B-Asta-M--Cu-Pb
J.J. Hoyt, J.W. Garvin, E.B. Webb, and M. Asta (2003), "An embedded atom method interatomic potential for the Cu-Pb system", Modelling and Simulation in Materials Science and Engineering 11(3), 287-299. DOI: 10.1088/0965-0393/11/3/302.

2018--Jeong-G-U-Park-C-S-Do-H-S-et-al--Pd-Cu
G.-U. Jeong, C.S. Park, H.-S. Do, S.-M. Park, and B.-J. Lee (2018), "Second nearest-neighbor modified embedded-atom method interatomic potentials for the Pd-M (M = Al, Co, Cu, Fe, Mo, Ni, Ti) binary systems", Calphad 62, 172-186. DOI: 10.1016/j.calphad.2018.06.006.

2017--Kim-J-S-Seol-D-Ji-J-et-al--Cu-Pt
J.-S. Kim, D. Seol, J. Ji, H.-S. Jang, Y. Kim, and B.-J. Lee (2017), "Second nearest-neighbor modified embedded-atom method interatomic potentials for the Pt-M (M = Al, Co, Cu, Mo, Ni, Ti, V) binary systems", Calphad 59, 131-141. DOI: 10.1016/j.calphad.2017.09.005.

2015--Purja-Pun-G-P-Darling-K-A-Kecskes-L-J-Mishin-Y--Cu-Ta
G.P. Purja Pun, K.A. Darling, L.J. Kecskes, and Y. Mishin (2015), "Angular-dependent interatomic potential for the Cu-Ta system and its application to structural stability of nano-crystalline alloys", Acta Materialia 100, 377-391. DOI: 10.1016/j.actamat.2015.08.052.

2008--Hashibon-A-Lozovoi-A-Y-Mishin-Y-et-al--Cu-Ta
A. Hashibon, A.Y. Lozovoi, Y. Mishin, C. Elsässer, and P. Gumbsch (2008), "Interatomic potential for the Cu-Ta system and its application to surface wetting and dewetting", Physical Review B 77(9), 094131. DOI: 10.1103/physrevb.77.094131.

2004--Zhou-X-W-Johnson-R-A-Wadley-H-N-G--Ta-Cu
X.W. Zhou, R.A. Johnson, and H.N.G. Wadley (2004), "Misfit-energy-increasing dislocations in vapor-deposited CoFe/NiFe multilayers", Physical Review B 69(14), 144113. DOI: 10.1103/physrevb.69.144113.

2025--Sharifi-H-Wick-C-D--Cu-Ti
H. Sharifi, and C.D. Wick (2025), "Developing interatomic potentials for complex concentrated alloys of Cu, Ti, Ni, Cr, Co, Al, Fe, and Mn", Computational Materials Science 248, 113595. DOI: 10.1016/j.commatsci.2024.113595.

2022--Clement-A-Auger-T--Cu-Zn
A. Clement, and T. Auger (2022), "An EAM potential for α-brass copper–zinc alloys: application to plasticity and fracture", Modelling and Simulation in Materials Science and Engineering 31(1), 015004. DOI: 10.1088/1361-651x/aca4ec.

2024--Leimeroth-N-Rohrer-J-Albe-K--Cu-Zr
N. Leimeroth, J. Rohrer, and K. Albe (2024), "General purpose potential for glassy and crystalline phases of Cu-Zr alloys based on the ACE formalism", Physical Review Materials 8(4), 043602. DOI: 10.1103/physrevmaterials.8.043602.

2019--Mendelev-M-I-Sun-Y-Zhang-F-et-al--Cu-Zr
M.I. Mendelev, Y. Sun, F. Zhang, C.Z. Wang, and K.M. Ho (2019), "Development of a semi-empirical potential suitable for molecular dynamics simulation of vitrification in Cu-Zr alloys", The Journal of Chemical Physics 151(21), 214502. DOI: 10.1063/1.5131500.

2016--Borovikov-V-Mendelev-M-I-King-A-H--Cu-Zr
V. Borovikov, M.I. Mendelev, and A.H. King (2016), "Effects of stable and unstable stacking fault energy on dislocation nucleation in nano-crystalline metals", Modelling and Simulation in Materials Science and Engineering 24(8), 085017. DOI: 10.1088/0965-0393/24/8/085017.

2009--Mendelev-M-I-Kramer-M-J-Ott-R-T-et-al--Cu-Zr
M.I. Mendelev, M.J. Kramer, R.T. Ott, D.J. Sordelet, D. Yagodin, and P. Popel (2009), "Development of suitable interatomic potentials for simulation of liquid and amorphous Cu-Zr alloys", Philosophical Magazine 89(11), 967-987. DOI: 10.1080/14786430902832773.

2008--Kim-Y-M-Lee-B-J--Cu-Zr
Y.-M. Kim, and B.-J. Lee (2008), "A modified embedded-atom method interatomic potential for the Cu–Zr system", Journal of Materials Research 23(4), 1095-1104. DOI: 10.1557/jmr.2008.0130.

2007--Mendelev-M-I-Sordelet-D-J-Kramer-M-J--Cu-Zr
M.I. Mendelev, D.J. Sordelet, and M.J. Kramer (2007), "Using atomistic computer simulations to analyze x-ray diffraction data from metallic glasses", Journal of Applied Physics 102(4), 043501. DOI: 10.1063/1.2769157.

2007--Paduraru-A-Kenoufi-A-Bailey-N-P-Schiotz-J--Cu-Zr
A. Pǎduraru, A. Kenoufi, N.P. Bailey, and J. Schiøtz (2007), "An Interatomic Potential for Studying CuZr Bulk Metallic Glasses", Advanced Engineering Materials 9(6), 505-508. DOI: 10.1002/adem.200700047.

Db

2015--Elliott-R-S-Akerson-A--Db
R.S. Elliott, and A. Akerson (2015), "Efficient "universal" shifted Lennard-Jones model for all KIM API supported species".

Ds

2015--Elliott-R-S-Akerson-A--Ds
R.S. Elliott, and A. Akerson (2015), "Efficient "universal" shifted Lennard-Jones model for all KIM API supported species".

Dy

2015--Elliott-R-S-Akerson-A--Dy
R.S. Elliott, and A. Akerson (2015), "Efficient "universal" shifted Lennard-Jones model for all KIM API supported species".

Er

2015--Elliott-R-S-Akerson-A--Er
R.S. Elliott, and A. Akerson (2015), "Efficient "universal" shifted Lennard-Jones model for all KIM API supported species".

Es

2015--Elliott-R-S-Akerson-A--Es
R.S. Elliott, and A. Akerson (2015), "Efficient "universal" shifted Lennard-Jones model for all KIM API supported species".

Eu

2015--Elliott-R-S-Akerson-A--Eu
R.S. Elliott, and A. Akerson (2015), "Efficient "universal" shifted Lennard-Jones model for all KIM API supported species".

F

2015--Elliott-R-S-Akerson-A--F
R.S. Elliott, and A. Akerson (2015), "Efficient "universal" shifted Lennard-Jones model for all KIM API supported species".

Fe

2025--Sharifi-H-Wick-C-D--Fe
H. Sharifi, and C.D. Wick (2025), "Developing interatomic potentials for complex concentrated alloys of Cu, Ti, Ni, Cr, Co, Al, Fe, and Mn", Computational Materials Science 248, 113595. DOI: 10.1016/j.commatsci.2024.113595.

2024--Ito-K-Yokoi-T-Hyodo-K-Mori-H--Fe-16
K. Ito, T. Yokoi, K. Hyodo, and H. Mori (2024), "Machine learning interatomic potential with DFT accuracy for general grain boundaries in α-Fe", npj Computational Materials 10(1), 255. DOI: 10.1038/s41524-024-01451-y.

2024--Ito-K-Yokoi-T-Hyodo-K-Mori-H--Fe-18
K. Ito, T. Yokoi, K. Hyodo, and H. Mori (2024), "Machine learning interatomic potential with DFT accuracy for general grain boundaries in α-Fe", npj Computational Materials 10(1), 255. DOI: 10.1038/s41524-024-01451-y.

2024--Ito-K-Yokoi-T-Hyodo-K-Mori-H--Fe-20
K. Ito, T. Yokoi, K. Hyodo, and H. Mori (2024), "Machine learning interatomic potential with DFT accuracy for general grain boundaries in α-Fe", npj Computational Materials 10(1), 255. DOI: 10.1038/s41524-024-01451-y.

2024--Ito-K-Yokoi-T-Hyodo-K-Mori-H--Fe-22
K. Ito, T. Yokoi, K. Hyodo, and H. Mori (2024), "Machine learning interatomic potential with DFT accuracy for general grain boundaries in α-Fe", npj Computational Materials 10(1), 255. DOI: 10.1038/s41524-024-01451-y.
K. Ito, T. Yokoi, K. Hyodo, and H. Mori (2024), "Grain Size Effects on the Deformation of α-Fe Nanopolycrystals: Massively Large-Scale Molecular Dynamics Simulations Using Machine Learning Interatomic Potential". DOI: 10.2139/ssrn.5029355.

2023--Jana-R-Caro-M-A--Fe
R. Jana, and M.A. Caro (2023), "Searching for iron nanoparticles with a general-purpose Gaussian approximation potential", Physical Review B 107(24). DOI: 10.1103/physrevb.107.245421.

2022--Sun-Y-Zhang-F-Mendelev-M-I-et-al--Fe
Y. Sun, F. Zhang, M.I. Mendelev, R.M. Wentzcovitch, and K.-M. Ho (2022), "Two-step nucleation of the Earth's inner core", Proceedings of the National Academy of Sciences 119(2), e2113059119. DOI: 10.1073/pnas.2113059119.

2021--Starikov-S-Smirnova-D-Pradhan-T-et-al--Fe
S. Starikov, D. Smirnova, T. Pradhan, Y. Lysogorskiy, H. Chapman, M. Mrovec, and R. Drautz (2021), "Angular-dependent interatomic potential for large-scale atomistic simulation of iron: Development and comprehensive comparison with existing interatomic models", Physical Review Materials 5(6), 063607. DOI: 10.1103/physrevmaterials.5.063607.

2020--Byggmastar-J-Granberg-F--Fe
J. Byggmästar, and F. Granberg (2020), "Dynamical stability of radiation-induced C15 clusters in iron", Journal of Nuclear Materials 528, 151893. DOI: 10.1016/j.jnucmat.2019.151893.

2020--Mori-H-Ozaki-T--Fe
H. Mori, and T. Ozaki (2020), "Neural network atomic potential to investigate the dislocation dynamics in bcc iron", Physical Review Materials 4(4), 040601. DOI: 10.1103/physrevmaterials.4.040601.

2018--Etesami-S-A-Asadi-E--Fe
S.A. Etesami, and E. Asadi (2018), "Molecular dynamics for near melting temperatures simulations of metals using modified embedded-atom method", Journal of Physics and Chemistry of Solids 112, 61-72. DOI: 10.1016/j.jpcs.2017.09.001.

2015--Asadi-E-Asle-Zaeem-M-Nouranian-S-Baskes-M-I--Fe
E. Asadi, M. Asle Zaeem, S. Nouranian, and M.I. Baskes (2015), "Quantitative modeling of the equilibration of two-phase solid-liquid Fe by atomistic simulations on diffusive time scales", Physical Review B 91(2), 024105. DOI: 10.1103/physrevb.91.024105.

2015--Elliott-R-S-Akerson-A--Fe
R.S. Elliott, and A. Akerson (2015), "Efficient "universal" shifted Lennard-Jones model for all KIM API supported species".

2012--Proville-L-Rodney-D-Marinica-M-C--Fe
L. Proville, D. Rodney, and M.-C. Marinica (2012), "Quantum effect on thermally activated glide of dislocations", Nature Materials 11(10), 845-849. DOI: 10.1038/nmat3401.

2011--Chiesa-S-Derlet-P-M-Dudarev-S-L-Swygenhoven-H-V--Fe-33
S. Chiesa, P.M. Derlet, S.L. Dudarev, and H.V. Swygenhoven (2011), "Optimization of the magnetic potential for α-Fe", Journal of Physics: Condensed Matter 23(20), 206001. DOI: 10.1088/0953-8984/23/20/206001.

2010--Malerba-L-Marinica-M-C-Anento-N-et-al--Fe
L. Malerba, M.C. Marinica, N. Anento, C. Björkas, H. Nguyen, C. Domain, F. Djurabekova, P. Olsson, K. Nordlund, A. Serra, D. Terentyev, F. Willaime, and C.S. Becquart (2010), "Comparison of empirical interatomic potentials for iron applied to radiation damage studies", Journal of Nuclear Materials 406(1), 19-38. DOI: 10.1016/j.jnucmat.2010.05.017.
M.-C. Marinica, F. Willaime, and J.-P. Crocombette (2012), "Irradiation-Induced Formation of Nanocrystallites with C15 Laves Phase Structure in bcc Iron", Physical Review Letters 108(2), 025501. DOI: 10.1103/physrevlett.108.025501.

2009--Olsson-P-A-T--Fe
P.A.T. Olsson (2009), "Semi-empirical atomistic study of point defect properties in BCC transition metals", Computational Materials Science 47(1), 135-145. DOI: 10.1016/j.commatsci.2009.06.025.

2008--Morris-J-R-Aga-R-S-Levashov-V-Egami-T--Fe
J.R. Morris, R.S. Aga, V. Levashov, and T. Egami (2008), "Many-body effects in bcc metals: An embedded atom model extension of the modified Johnson pair potential for iron", Physical Review B 77(17), 174201. DOI: 10.1103/physrevb.77.174201.

2007--Muller-M-Erhart-P-Albe-K--Fe
M. Müller, P. Erhart, and K. Albe (2007), "Analytic bond-order potential for bcc and fcc iron—comparison with established embedded-atom method potentials", Journal of Physics: Condensed Matter 19(32), 326220. DOI: 10.1088/0953-8984/19/32/326220.

2006--Chamati-H-Papanicolaou-N-I-Mishin-Y-Papaconstantopoulos-D-A--Fe
H. Chamati, N.I. Papanicolaou, Y. Mishin, and D.A. Papaconstantopoulos (2006), "Embedded-atom potential for Fe and its application to self-diffusion on Fe(100)", Surface Science 600(9), 1793-1803. DOI: 10.1016/j.susc.2006.02.010.

2005--Dudarev-S-L-Derlet-P-M--Fe
S.L. Dudarev, and P.M. Derlet (2005), "A 'magnetic' interatomic potential for molecular dynamics simulations", Journal of Physics: Condensed Matter 17(44), 7097-7118. DOI: 10.1088/0953-8984/17/44/003.

2004--Zhou-X-W-Johnson-R-A-Wadley-H-N-G--Fe
X.W. Zhou, R.A. Johnson, and H.N.G. Wadley (2004), "Misfit-energy-increasing dislocations in vapor-deposited CoFe/NiFe multilayers", Physical Review B 69(14), 144113. DOI: 10.1103/physrevb.69.144113.

2003--Mendelev-M-I-Han-S-Srolovitz-D-J-et-al--Fe-2
M.I. Mendelev, S. Han, D.J. Srolovitz, G.J. Ackland, D.Y. Sun, and M. Asta (2003), "Development of new interatomic potentials appropriate for crystalline and liquid iron", Philosophical Magazine 83(35), 3977-3994. DOI: 10.1080/14786430310001613264.

2003--Mendelev-M-I-Han-S-Srolovitz-D-J-et-al--Fe-5
M.I. Mendelev, S. Han, D.J. Srolovitz, G.J. Ackland, D.Y. Sun, and M. Asta (2003), "Development of new interatomic potentials appropriate for crystalline and liquid iron", Philosophical Magazine 83(35), 3977-3994. DOI: 10.1080/14786430310001613264.

2001--Lee-B-J-Baskes-M-I-Kim-H-Cho-Y-K--Fe
B.-J. Lee, M.I. Baskes, H. Kim, and Y.K. Cho (2001), "Second nearest-neighbor modified embedded atom method potentials for bcc transition metals", Physical Review B 64(18), 184102. DOI: 10.1103/physrevb.64.184102.

1998--Meyer-R-Entel-P--Fe
R. Meyer, and P. Entel (1998), "Martensite-austenite transition and phonon dispersion curves of Fe1-xNix studied by molecular-dynamics simulations", Physical Review B 57(9), 5140-5147. DOI: 10.1103/physrevb.57.5140.

1997--Ackland-G-J-Bacon-D-J-Calder-A-F-Harry-T--Fe
G.J. Ackland, D.J. Bacon, A.F. Calder, and T. Harry (1997), "Computer simulation of point defect properties in dilute Fe-Cu alloy using a many-body interatomic potential", Philosophical Magazine A 75(3), 713-732. DOI: 10.1080/01418619708207198.

1959--Girifalco-L-A-Weizer-V-G--Fe
L.A. Girifalco, and V.G. Weizer (1959), "Application of the Morse Potential Function to Cubic Metals", Physical Review 114(3), 687-690. DOI: 10.1103/physrev.114.687.

2023--Kumar-P-Ludhwani-M-M-Das-S-et-al--Fe-H
P. Kumar, M.M. Ludhwani, S. Das, V. Gavini, A. Kanjarla, and I. Adlakha (2023), "Effect of hydrogen on plasticity of α-Fe: A multi-scale assessment", International Journal of Plasticity 165, 103613. DOI: 10.1016/j.ijplas.2023.103613.

2021--Meng-F-S-Du-J-P-Shinzato-S-et-al--Fe-H
F.-S. Meng, J.-P. Du, S. Shinzato, H. Mori, P. Yu, K. Matsubara, N. Ishikawa, and S. Ogata (2021), "General-purpose neural network interatomic potential for the 𝛼-iron and hydrogen binary system: Toward atomic-scale understanding of hydrogen embrittlement", Physical Review Materials 5(11), 113606. DOI: 10.1103/physrevmaterials.5.113606.

2021--Wen-M--Fe-H
M. Wen (2021), "A new interatomic potential describing Fe-H and H-H interactions in bcc iron", Computational Materials Science 197, 110640. DOI: 10.1016/j.commatsci.2021.110640.

2007--Lee-B-J-Jang-J-W--Fe-H
B.-J. Lee, and J.-W. Jang (2007), "A modified embedded-atom method interatomic potential for the Fe-H system", Acta Materialia 55(20), 6779-6788. DOI: 10.1016/j.actamat.2007.08.041.

2025--Sharifi-H-Wick-C-D--Fe-Mn
H. Sharifi, and C.D. Wick (2025), "Developing interatomic potentials for complex concentrated alloys of Cu, Ti, Ni, Cr, Co, Al, Fe, and Mn", Computational Materials Science 248, 113595. DOI: 10.1016/j.commatsci.2024.113595.

2009--Kim-Y-M-Shin-Y-H-Lee-B-J--Fe-Mn
Y.-M. Kim, Y.-H. Shin, and B.-J. Lee (2009), "Modified embedded-atom method interatomic potentials for pure Mn and the Fe-Mn system", Acta Materialia 57(2), 474-482. DOI: 10.1016/j.actamat.2008.09.031.

2025--Sharifi-H-Wick-C-D--Fe-Ni-Mn
H. Sharifi, and C.D. Wick (2025), "Developing interatomic potentials for complex concentrated alloys of Cu, Ti, Ni, Cr, Co, Al, Fe, and Mn", Computational Materials Science 248, 113595. DOI: 10.1016/j.commatsci.2024.113595.

2025--Sharifi-H-Wick-C-D--Fe-Ti-Mn
H. Sharifi, and C.D. Wick (2025), "Developing interatomic potentials for complex concentrated alloys of Cu, Ti, Ni, Cr, Co, Al, Fe, and Mn", Computational Materials Science 248, 113595. DOI: 10.1016/j.commatsci.2024.113595.

2006--Lee-B-J-Lee-T-H-Kim-S-J--Fe-N
B.-J. Lee, T.-H. Lee, and S.-J. Kim (2006), "A modified embedded-atom method interatomic potential for the Fe–N system: A comparative study with the Fe–C system", Acta Materialia 54(17), 4597-4607. DOI: 10.1016/j.actamat.2006.06.003.

2008--Sa-I-Lee-B--Fe-Nb
I. Sa, and B. Lee (2008), "Modified embedded-atom method interatomic potentials for the Fe–Nb and Fe–Ti binary systems", Scripta Materialia 59(6), 595-598. DOI: 10.1016/j.scriptamat.2008.05.007.

2025--Sharifi-H-Wick-C-D--Fe-Ni
H. Sharifi, and C.D. Wick (2025), "Developing interatomic potentials for complex concentrated alloys of Cu, Ti, Ni, Cr, Co, Al, Fe, and Mn", Computational Materials Science 248, 113595. DOI: 10.1016/j.commatsci.2024.113595.

2024--Sun-Y-Mendelev-M-I-Zhang-F-et-al--Fe-Ni
Y. Sun, M.I. Mendelev, F. Zhang, X. Liu, B. Da, C.-Z. Wang, R.M. Wentzcovitch, and K.-M. Ho (2024), "Unveiling the effect of Ni on the formation and structure of Earth’s inner core", Proceedings of the National Academy of Sciences 121(4), e2316477121. DOI: 10.1073/pnas.2316477121.

2017--Wu-C-Lee-B-J-Su-X--Ni-Fe
C. Wu, B.-J. Lee, and X. Su (2017), "Modified embedded-atom interatomic potential for Fe-Ni, Cr-Ni and Fe-Cr-Ni systems", Calphad 57, 98-106. DOI: 10.1016/j.calphad.2017.03.007.

2009--Bonny-G-Pasianot-R-C-Malerba-L--Fe-Ni
G. Bonny, R.C. Pasianot, and L. Malerba (2009), "Fe-Ni many-body potential for metallurgical applications", Modelling and Simulation in Materials Science and Engineering 17(2), 025010. DOI: 10.1088/0965-0393/17/2/025010.

2005--Mishin-Y-Mehl-M-J-Papaconstantopoulos-D-A--Fe-Ni
Y. Mishin, M.J. Mehl, and D.A. Papaconstantopoulos (2005), "Phase stability in the Fe-Ni system: Investigation by first-principles calculations and atomistic simulations", Acta Materialia 53(15), 4029-4041. DOI: 10.1016/j.actamat.2005.05.001.

2025--Sharifi-H-Wick-C-D--Fe-Ti-Ni
H. Sharifi, and C.D. Wick (2025), "Developing interatomic potentials for complex concentrated alloys of Cu, Ti, Ni, Cr, Co, Al, Fe, and Mn", Computational Materials Science 248, 113595. DOI: 10.1016/j.commatsci.2024.113595.

2019--Byggmastar-J-Nagel-M-Albe-K-et-al--Fe-O
J. Byggmästar, M. Nagel, K. Albe, K. Henriksson, and K. Nordlund (2019), "Analytical interatomic bond-order potential for simulations of oxygen defects in iron", Journal of Physics: Condensed Matter 31, 215401. DOI: 10.1088/1361-648x/ab0931.

2012--Ko-W-S-Kim-N-J-Lee-B-J--Fe-P
W.-S. Ko, N.J. Kim, and B.-J. Lee (2012), "Atomistic modeling of an impurity element and a metal-impurity system: pure P and Fe-P system", Journal of Physics: Condensed Matter 24(22), 225002. DOI: 10.1088/0953-8984/24/22/225002.

2004--Ackland-G-J-Mendelev-M-I-Srolovitz-D-J-et-al--Fe-P
G.J. Ackland, M.I. Mendelev, D.J. Srolovitz, S. Han, and A.V. Barashev (2004), "Development of an interatomic potential for phosphorus impurities in α-iron", Journal of Physics: Condensed Matter 16(27), S2629-S2642. DOI: 10.1088/0953-8984/16/27/003.

2018--Jeong-G-U-Park-C-S-Do-H-S-et-al--Pd-Fe
G.-U. Jeong, C.S. Park, H.-S. Do, S.-M. Park, and B.-J. Lee (2018), "Second nearest-neighbor modified embedded-atom method interatomic potentials for the Pd-M (M = Al, Co, Cu, Fe, Mo, Ni, Ti) binary systems", Calphad 62, 172-186. DOI: 10.1016/j.calphad.2018.06.006.

2006--Kim-J-Koo-Y-Lee-B-J--Fe-Pt
J. Kim, Y. Koo, and B.-J. Lee (2006), "Modified embedded-atom method interatomic potential for the Fe–Pt alloy system", Journal of Materials Research 21(1), 199-208. DOI: 10.1557/jmr.2006.0008.

2025--Sharifi-H-Wick-C-D--Fe-Ti
H. Sharifi, and C.D. Wick (2025), "Developing interatomic potentials for complex concentrated alloys of Cu, Ti, Ni, Cr, Co, Al, Fe, and Mn", Computational Materials Science 248, 113595. DOI: 10.1016/j.commatsci.2024.113595.

2008--Sa-I-Lee-B--Fe-Ti
I. Sa, and B. Lee (2008), "Modified embedded-atom method interatomic potentials for the Fe–Nb and Fe–Ti binary systems", Scripta Materialia 59(6), 595-598. DOI: 10.1016/j.scriptamat.2008.05.007.

2007--Mendelev-M-I-Han-S-Son-W-et-al--V-Fe
M.I. Mendelev, S. Han, W.- Son, G.J. Ackland, and D.J. Srolovitz (2007), "Simulation of the interaction between Fe impurities and point defects in V", Physical Review B 76(21), 214105. DOI: 10.1103/physrevb.76.214105.

2013--Bonny-G-Castin-N-Bullens-J-et-al--Fe-W
G. Bonny, N. Castin, J. Bullens, A. Bakaev, T.C.P. Klaver, and D. Terentyev (2013), "On the mobility of vacancy clusters in reduced activation steels: an atomistic study in the Fe-Cr-W model alloy", Journal of Physics: Condensed Matter 25(31), 315401. DOI: 10.1088/0953-8984/25/31/315401.

2025--Ostovari-Moghaddam-A-Fereidonnejad-R-Moaddeli-M-et-al--Zr-Fe
A. Ostovari Moghaddam, R. Fereidonnejad, M. Moaddeli, D. Mikhailov, A.S. Vasenko, and E. Trofimov (2025), "Second nearest-neighbor modified embedded-atom method interatomic potentials for the Zr-X (X = Co, Fe, Ni) binary alloys", Computational Materials Science 247, 113534. DOI: 10.1016/j.commatsci.2024.113534.

Fl

2015--Elliott-R-S-Akerson-A--Fl
R.S. Elliott, and A. Akerson (2015), "Efficient "universal" shifted Lennard-Jones model for all KIM API supported species".

Fm

2015--Elliott-R-S-Akerson-A--Fm
R.S. Elliott, and A. Akerson (2015), "Efficient "universal" shifted Lennard-Jones model for all KIM API supported species".

Fr

2015--Elliott-R-S-Akerson-A--Fr
R.S. Elliott, and A. Akerson (2015), "Efficient "universal" shifted Lennard-Jones model for all KIM API supported species".

Ga

2015--Elliott-R-S-Akerson-A--Ga
R.S. Elliott, and A. Akerson (2015), "Efficient "universal" shifted Lennard-Jones model for all KIM API supported species".

2012--Belashchenko-D-K--Ga
D.K. Belashchenko (2012), "Computer simulation of the properties of liquid metals: Gallium, lead, and bismuth", Russian Journal of Physical Chemistry A 86(5), 779-790. DOI: 10.1134/s0036024412050056.

2009--Do-E-C-Shin-Y-H-Lee-B-J--Ga-In
E.C. Do, Y.-H. Shin, and B.-J. Lee (2009), "Atomistic modeling of III-V nitrides: modified embedded-atom method interatomic potentials for GaN, InN and Ga1-xInxN", Journal of Physics: Condensed Matter 21(32), 325801. DOI: 10.1088/0953-8984/21/32/325801.

2017--Zhou-X-W-Jones-R-E-Chu-K--In-Ga-N
X.W. Zhou, R.E. Jones, and K. Chu (2017), "Polymorphic improvement of Stillinger-Weber potential for InGaN", Journal of Applied Physics 122(23), 235703. DOI: 10.1063/1.5001339.

2009--Do-E-C-Shin-Y-H-Lee-B-J--Ga-In-N
E.C. Do, Y.-H. Shin, and B.-J. Lee (2009), "Atomistic modeling of III-V nitrides: modified embedded-atom method interatomic potentials for GaN, InN and Ga1-xInxN", Journal of Physics: Condensed Matter 21(32), 325801. DOI: 10.1088/0953-8984/21/32/325801.

2009--Do-E-C-Shin-Y-H-Lee-B-J--Ga-N
E.C. Do, Y.-H. Shin, and B.-J. Lee (2009), "Atomistic modeling of III-V nitrides: modified embedded-atom method interatomic potentials for GaN, InN and Ga1-xInxN", Journal of Physics: Condensed Matter 21(32), 325801. DOI: 10.1088/0953-8984/21/32/325801.

2006--Bere-A-Serra-A--Ga-N
A. Béré, and A. Serra (2006), "On the atomic structures, mobility and interactions of extended defects in GaN: dislocations, tilt and twin boundaries", Philosophical Magazine 86(15), 2159-2192. DOI: 10.1080/14786430600640486.

2003--Nord-J-Albe-K-Erhart-P-Nordlund-K--Ga-N
J. Nord, K. Albe, P. Erhart, and K. Nordlund (2003), "Modelling of compound semiconductors: analytical bond-order potential for gallium, nitrogen and gallium nitride", Journal of Physics: Condensed Matter 15(32), 5649-5662. DOI: 10.1088/0953-8984/15/32/324.

2025--Oliveira-D-S-Kuritza-D-P-Zavarize-M-et-al--Ga-P
D.S. Oliveira, D.P. Kuritza, M. Zavarize, J.E. Padilha, and M.A. Cotta (2025), "Atomistic Modeling of GaP Nanowire Growth and Heat Transport via Interatomic Potential: Implications for Thermoelectric Applications", ACS Applied Nano Materials 8, 13340-13348. DOI: 10.1021/acsanm.5c01892.

Gd

2015--Elliott-R-S-Akerson-A--Gd
R.S. Elliott, and A. Akerson (2015), "Efficient "universal" shifted Lennard-Jones model for all KIM API supported species".

Ge

2020--Zuo-Y-Chen-C-Li-X-et-al--Ge-SNAP
Y. Zuo, C. Chen, X. Li, Z. Deng, Y. Chen, J. Behler, G. Csányi, A.V. Shapeev, A.P. Thompson, M.A. Wood, and S.P. Ong (2020), "Performance and Cost Assessment of Machine Learning Interatomic Potentials", The Journal of Physical Chemistry A 124(4), 731-745. DOI: 10.1021/acs.jpca.9b08723.

2020--Zuo-Y-Chen-C-Li-X-et-al--Ge-qSNAP
Y. Zuo, C. Chen, X. Li, Z. Deng, Y. Chen, J. Behler, G. Csányi, A.V. Shapeev, A.P. Thompson, M.A. Wood, and S.P. Ong (2020), "Performance and Cost Assessment of Machine Learning Interatomic Potentials", The Journal of Physical Chemistry A 124(4), 731-745. DOI: 10.1021/acs.jpca.9b08723.

2017--Mahdizadeh-S-J-Akhlamadi-G--Ge
S.J. Mahdizadeh, and G. Akhlamadi (2017), "Optimized Tersoff empirical potential for germanene", Journal of Molecular Graphics and Modelling 72, 1-5. DOI: 10.1016/j.jmgm.2016.11.009.

2015--Elliott-R-S-Akerson-A--Ge
R.S. Elliott, and A. Akerson (2015), "Efficient "universal" shifted Lennard-Jones model for all KIM API supported species".

2010--Belko-V-I-Gusakov-V-E-Dorozhkin-N-N--Ge
.

2008--Kim-E-H-Shin-Y-H-Lee-B-J--Ge
E.H. Kim, Y.-H. Shin, and B.-J. Lee (2008), "A modified embedded-atom method interatomic potential for Germanium", Calphad 32(1), 34-42. DOI: 10.1016/j.calphad.2007.12.003.

1988--Khor-K-E-Das-Sarma-S--Ge
K.E. Khor, and S. Das Sarma (1988), "Proposed universal interatomic potential for elemental tetrahedrally bonded semiconductors", Physical Review B 38(5), 3318-3322. DOI: 10.1103/physrevb.38.3318.

1989--Tersoff-J--Si-Ge
J. Tersoff (1989), "Modeling solid-state chemistry: Interatomic potentials for multicomponent systems", Physical Review B 39(8), 5566-5568. DOI: 10.1103/physrevb.39.5566.
J. Tersoff (1990), "Erratum: Modeling solid-state chemistry: Interatomic potentials for multicomponent systems", Physical Review B 41(5), 3248-3248. DOI: 10.1103/physrevb.41.3248.2.

2020--Tavanti-F-Dianat-B-Catellani-A-Calzolari-A--Ge40Se60
F. Tavanti, B. Dianat, A. Catellani, and A. Calzolari (2020), "Hierarchical Short- and Medium-Range Order Structures in Amorphous GexSe1–x for Selectors Applications", ACS Applied Electronic Materials 2(9), 2961-2969. DOI: 10.1021/acsaelm.0c00581.

2020--Tavanti-F-Dianat-B-Catellani-A-Calzolari-A--Ge50Se50
F. Tavanti, B. Dianat, A. Catellani, and A. Calzolari (2020), "Hierarchical Short- and Medium-Range Order Structures in Amorphous GexSe1–x for Selectors Applications", ACS Applied Electronic Materials 2(9), 2961-2969. DOI: 10.1021/acsaelm.0c00581.

2020--Tavanti-F-Dianat-B-Catellani-A-Calzolari-A--Ge60Se40
F. Tavanti, B. Dianat, A. Catellani, and A. Calzolari (2020), "Hierarchical Short- and Medium-Range Order Structures in Amorphous GexSe1–x for Selectors Applications", ACS Applied Electronic Materials 2(9), 2961-2969. DOI: 10.1021/acsaelm.0c00581.

H

2015--Elliott-R-S-Akerson-A--H
R.S. Elliott, and A. Akerson (2015), "Efficient "universal" shifted Lennard-Jones model for all KIM API supported species".

2021--Zhou-X-W-Bartelt-N-C-Sills-R-B--Pd-H-He
X.W. Zhou, N.C. Bartelt, and R.B. Sills (2021), "Enabling simulations of helium bubble nucleation and growth: A strategy for interatomic potentials", Physical Review B 103(1), 014108. DOI: 10.1103/physrevb.103.014108.

2014--Bonny-G-Grigorev-P-Terentyev-D--W-H-He-1
G. Bonny, P. Grigorev, and D. Terentyev (2014), "On the binding of nanometric hydrogen-helium clusters in tungsten", Journal of Physics: Condensed Matter 26(48), 485001. DOI: 10.1088/0953-8984/26/48/485001.

2014--Bonny-G-Grigorev-P-Terentyev-D--W-H-He-2
G. Bonny, P. Grigorev, and D. Terentyev (2014), "On the binding of nanometric hydrogen-helium clusters in tungsten", Journal of Physics: Condensed Matter 26(48), 485001. DOI: 10.1088/0953-8984/26/48/485001.

2018--Smirnova-D-E-Starikov-S-V-Vlasova-A-M--Mg-H
D.E. Smirnova, S.V. Starikov, and A.M. Vlasova (2018), "New interatomic potential for simulation of pure magnesium and magnesium hydrides", Computational Materials Science 154, 295-302. DOI: 10.1016/j.commatsci.2018.07.051.

2017--Tehranchi-A-Curtin-W-A--Ni-H
A. Tehranchi, and W.A. Curtin (2017), "Atomistic study of hydrogen embrittlement of grain boundaries in nickel: I. Fracture", Journal of the Mechanics and Physics of Solids 101, 150-165. DOI: 10.1016/j.jmps.2017.01.020.

2011--Ko-W-S-Shim-J-H-Lee-B-J--Ni-H
W.-S. Ko, J.-H. Shim, and B.-J. Lee (2011), "Atomistic modeling of the Al-H and Ni-H systems", Journal of Materials Research 26(12), 1552-1560. DOI: 10.1557/jmr.2011.95.

2013--Shim-J-H-Ko-W-S-Kim-K-H-et-al--V-Ni-H
J.-H. Shim, W.-S. Ko, K.-H. Kim, H.-S. Lee, Y.-S. Lee, J.-Y. Suh, Y.W. Cho, and B.-J. Lee (2013), "Prediction of hydrogen permeability in V–Al and V–Ni alloys", Journal of Membrane Science 430, 234-241. DOI: 10.1016/j.memsci.2012.12.019.

2008--Zhou-X-W-Zimmerman-J-A-Wong-B-M-Hoyt-J-J--Pd-H
X.W. Zhou, J.A. Zimmerman, B.M. Wong, and J.J. Hoyt (2008), "An embedded-atom method interatomic potential for Pd-H alloys", Journal of Materials Research 23(3), 704-718. DOI: 10.1557/jmr.2008.0090.

H-V

2011--Shim-J-H-Lee-Y-S-Fleury-E-et-al--V-H
J.-H. Shim, Y.-S. Lee, E. Fleury, Y.W. Cho, W.-S. Ko, and B.-J. Lee (2011), "A modified embedded-atom method interatomic potential for the V–H system", Calphad 35(3), 302-307. DOI: 10.1016/j.calphad.2011.04.007.

H-W

2023--Mason-D-R-Nguyen-Manh-D-Lindblad-V-W-et-al--W-H
D.R. Mason, D. Nguyen-Manh, V.W. Lindblad, F.G. Granberg, and M.Y. Lavrentiev (2023), "An empirical potential for simulating hydrogen isotope retention in highly irradiated tungsten", Journal of Physics: Condensed Matter 35(49), 495901. DOI: 10.1088/1361-648x/acf25f.

2014--Lee-B-M-Lee-B-J--Zr-H
B.-M. Lee, and B.-J. Lee (2014), "A Comparative Study on Hydrogen Diffusion in Amorphous and Crystalline Metals Using a Molecular Dynamics Simulation", Metallurgical and Materials Transactions A 45(6), 2906-2915. DOI: 10.1007/s11661-014-2230-4.

He

2015--Elliott-R-S-Akerson-A--He
R.S. Elliott, and A. Akerson (2015), "Efficient "universal" shifted Lennard-Jones model for all KIM API supported species".

2007--Hellmann-R-Bich-E-Vogel-E--He
R. Hellmann, E. Bich, and E. Vogel (2007), "Ab initio potential energy curve for the helium atom pair and thermophysical properties of dilute helium gas. I. Helium–helium interatomic potential", Molecular Physics 105(23-24), 3013-3023. DOI: 10.1080/00268970701730096.
K.T. Tang, and J. Peter Toennies (1984), "An improved simple model for the van der Waals potential based on universal damping functions for the dispersion coefficients", The Journal of Chemical Physics 80(8), 3726-3741. DOI: 10.1063/1.447150.

2019--Duan-X-Xie-F-Guo-X-et-al--Ta-He
X. Duan, F. Xie, X. Guo, Z. Liu, J. Yang, X. Liu, and B. Shan (2019), "Development of a pair potential for Ta-He system", Computational Materials Science 156, 268-272. DOI: 10.1016/j.commatsci.2018.09.057.

2021--Chen-Y-Fang-J-Liao-X-et-al--W-Ta-He
Y. Chen, J. Fang, X. Liao, N. Gao, W. Hu, H.-B. Zhou, and H. Deng (2021), "Energetics and diffusional properties of helium in W-Ta systems studied by a new ternary potential", Journal of Nuclear Materials 549, 152913. DOI: 10.1016/j.jnucmat.2021.152913.

Hf

2015--Elliott-R-S-Akerson-A--Hf
R.S. Elliott, and A. Akerson (2015), "Efficient "universal" shifted Lennard-Jones model for all KIM API supported species".

2021--Huang-X-Liu-L-Duan-X-et-al--Hf-Nb-Ta-Ti-Zr
X. Huang, L. Liu, X. Duan, W. Liao, J. Huang, H. Sun, and C. Yu (2021), "Atomistic simulation of chemical short-range order in HfNbTaZr high entropy alloy based on a newly-developed interatomic potential", Materials & Design 202, 109560. DOI: 10.1016/j.matdes.2021.109560.

2022--Sivaraman-G-Csanyi-G-Vazquez-Mayagoitia-A-et-al--Hf-O
G. Sivaraman, G. Csanyi, A. Vazquez-Mayagoitia, I.T. Foster, S.K. Wilke, R. Weber, and C.J. Benmore (2022), "A Combined Machine Learning and High-Energy X-ray Diffraction Approach to Understanding Liquid and Amorphous Metal Oxides", Journal of the Physical Society of Japan 91(9), 091009. DOI: 10.7566/jpsj.91.091009.

2021--Sivaraman-G-Gallington-L-Krishnamoorthy-A-N-et-al--Hf-O
G. Sivaraman, L. Gallington, A.N. Krishnamoorthy, M. Stan, G. Csányi, Vázquez-Mayagoitia, and C.J. Benmore (2021), "Experimentally Driven Automated Machine-Learned Interatomic Potential for a Refractory Oxide", Physical Review Letters 126(15), 156002. DOI: 10.1103/physrevlett.126.156002.

Hg

2015--Elliott-R-S-Akerson-A--Hg
R.S. Elliott, and A. Akerson (2015), "Efficient "universal" shifted Lennard-Jones model for all KIM API supported species".

Ho

2015--Elliott-R-S-Akerson-A--Ho
R.S. Elliott, and A. Akerson (2015), "Efficient "universal" shifted Lennard-Jones model for all KIM API supported species".

Hs

2015--Elliott-R-S-Akerson-A--Hs
R.S. Elliott, and A. Akerson (2015), "Efficient "universal" shifted Lennard-Jones model for all KIM API supported species".

I

2015--Elliott-R-S-Akerson-A--I
R.S. Elliott, and A. Akerson (2015), "Efficient "universal" shifted Lennard-Jones model for all KIM API supported species".

In

2015--Elliott-R-S-Akerson-A--In
R.S. Elliott, and A. Akerson (2015), "Efficient "universal" shifted Lennard-Jones model for all KIM API supported species".

2008--Do-E-C-Shin-Y-H-Lee-B-J--In
E.C. Do, Y.-H. Shin, and B.-J. Lee (2008), "A modified embedded-atom method interatomic potential for indium", Calphad 32(1), 82-88. DOI: 10.1016/j.calphad.2007.08.004.

2009--Do-E-C-Shin-Y-H-Lee-B-J--In-N
E.C. Do, Y.-H. Shin, and B.-J. Lee (2009), "Atomistic modeling of III-V nitrides: modified embedded-atom method interatomic potentials for GaN, InN and Ga1-xInxN", Journal of Physics: Condensed Matter 21(32), 325801. DOI: 10.1088/0953-8984/21/32/325801.

2022--Chrobak-D-Majtyka-Pilat-A-Ziolkowski-G-Chrobak-A--In-P
D. Chrobak, A. Majtyka-Piłat, G. Ziółkowski, and A. Chrobak (2022), "Interatomic Potential for InP", Materials 15(14), 4960. DOI: 10.3390/ma15144960.

2009--Branicio-P-S-Rino-J-P-Gan-C-K-Tsuzuki-H--In-P
P.S. Branicio, J.P. Rino, C.K. Gan, and H. Tsuzuki (2009), "Interaction potential for indium phosphide: a molecular dynamics and first-principles study of the elastic constants, generalized stacking fault and surface energies", Journal of Physics: Condensed Matter 21(9), 095002. DOI: 10.1088/0953-8984/21/9/095002.

Ir

2015--Elliott-R-S-Akerson-A--Ir
R.S. Elliott, and A. Akerson (2015), "Efficient "universal" shifted Lennard-Jones model for all KIM API supported species".

K

2016--Nichol-A-Ackland-G-J--K
A. Nichol, and G.J. Ackland (2016), "Property trends in simple metals: An empirical potential approach", Physical Review B 93(18), 184101. DOI: 10.1103/physrevb.93.184101.

2015--Elliott-R-S-Akerson-A--K
R.S. Elliott, and A. Akerson (2015), "Efficient "universal" shifted Lennard-Jones model for all KIM API supported species".

1959--Girifalco-L-A-Weizer-V-G--K
L.A. Girifalco, and V.G. Weizer (1959), "Application of the Morse Potential Function to Cubic Metals", Physical Review 114(3), 687-690. DOI: 10.1103/physrev.114.687.

Kr

2015--Elliott-R-S-Akerson-A--Kr
R.S. Elliott, and A. Akerson (2015), "Efficient "universal" shifted Lennard-Jones model for all KIM API supported species".

1958--Bernardes-N--Kr
N. Bernardes (1958), "Theory of Solid Ne, A, Kr, and Xe at 0°K", Physical Review 112(5), 1534-1539. DOI: 10.1103/physrev.112.1534.

La

2015--Elliott-R-S-Akerson-A--La
R.S. Elliott, and A. Akerson (2015), "Efficient "universal" shifted Lennard-Jones model for all KIM API supported species".

Li

2023--Al-Awad-A-S-Batet-L-Sedano-L--Li
A.S. Al-Awad, L. Batet, and L. Sedano (2023), "Parametrization of embedded-atom method potential for liquid lithium and lead-lithium eutectic alloy", Journal of Nuclear Materials 587, 154735. DOI: 10.1016/j.jnucmat.2023.154735.

2020--Zuo-Y-Chen-C-Li-X-et-al--Li-SNAP
Y. Zuo, C. Chen, X. Li, Z. Deng, Y. Chen, J. Behler, G. Csányi, A.V. Shapeev, A.P. Thompson, M.A. Wood, and S.P. Ong (2020), "Performance and Cost Assessment of Machine Learning Interatomic Potentials", The Journal of Physical Chemistry A 124(4), 731-745. DOI: 10.1021/acs.jpca.9b08723.

2020--Zuo-Y-Chen-C-Li-X-et-al--Li-qSNAP
Y. Zuo, C. Chen, X. Li, Z. Deng, Y. Chen, J. Behler, G. Csányi, A.V. Shapeev, A.P. Thompson, M.A. Wood, and S.P. Ong (2020), "Performance and Cost Assessment of Machine Learning Interatomic Potentials", The Journal of Physical Chemistry A 124(4), 731-745. DOI: 10.1021/acs.jpca.9b08723.

2016--Nichol-A-Ackland-G-J--Li
A. Nichol, and G.J. Ackland (2016), "Property trends in simple metals: An empirical potential approach", Physical Review B 93(18), 184101. DOI: 10.1103/physrevb.93.184101.

2015--Elliott-R-S-Akerson-A--Li
R.S. Elliott, and A. Akerson (2015), "Efficient "universal" shifted Lennard-Jones model for all KIM API supported species".

2012--Kim-Y-M-Jung-I-H-Lee-B-J--Li
Y.-M. Kim, I.-H. Jung, and B.-J. Lee (2012), "Atomistic modeling of pure Li and Mg-Li system", Modelling and Simulation in Materials Science and Engineering 20(3), 035005. DOI: 10.1088/0965-0393/20/3/035005.

2012--Kim-Y-M-Jung-I-H-Lee-B-J--Mg-Li
Y.-M. Kim, I.-H. Jung, and B.-J. Lee (2012), "Atomistic modeling of pure Li and Mg-Li system", Modelling and Simulation in Materials Science and Engineering 20(3), 035005. DOI: 10.1088/0965-0393/20/3/035005.

2017--Lee-E-Lee-K-R-Lee-B-J--Li-Mn-O
E. Lee, K.-R. Lee, and B.-J. Lee (2017), "Interatomic Potential of Li–Mn–O and Molecular Dynamics Simulations on Li Diffusion in Spinel Li1–xMn2O4", The Journal of Physical Chemistry C 121(24), 13008-13017. DOI: 10.1021/acs.jpcc.7b02727.

2023--Al-Awad-A-S-Batet-L-Sedano-L--Pb-Li
A.S. Al-Awad, L. Batet, and L. Sedano (2023), "Parametrization of embedded-atom method potential for liquid lithium and lead-lithium eutectic alloy", Journal of Nuclear Materials 587, 154735. DOI: 10.1016/j.jnucmat.2023.154735.

2015--Islam-M-M-Ostadhossein-A-Borodin-O-et-al--Li-S
M.M. Islam, A. Ostadhossein, O. Borodin, A. Todd Yeates, W.W. Tipton, R.G. Hennig, N. Kumar, and A.C.T. van Duin (2015), "ReaxFF molecular dynamics simulations on lithiated sulfur cathode materials", Physical Chemistry Chemical Physics 17(5), 3383-3393. DOI: 10.1039/c4cp04532g.

Lr

2015--Elliott-R-S-Akerson-A--Lr
R.S. Elliott, and A. Akerson (2015), "Efficient "universal" shifted Lennard-Jones model for all KIM API supported species".

Lu

2015--Elliott-R-S-Akerson-A--Lu
R.S. Elliott, and A. Akerson (2015), "Efficient "universal" shifted Lennard-Jones model for all KIM API supported species".

Lv

2015--Elliott-R-S-Akerson-A--Lv
R.S. Elliott, and A. Akerson (2015), "Efficient "universal" shifted Lennard-Jones model for all KIM API supported species".

MOx

2011--Tiwary-P-Walle-A-Jeon-B-Gronbech-Jensen-N--MOx
P. Tiwary, A. Walle, B. Jeon, and N. Grønbech-Jensen (2011), "Interatomic potentials for mixed oxide and advanced nuclear fuels", Physical Review B 83(9), 094104. DOI: 10.1103/physrevb.83.094104.
P. Tiwary, A. van de Walle, and N. Grønbech-Jensen (2009), "Ab initio construction of interatomic potentials for uranium dioxide across all interatomic distances", Physical Review B 80(17), 174302. DOI: 10.1103/physrevb.80.174302.

Mc

2015--Elliott-R-S-Akerson-A--Mc
R.S. Elliott, and A. Akerson (2015), "Efficient "universal" shifted Lennard-Jones model for all KIM API supported species".

Md

2015--Elliott-R-S-Akerson-A--Md
R.S. Elliott, and A. Akerson (2015), "Efficient "universal" shifted Lennard-Jones model for all KIM API supported species".

Mg

2021--Dickel-D-Nitol-M-Barrett-C-D--Mg
D. Dickel, M. Nitol, and C.D. Barrett (2021), "LAMMPS implementation of rapid artificial neural network derived interatomic potentials", Computational Materials Science 196, 110481. DOI: 10.1016/j.commatsci.2021.110481.

2021--Nitol-M-S-Mun-S-Dickel-D-E-Barrett-C-D--Mg
M.S. Nitol, S. Mun, D.E. Dickel, and C.D. Barrett (2021), "Unraveling Mg <c + a> slip using neural network potential", Philosophical Magazine 102(8), 651-673. DOI: 10.1080/14786435.2021.2012289.

2016--Wilson-S-R-Mendelev-M-I--Mg
S.R. Wilson, and M.I. Mendelev (2016), "A unified relation for the solid-liquid interface free energy of pure FCC, BCC, and HCP metals", The Journal of Chemical Physics 144(14), 144707. DOI: 10.1063/1.4946032.

2015--Elliott-R-S-Akerson-A--Mg
R.S. Elliott, and A. Akerson (2015), "Efficient "universal" shifted Lennard-Jones model for all KIM API supported species".

2009--Kim-Y-M-Kim-N-J-Lee-B-J--Mg
Y.-M. Kim, N.J. Kim, and B.-J. Lee (2009), "Atomistic Modeling of pure Mg and Mg-Al systems", Calphad 33(4), 650-657. DOI: 10.1016/j.calphad.2009.07.004.

2006--Sun-D-Y-Mendelev-M-I-Becker-C-A-et-al--Mg
D.Y. Sun, M.I. Mendelev, C.A. Becker, K. Kudin, T. Haxhimali, M. Asta, J.J. Hoyt, A. Karma, and D.J. Srolovitz (2006), "Crystal-melt interfacial free energies in hcp metals: A molecular dynamics study of Mg", Physical Review B 73(2), 024116. DOI: 10.1103/physrevb.73.024116.

2004--Zhou-X-W-Johnson-R-A-Wadley-H-N-G--Mg
X.W. Zhou, R.A. Johnson, and H.N.G. Wadley (2004), "Misfit-energy-increasing dislocations in vapor-deposited CoFe/NiFe multilayers", Physical Review B 69(14), 144113. DOI: 10.1103/physrevb.69.144113.

2017--Kim-K-H-Lee-B-J--Mg-Nd
K.-H. Kim, and B.-J. Lee (2017), "Modified embedded-atom method interatomic potentials for Mg-Nd and Mg-Pb binary systems", Calphad 57, 55-61. DOI: 10.1016/j.calphad.2017.03.003.

2017--Kim-K-H-Lee-B-J--Mg-Pb
K.-H. Kim, and B.-J. Lee (2017), "Modified embedded-atom method interatomic potentials for Mg-Nd and Mg-Pb binary systems", Calphad 57, 55-61. DOI: 10.1016/j.calphad.2017.03.003.

2015--Kim-K-H-Jeon-J-B-Lee-B-J--Mg-Sn
K.-H. Kim, J.B. Jeon, and B.-J. Lee (2015), "Modified embedded-atom method interatomic potentials for Mg-X (X=Y, Sn, Ca) binary systems", Calphad 48, 27-34. DOI: 10.1016/j.calphad.2014.10.001.

2015--Kim-K-H-Jeon-J-B-Lee-B-J--Mg-Y
K.-H. Kim, J.B. Jeon, and B.-J. Lee (2015), "Modified embedded-atom method interatomic potentials for Mg-X (X=Y, Sn, Ca) binary systems", Calphad 48, 27-34. DOI: 10.1016/j.calphad.2014.10.001.

2018--Jang-H-S-Kim-K-M-Lee-B-J--Zn-Mg
H.-S. Jang, K.-M. Kim, and B.-J. Lee (2018), "Modified embedded-atom method interatomic potentials for pure Zn and Mg-Zn binary system", Calphad 60, 200-207. DOI: 10.1016/j.calphad.2018.01.003.

2009--Brommer-P-Boissieu-M-Euchner-H-et-al--Mg-Zn
P. Brommer, M. Boissieu, H. Euchner, S. Francoual, F. Gähler, M. Johnson, K. Parlinski, and K. Schmalzl (2009), "Vibrational properties of MgZn2", Zeitschrift für Kristallographie - Crystalline Materials 224(1-2), 97-100. DOI: 10.1524/zkri.2009.1085.

Mn

2025--Sharifi-H-Wick-C-D--Mn
H. Sharifi, and C.D. Wick (2025), "Developing interatomic potentials for complex concentrated alloys of Cu, Ti, Ni, Cr, Co, Al, Fe, and Mn", Computational Materials Science 248, 113595. DOI: 10.1016/j.commatsci.2024.113595.

2015--Elliott-R-S-Akerson-A--Mn
R.S. Elliott, and A. Akerson (2015), "Efficient "universal" shifted Lennard-Jones model for all KIM API supported species".

2009--Kim-Y-M-Shin-Y-H-Lee-B-J--Mn
Y.-M. Kim, Y.-H. Shin, and B.-J. Lee (2009), "Modified embedded-atom method interatomic potentials for pure Mn and the Fe-Mn system", Acta Materialia 57(2), 474-482. DOI: 10.1016/j.actamat.2008.09.031.

2025--Sharifi-H-Wick-C-D--Ni-Mn
H. Sharifi, and C.D. Wick (2025), "Developing interatomic potentials for complex concentrated alloys of Cu, Ti, Ni, Cr, Co, Al, Fe, and Mn", Computational Materials Science 248, 113595. DOI: 10.1016/j.commatsci.2024.113595.

2017--Choi-W-M-Kim-Y-Seol-D-Lee-B-J--Mn-Ni
W.-M. Choi, Y. Kim, D. Seol, and B.-J. Lee (2017), "Modified embedded-atom method interatomic potentials for the Co-Cr, Co-Fe, Co-Mn, Cr-Mn and Mn-Ni binary systems", Computational Materials Science 130, 121-129. DOI: 10.1016/j.commatsci.2017.01.002.

2025--Sharifi-H-Wick-C-D--Ni-Ti-Mn
H. Sharifi, and C.D. Wick (2025), "Developing interatomic potentials for complex concentrated alloys of Cu, Ti, Ni, Cr, Co, Al, Fe, and Mn", Computational Materials Science 248, 113595. DOI: 10.1016/j.commatsci.2024.113595.

2025--Sharifi-H-Wick-C-D--Ti-Mn
H. Sharifi, and C.D. Wick (2025), "Developing interatomic potentials for complex concentrated alloys of Cu, Ti, Ni, Cr, Co, Al, Fe, and Mn", Computational Materials Science 248, 113595. DOI: 10.1016/j.commatsci.2024.113595.

Mo

2020--Zuo-Y-Chen-C-Li-X-et-al--Mo-SNAP
Y. Zuo, C. Chen, X. Li, Z. Deng, Y. Chen, J. Behler, G. Csányi, A.V. Shapeev, A.P. Thompson, M.A. Wood, and S.P. Ong (2020), "Performance and Cost Assessment of Machine Learning Interatomic Potentials", The Journal of Physical Chemistry A 124(4), 731-745. DOI: 10.1021/acs.jpca.9b08723.

2020--Zuo-Y-Chen-C-Li-X-et-al--Mo-qSNAP
Y. Zuo, C. Chen, X. Li, Z. Deng, Y. Chen, J. Behler, G. Csányi, A.V. Shapeev, A.P. Thompson, M.A. Wood, and S.P. Ong (2020), "Performance and Cost Assessment of Machine Learning Interatomic Potentials", The Journal of Physical Chemistry A 124(4), 731-745. DOI: 10.1021/acs.jpca.9b08723.

2017--Chen-C-Deng-Z-Tran-R-et-al--Mo
C. Chen, Z. Deng, R. Tran, H. Tang, I.-H. Chu, and S.P. Ong (2017), "Accurate force field for molybdenum by machine learning large materials data", Physical Review Materials 1(4), 043603. DOI: 10.1103/physrevmaterials.1.043603.

2017--Kim-J-S-Seol-D-Ji-J-et-al--Mo
J.-S. Kim, D. Seol, J. Ji, H.-S. Jang, Y. Kim, and B.-J. Lee (2017), "Second nearest-neighbor modified embedded-atom method interatomic potentials for the Pt-M (M = Al, Co, Cu, Mo, Ni, Ti, V) binary systems", Calphad 59, 131-141. DOI: 10.1016/j.calphad.2017.09.005.

2015--Elliott-R-S-Akerson-A--Mo
R.S. Elliott, and A. Akerson (2015), "Efficient "universal" shifted Lennard-Jones model for all KIM API supported species".

2012--Park-H-Fellinger-M-R-Lenosky-T-J-et-al--Mo
H. Park, M.R. Fellinger, T.J. Lenosky, W.W. Tipton, D.R. Trinkle, S.P. Rudin, C. Woodward, J.W. Wilkins, and R.G. Hennig (2012), "Ab initio based empirical potential used to study the mechanical properties of molybdenum", Physical Review B 85(21), 214121. DOI: 10.1103/physrevb.85.214121.

2007--Derlet-P-M-Nguyen-Manh-D-Dudarev-S-L--Mo
P.M. Derlet, D. Nguyen-Manh, and S.L. Dudarev (2007), "Multiscale modeling of crowdion and vacancy defects in body-centered-cubic transition metals", Physical Review B 76(5), 054107. DOI: 10.1103/physrevb.76.054107.

2004--Zhou-X-W-Johnson-R-A-Wadley-H-N-G--Mo
X.W. Zhou, R.A. Johnson, and H.N.G. Wadley (2004), "Misfit-energy-increasing dislocations in vapor-deposited CoFe/NiFe multilayers", Physical Review B 69(14), 144113. DOI: 10.1103/physrevb.69.144113.

2003--Han-S-Zepeda-Ruiz-L-A-Ackland-G-J-et-al--Mo
S. Han, L.A. Zepeda-Ruiz, G.J. Ackland, R. Car, and D.J. Srolovitz (2003), "Interatomic potential for vanadium suitable for radiation damage simulations", Journal of Applied Physics 93(6), 3328-3335. DOI: 10.1063/1.1555275.

2001--Lee-B-J-Baskes-M-I-Kim-H-Cho-Y-K--Mo
B.-J. Lee, M.I. Baskes, H. Kim, and Y.K. Cho (2001), "Second nearest-neighbor modified embedded atom method potentials for bcc transition metals", Physical Review B 64(18), 184102. DOI: 10.1103/physrevb.64.184102.

1987--Ackland-G-J-Thetford-R--Mo
G.J. Ackland, and R. Thetford (1987), "An improved N-body semi-empirical model for body-centred cubic transition metals", Philosophical Magazine A 56(1), 15-30. DOI: 10.1080/01418618708204464.

1959--Girifalco-L-A-Weizer-V-G--Mo
L.A. Girifalco, and V.G. Weizer (1959), "Application of the Morse Potential Function to Cubic Metals", Physical Review 114(3), 687-690. DOI: 10.1103/physrev.114.687.

2020--Li-X-G-Chen-C-Zheng-H-et-al--Nb-Ta-W-Mo
X.-G. Li, C. Chen, H. Zheng, Y. Zuo, and S.P. Ong (2020), "Complex strengthening mechanisms in the NbMoTaW multi-principal element alloy", npj Computational Materials 6(1), 70. DOI: 10.1038/s41524-020-0339-0.

2024--Starikov-S-Grigorev-P-Olsson-P-A-T--W-Mo-Nb
S. Starikov, P. Grigorev, and P.A.T. Olsson (2024), "Angular-dependent interatomic potential for large-scale atomistic simulation of W-Mo-Nb ternary alloys", Computational Materials Science 233, 112734. DOI: 10.1016/j.commatsci.2023.112734.

2018--Li-X-G-Hu-C-Chen-C-et-al--Ni-Mo
X.-G. Li, C. Hu, C. Chen, Z. Deng, J. Luo, and S.P. Ong (2018), "Quantum-accurate spectral neighbor analysis potential models for Ni-Mo binary alloys and fcc metals", Physical Review B 98(9), 094104. DOI: 10.1103/physrevb.98.094104.

2018--Jeong-G-U-Park-C-S-Do-H-S-et-al--Pd-Mo
G.-U. Jeong, C.S. Park, H.-S. Do, S.-M. Park, and B.-J. Lee (2018), "Second nearest-neighbor modified embedded-atom method interatomic potentials for the Pd-M (M = Al, Co, Cu, Fe, Mo, Ni, Ti) binary systems", Calphad 62, 172-186. DOI: 10.1016/j.calphad.2018.06.006.

2017--Kim-J-S-Seol-D-Ji-J-et-al--Pt-Mo
J.-S. Kim, D. Seol, J. Ji, H.-S. Jang, Y. Kim, and B.-J. Lee (2017), "Second nearest-neighbor modified embedded-atom method interatomic potentials for the Pt-M (M = Al, Co, Cu, Mo, Ni, Ti, V) binary systems", Calphad 59, 131-141. DOI: 10.1016/j.calphad.2017.09.005.

2017--Wen-M-Shirodkar-S-N-Plechac-P-et-al--Mo-S
M. Wen, S.N. Shirodkar, P. Plecháč, E. Kaxiras, R.S. Elliott, and E.B. Tadmor (2017), "A force-matching Stillinger-Weber potential for MoS2: Parameterization and Fisher information theory based sensitivity analysis", Journal of Applied Physics 122(24), 244301. DOI: 10.1063/1.5007842.

2018--Starikov-S-V-Kolotova-L-N-Kuksin-A-Y-et-al--U-Mo
S.V. Starikov, L.N. Kolotova, A.Y. Kuksin, D.E. Smirnova, and V.I. Tseplyaev (2018), "Atomistic simulation of cubic and tetragonal phases of U-Mo alloy: Structure and thermodynamic properties", Journal of Nuclear Materials 499, 451-463. DOI: 10.1016/j.jnucmat.2017.11.047.

2013--Smirnova-D-E-Kuksin-A-Y-Starikov-S-V-et-al--U-Mo-Xe
D.E. Smirnova, A.Y. Kuksin, S.V. Starikov, V.V. Stegailov, Z. Insepov, J. Rest, and A.M. Yacout (2013), "A ternary EAM interatomic potential for U-Mo alloys with xenon", Modelling and Simulation in Materials Science and Engineering 21(3), 035011. DOI: 10.1088/0965-0393/21/3/035011.

2020--Chen-Y-Liao-X-Gao-N-et-al--W-Mo
Y. Chen, X. Liao, N. Gao, W. Hu, F. Gao, and H. Deng (2020), "Interatomic potentials of W-V and W-Mo binary systems for point defects studies", Journal of Nuclear Materials 531, 152020. DOI: 10.1016/j.jnucmat.2020.152020.

Mt

2015--Elliott-R-S-Akerson-A--Mt
R.S. Elliott, and A. Akerson (2015), "Efficient "universal" shifted Lennard-Jones model for all KIM API supported species".

N

2015--Elliott-R-S-Akerson-A--N
R.S. Elliott, and A. Akerson (2015), "Efficient "universal" shifted Lennard-Jones model for all KIM API supported species".

2008--Kim-Y-M-Lee-B-J--Ti-N
Y.-M. Kim, and B.-J. Lee (2008), "Modified embedded-atom method interatomic potentials for the Ti-C and Ti-N binary systems", Acta Materialia 56(14), 3481-3489. DOI: 10.1016/j.actamat.2008.03.027.

N-U

2016--Tseplyaev-V-I-Starikov-S-V--U-N
V.I. Tseplyaev, and S.V. Starikov (2016), "The atomistic simulation of pressure-induced phase transition in uranium mononitride", Journal of Nuclear Materials 480, 7-14. DOI: 10.1016/j.jnucmat.2016.07.048.

Na

2016--Nichol-A-Ackland-G-J--Na
A. Nichol, and G.J. Ackland (2016), "Property trends in simple metals: An empirical potential approach", Physical Review B 93(18), 184101. DOI: 10.1103/physrevb.93.184101.

2015--Elliott-R-S-Akerson-A--Na
R.S. Elliott, and A. Akerson (2015), "Efficient "universal" shifted Lennard-Jones model for all KIM API supported species".

2015--Wilson-S-R-Gunawardana-K-G-S-H-Mendelev-M-I--Na
S.R. Wilson, K.G.S.H. Gunawardana, and M.I. Mendelev (2015), "Solid-liquid interface free energies of pure bcc metals and B2 phases", The Journal of Chemical Physics 142(13), 134705. DOI: 10.1063/1.4916741.

1959--Girifalco-L-A-Weizer-V-G--Na
L.A. Girifalco, and V.G. Weizer (1959), "Application of the Morse Potential Function to Cubic Metals", Physical Review 114(3), 687-690. DOI: 10.1103/physrev.114.687.

Nb

2019--Yang-C-Qi-L--Nb
C. Yang, and L. Qi (2019), "Modified embedded-atom method potential of niobium for studies on mechanical properties", Computational Materials Science 161, 351-363. DOI: 10.1016/j.commatsci.2019.01.047.

2015--Elliott-R-S-Akerson-A--Nb
R.S. Elliott, and A. Akerson (2015), "Efficient "universal" shifted Lennard-Jones model for all KIM API supported species".

2010--Fellinger-M-R-Park-H-Wilkins-J-W--Nb
M.R. Fellinger, H. Park, and J.W. Wilkins (2010), "Force-matched embedded-atom method potential for niobium", Physical Review B 81(14), 144119. DOI: 10.1103/physrevb.81.144119.

2007--Derlet-P-M-Nguyen-Manh-D-Dudarev-S-L--Nb
P.M. Derlet, D. Nguyen-Manh, and S.L. Dudarev (2007), "Multiscale modeling of crowdion and vacancy defects in body-centered-cubic transition metals", Physical Review B 76(5), 054107. DOI: 10.1103/physrevb.76.054107.

2003--Han-S-Zepeda-Ruiz-L-A-Ackland-G-J-et-al--Nb
S. Han, L.A. Zepeda-Ruiz, G.J. Ackland, R. Car, and D.J. Srolovitz (2003), "Interatomic potential for vanadium suitable for radiation damage simulations", Journal of Applied Physics 93(6), 3328-3335. DOI: 10.1063/1.1555275.

2001--Lee-B-J-Baskes-M-I-Kim-H-Cho-Y-K--Nb
B.-J. Lee, M.I. Baskes, H. Kim, and Y.K. Cho (2001), "Second nearest-neighbor modified embedded atom method potentials for bcc transition metals", Physical Review B 64(18), 184102. DOI: 10.1103/physrevb.64.184102.

1987--Ackland-G-J-Thetford-R--Nb
G.J. Ackland, and R. Thetford (1987), "An improved N-body semi-empirical model for body-centred cubic transition metals", Philosophical Magazine A 56(1), 15-30. DOI: 10.1080/01418618708204464.

2022--Mendelev-M-I--Ni-Nb
M.I. Mendelev (2022), "to be published".

2016--Zhang-Y-Ashcraft-R-Mendelev-M-I-et-al--Ni-Nb
Y. Zhang, R. Ashcraft, M.I. Mendelev, C.Z. Wang, and K.F. Kelton (2016), "Experimental and molecular dynamics simulation study of structure of liquid and amorphous Ni62Nb38 alloy", The Journal of Chemical Physics 145(20), 204505. DOI: 10.1063/1.4968212.

2024--Nitol-M-S-Echeverria-M-J-Dang-K-et-al--V-Nb-Ta-Ti-Zr
M.S. Nitol, M.J. Echeverria, K. Dang, M.I. Baskes, and S.J. Fensin (2024), "New modified embedded-atom method interatomic potential to understand deformation behavior in VNbTaTiZr refractory high entropy alloy", Computational Materials Science 237, 112886. DOI: 10.1016/j.commatsci.2024.112886.

2024--Fan-Z-Maras-E-Cottura-M-et-al--Zr-Nb
Z. Fan, É. Maras, M. Cottura, M.-C. Marinica, and E. Clouet (2024), "Structure and coherency of bcc Nb precipitates in hcp Zr matrix from atomistic simulations", Physical Review Materials 8(11), 113601. DOI: 10.1103/physrevmaterials.8.113601.

2021--Starikov-S-Smirnova-D--Zr-Nb
S. Starikov, and D. Smirnova (2021), "Optimized interatomic potential for atomistic simulation of Zr-Nb alloy", Computational Materials Science 197, 110581. DOI: 10.1016/j.commatsci.2021.110581.

2017--Smirnova-D-E-Starikov-S-V--Zr-Nb
D.E. Smirnova, and S.V. Starikov (2017), "An interatomic potential for simulation of Zr-Nb system", Computational Materials Science 129, 259-272. DOI: 10.1016/j.commatsci.2016.12.016.

Nd

2015--Elliott-R-S-Akerson-A--Nd
R.S. Elliott, and A. Akerson (2015), "Efficient "universal" shifted Lennard-Jones model for all KIM API supported species".

Ne

2015--Elliott-R-S-Akerson-A--Ne
R.S. Elliott, and A. Akerson (2015), "Efficient "universal" shifted Lennard-Jones model for all KIM API supported species".

1970--Glyde-H-R--Ne
H.R. Glyde (1970), "Anharmonicity and potentials for the solidified inert gases", Journal of Physics C: Solid State Physics 3(4), 810-819. DOI: 10.1088/0022-3719/3/4/009.

1958--Bernardes-N--Ne
N. Bernardes (1958), "Theory of Solid Ne, A, Kr, and Xe at 0°K", Physical Review 112(5), 1534-1539. DOI: 10.1103/physrev.112.1534.

Nh

2015--Elliott-R-S-Akerson-A--Nh
R.S. Elliott, and A. Akerson (2015), "Efficient "universal" shifted Lennard-Jones model for all KIM API supported species".

Ni

2025--Sharifi-H-Wick-C-D--Ni
H. Sharifi, and C.D. Wick (2025), "Developing interatomic potentials for complex concentrated alloys of Cu, Ti, Ni, Cr, Co, Al, Fe, and Mn", Computational Materials Science 248, 113595. DOI: 10.1016/j.commatsci.2024.113595.

2020--Zuo-Y-Chen-C-Li-X-et-al--Ni-SNAP
Y. Zuo, C. Chen, X. Li, Z. Deng, Y. Chen, J. Behler, G. Csányi, A.V. Shapeev, A.P. Thompson, M.A. Wood, and S.P. Ong (2020), "Performance and Cost Assessment of Machine Learning Interatomic Potentials", The Journal of Physical Chemistry A 124(4), 731-745. DOI: 10.1021/acs.jpca.9b08723.

2020--Zuo-Y-Chen-C-Li-X-et-al--Ni-qSNAP
Y. Zuo, C. Chen, X. Li, Z. Deng, Y. Chen, J. Behler, G. Csányi, A.V. Shapeev, A.P. Thompson, M.A. Wood, and S.P. Ong (2020), "Performance and Cost Assessment of Machine Learning Interatomic Potentials", The Journal of Physical Chemistry A 124(4), 731-745. DOI: 10.1021/acs.jpca.9b08723.

2018--Etesami-S-A-Asadi-E--Ni
S.A. Etesami, and E. Asadi (2018), "Molecular dynamics for near melting temperatures simulations of metals using modified embedded-atom method", Journal of Physics and Chemistry of Solids 112, 61-72. DOI: 10.1016/j.jpcs.2017.09.001.

2018--Li-X-G-Hu-C-Chen-C-et-al--Ni
X.-G. Li, C. Hu, C. Chen, Z. Deng, J. Luo, and S.P. Ong (2018), "Quantum-accurate spectral neighbor analysis potential models for Ni-Mo binary alloys and fcc metals", Physical Review B 98(9), 094104. DOI: 10.1103/physrevb.98.094104.

2016--Stoller-R-E-Tamm-A-Beland-L-K-et-al--Ni
R.E. Stoller, A. Tamm, L.K. Béland, G.D. Samolyuk, G.M. Stocks, A. Caro, L.V. Slipchenko, Y.N. Osetsky, A. Aabloo, M. Klintenberg, and Y. Wang (2016), "Impact of Short-Range Forces on Defect Production from High-Energy Collisions", Journal of Chemical Theory and Computation 12(6), 2871-2879. DOI: 10.1021/acs.jctc.5b01194.

2015--Asadi-E-Asle-Zaeem-M-Nouranian-S-Baskes-M-I--Ni
E. Asadi, M. Asle Zaeem, S. Nouranian, and M.I. Baskes (2015), "Two-phase solid-liquid coexistence of Ni, Cu, and Al by molecular dynamics simulations using the modified embedded-atom method", Acta Materialia 86, 169-181. DOI: 10.1016/j.actamat.2014.12.010.

2015--Elliott-R-S-Akerson-A--Ni
R.S. Elliott, and A. Akerson (2015), "Efficient "universal" shifted Lennard-Jones model for all KIM API supported species".

2012--Mendelev-M-I-Kramer-M-J-Hao-S-G-et-al--Ni
M.I. Mendelev, M.J. Kramer, S.G. Hao, K.M. Ho, and C.Z. Wang (2012), "Development of interatomic potentials appropriate for simulation of liquid and glass properties of NiZr2 alloy", Philosophical Magazine 92(35), 4454-4469. DOI: 10.1080/14786435.2012.712220.

2004--Zhou-X-W-Johnson-R-A-Wadley-H-N-G--Ni
X.W. Zhou, R.A. Johnson, and H.N.G. Wadley (2004), "Misfit-energy-increasing dislocations in vapor-deposited CoFe/NiFe multilayers", Physical Review B 69(14), 144113. DOI: 10.1103/physrevb.69.144113.

2003--Lee-B-J-Shim-J-H-Baskes-M-I--Ni
B.-J. Lee, J.-H. Shim, and M.I. Baskes (2003), "Semiempirical atomic potentials for the fcc metals Cu, Ag, Au, Ni, Pd, Pt, Al, and Pb based on first and second nearest-neighbor modified embedded atom method", Physical Review B 68(14), 144112. DOI: 10.1103/physrevb.68.144112.

1999--Mishin-Y-Farkas-D-Mehl-M-J-Papaconstantopoulos-D-A--Ni
Y. Mishin, D. Farkas, M.J. Mehl, and D.A. Papaconstantopoulos (1999), "Interatomic potentials for monoatomic metals from experimental data and ab initio calculations", Physical Review B 59(5), 3393-3407. DOI: 10.1103/physrevb.59.3393.

1996--Jacobsen-K-W-Stoltze-P-Norskov-J-K--Ni
K.W. Jacobsen, P. Stoltze, and J.K. Nørskov (1996), "A semi-empirical effective medium theory for metals and alloys", Surface Science 366(2), 394-402. DOI: 10.1016/0039-6028(96)00816-3.

1995--Angelo-J-E-Moody-N-R-Baskes-M-I--Ni
J.E. Angelo, N.R. Moody, and M.I. Baskes (1995), "Trapping of hydrogen to lattice defects in nickel", Modelling and Simulation in Materials Science and Engineering 3(3), 289-307. DOI: 10.1088/0965-0393/3/3/001.

1989--Adams-J-B-Foiles-S-M-Wolfer-W-G--Ni
J.B. Adams, S.M. Foiles, and W.G. Wolfer (1989), "Self-diffusion and impurity diffusion of fcc metals using the five-frequency model and the Embedded Atom Method", Journal of Materials Research 4(1), 102-112. DOI: 10.1557/jmr.1989.0102.

1987--Ackland-G-J-Tichy-G-Vitek-V-Finnis-M-W--Ni
G.J. Ackland, G. Tichy, V. Vitek, and M.W. Finnis (1987), "Simple N-body potentials for the noble metals and nickel", Philosophical Magazine A 56(6), 735-756. DOI: 10.1080/01418618708204485.

1986--Foiles-S-M-Baskes-M-I-Daw-M-S--Ni
S.M. Foiles, M.I. Baskes, and M.S. Daw (1986), "Embedded-atom-method functions for the fcc metals Cu, Ag, Au, Ni, Pd, Pt, and their alloys", Physical Review B 33(12), 7983-7991. DOI: 10.1103/physrevb.33.7983.

1959--Girifalco-L-A-Weizer-V-G--Ni
L.A. Girifalco, and V.G. Weizer (1959), "Application of the Morse Potential Function to Cubic Metals", Physical Review 114(3), 687-690. DOI: 10.1103/physrev.114.687.

2024--Plummer-G-Tavenner-J-P-Mendelev-M-I-et-al--Ni-O
G. Plummer, J.P. Tavenner, M.I. Mendelev, Z. Wu, and J.W. Lawson (2024), "to be published".

2022--Xu-Y-Wang-G-Qian-P-Su-Y--Ni-Pd
Y. Xu, G. Wang, P. Qian, and Y. Su (2022), "Element segregation and thermal stability of Ni–Pd nanoparticles", Journal of Materials Science. DOI: 10.1007/s10853-022-07118-7.

2018--Jeong-G-U-Park-C-S-Do-H-S-et-al--Pd-Ni
G.-U. Jeong, C.S. Park, H.-S. Do, S.-M. Park, and B.-J. Lee (2018), "Second nearest-neighbor modified embedded-atom method interatomic potentials for the Pd-M (M = Al, Co, Cu, Fe, Mo, Ni, Ti) binary systems", Calphad 62, 172-186. DOI: 10.1016/j.calphad.2018.06.006.

2016--Samolyuk-G-D-Beland-L-K-Stocks-G-M-Stoller-R-E--Ni-Pd
G.D. Samolyuk, L.K. Béland, G.M. Stocks, and R.E. Stoller (2016), "Electron–phonon coupling in Ni-based binary alloys with application to displacement cascade modeling", Journal of Physics: Condensed Matter 28(17), 175501. DOI: 10.1088/0953-8984/28/17/175501.

2017--Kim-J-S-Seol-D-Ji-J-et-al--Ni-Pt
J.-S. Kim, D. Seol, J. Ji, H.-S. Jang, Y. Kim, and B.-J. Lee (2017), "Second nearest-neighbor modified embedded-atom method interatomic potentials for the Pt-M (M = Al, Co, Cu, Mo, Ni, Ti, V) binary systems", Calphad 59, 131-141. DOI: 10.1016/j.calphad.2017.09.005.

2022--Xu-Y-Wang-G-Qian-P-Su-Y--Ni-Rh
Y. Xu, G. Wang, P. Qian, and Y. Su (2022), "Element segregation and thermal stability of Ni–Rh nanoparticles", Journal of Solid State Chemistry 311, 123096. DOI: 10.1016/j.jssc.2022.123096.

2025--Sharifi-H-Wick-C-D--Ni-Ti
H. Sharifi, and C.D. Wick (2025), "Developing interatomic potentials for complex concentrated alloys of Cu, Ti, Ni, Cr, Co, Al, Fe, and Mn", Computational Materials Science 248, 113595. DOI: 10.1016/j.commatsci.2024.113595.

2024--Mendelev-M-I--Ni-Ti
M.I. Mendelev (2024), "to be published".

2022--Tang-H-Zhang-Y-Li-Q-et-al--Ni-Ti-v1
H. Tang, Y. Zhang, Q. Li, H. Xu, Y. Wang, Y. Wang, and J. Li (2022), "High accuracy neural network interatomic potential for NiTi shape memory alloy", Acta Materialia, 118217. DOI: 10.1016/j.actamat.2022.118217.

2022--Tang-H-Zhang-Y-Li-Q-et-al--Ni-Ti-v2
H. Tang, Y. Zhang, Q. Li, H. Xu, Y. Wang, Y. Wang, and J. Li (2022), "High accuracy neural network interatomic potential for NiTi shape memory alloy", Acta Materialia, 118217. DOI: 10.1016/j.actamat.2022.118217.

2019--Kavousi-S-Novak-B-R-Baskes-M-I-et-al--Ni-Ti
S. Kavousi, B.R. Novak, M.I. Baskes, M. Asle Zaeem, and D. Moldovan (2019), "Modified embedded-atom method potential for high-temperature crystal-melt properties of Ti–Ni alloys and its application to phase field simulation of solidification", Modelling and Simulation in Materials Science and Engineering 28(1), 015006. DOI: 10.1088/1361-651x/ab580c.

2017--Kim-Y-K-Kim-H-K-Jung-W-S-Lee-B-J--Ni-Ti
Y.-K. Kim, H.-K. Kim, W.-S. Jung, and B.-J. Lee (2017), "Development and application of Ni-Ti and Ni-Al-Ti 2NN-MEAM interatomic potentials for Ni-base superalloys", Computational Materials Science 139, 225-233. DOI: 10.1016/j.commatsci.2017.08.002.

2015--Ko-W-S-Grabowski-B-Neugebauer-J--Ni-Ti
W.-S. Ko, B. Grabowski, and J. Neugebauer (2015), "Development and application of a Ni-Ti interatomic potential with high predictive accuracy of the martensitic phase transition", Physical Review B 92(13), 134107. DOI: 10.1103/physrevb.92.134107.

2017--Maisel-S-B-Ko-W-S-Zhang-J-L-et-al--V-Ni-Ti
S.B. Maisel, W.-S. Ko, J.-L. Zhang, B. Grabowski, and J. Neugebauer (2017), "Thermomechanical response of NiTi shape-memory nanoprecipitates in TiV alloys", Physical Review Materials 1(3), 033610. DOI: 10.1103/physrevmaterials.1.033610.

2013--Shim-J-H-Ko-W-S-Kim-K-H-et-al--V-Ni
J.-H. Shim, W.-S. Ko, K.-H. Kim, H.-S. Lee, Y.-S. Lee, J.-Y. Suh, Y.W. Cho, and B.-J. Lee (2013), "Prediction of hydrogen permeability in V–Al and V–Ni alloys", Journal of Membrane Science 430, 234-241. DOI: 10.1016/j.memsci.2012.12.019.

2025--Sharifi-H-Wick-C-D--Ni-W
H. Sharifi, and C.D. Wick (2025), "The effects of the W on the phase segregation and shear strength of CrNiCo: A molecular dynamics study", Computational Materials Science 253, 113877. DOI: 10.1016/j.commatsci.2025.113877.

2003--Shim-J-H-Park-S-I-Cho-Y-W-Lee-B-J--Ni-W
J.-H. Shim, S.I. Park, Y.W. Cho, and B.-J. Lee (2003), "Modified embedded-atom method calculation for the Ni–W system", Journal of Materials Research 18(8), 1863-1867. DOI: 10.1557/jmr.2003.0260.

2025--Ostovari-Moghaddam-A-Fereidonnejad-R-Moaddeli-M-et-al--Zr-Ni
A. Ostovari Moghaddam, R. Fereidonnejad, M. Moaddeli, D. Mikhailov, A.S. Vasenko, and E. Trofimov (2025), "Second nearest-neighbor modified embedded-atom method interatomic potentials for the Zr-X (X = Co, Fe, Ni) binary alloys", Computational Materials Science 247, 113534. DOI: 10.1016/j.commatsci.2024.113534.

2015--Wilson-S-R-Mendelev-M-I--Ni-Zr
S.R. Wilson, and M.I. Mendelev (2015), "Anisotropy of the solid-liquid interface properties of the Ni-Zr B33 phase from molecular dynamics simulation", Philosophical Magazine 95(2), 224-241. DOI: 10.1080/14786435.2014.995742.

2012--Mendelev-M-I-Kramer-M-J-Hao-S-G-et-al--Ni-Zr
M.I. Mendelev, M.J. Kramer, S.G. Hao, K.M. Ho, and C.Z. Wang (2012), "Development of interatomic potentials appropriate for simulation of liquid and glass properties of NiZr2 alloy", Philosophical Magazine 92(35), 4454-4469. DOI: 10.1080/14786435.2012.712220.

No

2015--Elliott-R-S-Akerson-A--No
R.S. Elliott, and A. Akerson (2015), "Efficient "universal" shifted Lennard-Jones model for all KIM API supported species".

Np

2015--Elliott-R-S-Akerson-A--Np
R.S. Elliott, and A. Akerson (2015), "Efficient "universal" shifted Lennard-Jones model for all KIM API supported species".

O

2015--Elliott-R-S-Akerson-A--O
R.S. Elliott, and A. Akerson (2015), "Efficient "universal" shifted Lennard-Jones model for all KIM API supported species".

2024--Erhard-L-C-Rohrer-J-Albe-K-Deringer-V-L--Si-O
L.C. Erhard, J. Rohrer, K. Albe, and V.L. Deringer (2024), "Modelling atomic and nanoscale structure in the silicon–oxygen system through active machine learning", Nature Communications 15(1), 1927. DOI: 10.1038/s41467-024-45840-9.

2022--Erhard-L-C-Rohrer-J-Albe-K-Deringer-V-L--Si-O
L.C. Erhard, J. Rohrer, K. Albe, and V.L. Deringer (2022), "A machine-learned interatomic potential for silica and its relation to empirical models", npj Computational Materials 8(1), 90. DOI: 10.1038/s41524-022-00768-w.

2016--Lee-E-Lee-K-R-Baskes-M-I-Lee-B-J--Si-O
E. Lee, K.-R. Lee, M.I. Baskes, and B.-J. Lee (2016), "A modified embedded-atom method interatomic potential for ionic systems: 2NNMEAM+Qeq", Physical Review B 93(14), 144110. DOI: 10.1103/physrevb.93.144110.

2007--Munetoh-S-Motooka-T-Moriguchi-K-Shintani-A--Si-O
S. Munetoh, T. Motooka, K. Moriguchi, and A. Shintani (2007), "Interatomic potential for Si-O systems using Tersoff parameterization", Computational Materials Science 39(2), 334-339. DOI: 10.1016/j.commatsci.2006.06.010.

1997--Broughton-J-Q-Meli-C-A-Vashishta-P-Kalia-R-K--Si-O
J.Q. Broughton, C.A. Meli, P. Vashishta, and R.K. Kalia (1997), "Direct atomistic simulation of quartz crystal oscillators: Bulk properties and nanoscale devices", Physical Review B 56(2), 611-618. DOI: 10.1103/physrevb.56.611.

1994--Nakano-A-Kalia-R-K-Vashishta-P--Si-O
A. Nakano, R.K. Kalia, and P. Vashishta (1994), "First sharp diffraction peak and intermediate-range order in amorphous silica: finite-size effects in molecular dynamics simulations", Journal of Non-Crystalline Solids 171(2), 157-163. DOI: 10.1016/0022-3093(94)90351-4.

1990--Vashishta-P-Kalia-R-K-Rino-J-P-Ebbsjo-I--Si-O
P. Vashishta, R.K. Kalia, J.P. Rino, and I. Ebbsjö (1990), "Interaction potential for SiO2: A molecular-dynamics study of structural correlations", Physical Review B 41(17), 12197-12209. DOI: 10.1103/physrevb.41.12197.

2025--Zhou-S-Jiang-C-Xiao-E-et-al--U-Th-O
S. Zhou, C. Jiang, E. Xiao, S. Bandi, M.W.D. Cooper, M. Jin, D. H Hurley, M. Khafizov, and C.A. Marianetti (2025), "Parameterizing empirical interatomic potentials for predicting thermophysical properties via an irreducible derivative approach: the case of ThO2 and UO2", Journal of Physics: Condensed Matter 37(25), 255901. DOI: 10.1088/1361-648x/ade10a.

2016--Lee-E-Lee-K-R-Baskes-M-I-Lee-B-J--Ti-O
E. Lee, K.-R. Lee, M.I. Baskes, and B.-J. Lee (2016), "A modified embedded-atom method interatomic potential for ionic systems: 2NNMEAM+Qeq", Physical Review B 93(14), 144110. DOI: 10.1103/physrevb.93.144110.

2016--Zhang-P-Trinkle-D-R--Ti-O
P. Zhang, and D.R. Trinkle (2016), "A modified embedded atom method potential for interstitial oxygen in titanium", Computational Materials Science 124, 204-210. DOI: 10.1016/j.commatsci.2016.07.039.

2013--Umeno-Y-Iskandarov-A-M-Kubo-A-Albina-J-M--O-Y-Zr
Y. Umeno, A.M. Iskandarov, A. Kubo, and J.M. Albina (2013), "Atomistic Modeling and Ab Initio Calculations of Yttria-Stabilized Zirconia", ECS Transactions 57(1), 2791-2797. DOI: 10.1149/05701.2791ecst.

2006--Erhart-P-Juslin-N-Goy-O-et-al--Zn-O
P. Erhart, N. Juslin, O. Goy, K. Nordlund, R. Müller, and K. Albe (2006), "Analytic bond-order potential for atomistic simulations of zinc oxide", Journal of Physics: Condensed Matter 18(29), 6585-6605. DOI: 10.1088/0953-8984/18/29/003.

Og

2015--Elliott-R-S-Akerson-A--Og
R.S. Elliott, and A. Akerson (2015), "Efficient "universal" shifted Lennard-Jones model for all KIM API supported species".

Os

2015--Elliott-R-S-Akerson-A--Os
R.S. Elliott, and A. Akerson (2015), "Efficient "universal" shifted Lennard-Jones model for all KIM API supported species".

P

2015--Elliott-R-S-Akerson-A--P
R.S. Elliott, and A. Akerson (2015), "Efficient "universal" shifted Lennard-Jones model for all KIM API supported species".

2012--Ko-W-S-Kim-N-J-Lee-B-J--P
W.-S. Ko, N.J. Kim, and B.-J. Lee (2012), "Atomistic modeling of an impurity element and a metal-impurity system: pure P and Fe-P system", Journal of Physics: Condensed Matter 24(22), 225002. DOI: 10.1088/0953-8984/24/22/225002.

Pa

2015--Elliott-R-S-Akerson-A--Pa
R.S. Elliott, and A. Akerson (2015), "Efficient "universal" shifted Lennard-Jones model for all KIM API supported species".

Pb

2023--Li-P-Huang-Y-Wang-K-et-al--Pb
P. Li, Y. Huang, K. Wang, S. Xiao, S. Yao, and W. Hu (2023), "Response embedded atom model potential of Pb at finite temperature: application on the dislocation mobility", Physica Scripta 98(2), 025401. DOI: 10.1088/1402-4896/acaeec.

2018--Wang-K-Zhu-W-Xiang-M-et-al--Pb-II
K. Wang, W. Zhu, M. Xiang, Y. Xu, G. Li, and J. Chen (2018), "Improved embedded-atom model potentials of Pb at high pressure: application to investigations of plasticity and phase transition under extreme conditions", Modelling and Simulation in Materials Science and Engineering 27(1), 015001. DOI: 10.1088/1361-651x/aaea55.

2015--Elliott-R-S-Akerson-A--Pb
R.S. Elliott, and A. Akerson (2015), "Efficient "universal" shifted Lennard-Jones model for all KIM API supported species".

2012--Belashchenko-D-K--Pb
D.K. Belashchenko (2012), "Computer simulation of the properties of liquid metals: Gallium, lead, and bismuth", Russian Journal of Physical Chemistry A 86(5), 779-790. DOI: 10.1134/s0036024412050056.

2004--Zhou-X-W-Johnson-R-A-Wadley-H-N-G--Pb
X.W. Zhou, R.A. Johnson, and H.N.G. Wadley (2004), "Misfit-energy-increasing dislocations in vapor-deposited CoFe/NiFe multilayers", Physical Review B 69(14), 144113. DOI: 10.1103/physrevb.69.144113.

2003--Lee-B-J-Shim-J-H-Baskes-M-I--Pb
B.-J. Lee, J.-H. Shim, and M.I. Baskes (2003), "Semiempirical atomic potentials for the fcc metals Cu, Ag, Au, Ni, Pd, Pt, Al, and Pb based on first and second nearest-neighbor modified embedded atom method", Physical Review B 68(14), 144112. DOI: 10.1103/physrevb.68.144112.

1959--Girifalco-L-A-Weizer-V-G--Pb
L.A. Girifalco, and V.G. Weizer (1959), "Application of the Morse Potential Function to Cubic Metals", Physical Review 114(3), 687-690. DOI: 10.1103/physrev.114.687.

2018--Etesami-S-A-Baskes-M-I-Laradji-M-Asadi-E--Pb-Sn
S.A. Etesami, M.I. Baskes, M. Laradji, and E. Asadi (2018), "Thermodynamics of solid Sn and Pb-Sn liquid mixtures using molecular dynamics simulations", Acta Materialia 161, 320-330. DOI: 10.1016/j.actamat.2018.09.036.

Pd

2015--Elliott-R-S-Akerson-A--Pd
R.S. Elliott, and A. Akerson (2015), "Efficient "universal" shifted Lennard-Jones model for all KIM API supported species".

2004--Zhou-X-W-Johnson-R-A-Wadley-H-N-G--Pd
X.W. Zhou, R.A. Johnson, and H.N.G. Wadley (2004), "Misfit-energy-increasing dislocations in vapor-deposited CoFe/NiFe multilayers", Physical Review B 69(14), 144113. DOI: 10.1103/physrevb.69.144113.

2003--Lee-B-J-Shim-J-H-Baskes-M-I--Pd
B.-J. Lee, J.-H. Shim, and M.I. Baskes (2003), "Semiempirical atomic potentials for the fcc metals Cu, Ag, Au, Ni, Pd, Pt, Al, and Pb based on first and second nearest-neighbor modified embedded atom method", Physical Review B 68(14), 144112. DOI: 10.1103/physrevb.68.144112.

1996--Jacobsen-K-W-Stoltze-P-Norskov-J-K--Pd
K.W. Jacobsen, P. Stoltze, and J.K. Nørskov (1996), "A semi-empirical effective medium theory for metals and alloys", Surface Science 366(2), 394-402. DOI: 10.1016/0039-6028(96)00816-3.

1989--Adams-J-B-Foiles-S-M-Wolfer-W-G--Pd
J.B. Adams, S.M. Foiles, and W.G. Wolfer (1989), "Self-diffusion and impurity diffusion of fcc metals using the five-frequency model and the Embedded Atom Method", Journal of Materials Research 4(1), 102-112. DOI: 10.1557/jmr.1989.0102.

1986--Foiles-S-M-Baskes-M-I-Daw-M-S--Pd
S.M. Foiles, M.I. Baskes, and M.S. Daw (1986), "Embedded-atom-method functions for the fcc metals Cu, Ag, Au, Ni, Pd, Pt, and their alloys", Physical Review B 33(12), 7983-7991. DOI: 10.1103/physrevb.33.7983.

2018--Jeong-G-U-Park-C-S-Do-H-S-et-al--Pd-Ti
G.-U. Jeong, C.S. Park, H.-S. Do, S.-M. Park, and B.-J. Lee (2018), "Second nearest-neighbor modified embedded-atom method interatomic potentials for the Pd-M (M = Al, Co, Cu, Fe, Mo, Ni, Ti) binary systems", Calphad 62, 172-186. DOI: 10.1016/j.calphad.2018.06.006.

2013--Ko-W-S-Lee-B-J--V-Pd-Y
W.-S. Ko, and B.-J. Lee (2013), "Modified embedded-atom method interatomic potentials for pure Y and the V-Pd-Y ternary system", Modelling and Simulation in Materials Science and Engineering 21(8), 085008. DOI: 10.1088/0965-0393/21/8/085008.

Pm

2015--Elliott-R-S-Akerson-A--Pm
R.S. Elliott, and A. Akerson (2015), "Efficient "universal" shifted Lennard-Jones model for all KIM API supported species".

Po

2015--Elliott-R-S-Akerson-A--Po
R.S. Elliott, and A. Akerson (2015), "Efficient "universal" shifted Lennard-Jones model for all KIM API supported species".

Pr

2015--Elliott-R-S-Akerson-A--Pr
R.S. Elliott, and A. Akerson (2015), "Efficient "universal" shifted Lennard-Jones model for all KIM API supported species".

Pt

2015--Elliott-R-S-Akerson-A--Pt
R.S. Elliott, and A. Akerson (2015), "Efficient "universal" shifted Lennard-Jones model for all KIM API supported species".

2004--Zhou-X-W-Johnson-R-A-Wadley-H-N-G--Pt
X.W. Zhou, R.A. Johnson, and H.N.G. Wadley (2004), "Misfit-energy-increasing dislocations in vapor-deposited CoFe/NiFe multilayers", Physical Review B 69(14), 144113. DOI: 10.1103/physrevb.69.144113.

2003--Lee-B-J-Shim-J-H-Baskes-M-I--Pt
B.-J. Lee, J.-H. Shim, and M.I. Baskes (2003), "Semiempirical atomic potentials for the fcc metals Cu, Ag, Au, Ni, Pd, Pt, Al, and Pb based on first and second nearest-neighbor modified embedded atom method", Physical Review B 68(14), 144112. DOI: 10.1103/physrevb.68.144112.

1996--Jacobsen-K-W-Stoltze-P-Norskov-J-K--Pt
K.W. Jacobsen, P. Stoltze, and J.K. Nørskov (1996), "A semi-empirical effective medium theory for metals and alloys", Surface Science 366(2), 394-402. DOI: 10.1016/0039-6028(96)00816-3.

1990--Ackland-G-J--Pt
G.J. Ackland (1990), "unpublished".

1989--Adams-J-B-Foiles-S-M-Wolfer-W-G--Pt
J.B. Adams, S.M. Foiles, and W.G. Wolfer (1989), "Self-diffusion and impurity diffusion of fcc metals using the five-frequency model and the Embedded Atom Method", Journal of Materials Research 4(1), 102-112. DOI: 10.1557/jmr.1989.0102.

1986--Foiles-S-M-Baskes-M-I-Daw-M-S--Pt
S.M. Foiles, M.I. Baskes, and M.S. Daw (1986), "Embedded-atom-method functions for the fcc metals Cu, Ag, Au, Ni, Pd, Pt, and their alloys", Physical Review B 33(12), 7983-7991. DOI: 10.1103/physrevb.33.7983.

2017--Kim-J-S-Seol-D-Ji-J-et-al--Pt-Ti
J.-S. Kim, D. Seol, J. Ji, H.-S. Jang, Y. Kim, and B.-J. Lee (2017), "Second nearest-neighbor modified embedded-atom method interatomic potentials for the Pt-M (M = Al, Co, Cu, Mo, Ni, Ti, V) binary systems", Calphad 59, 131-141. DOI: 10.1016/j.calphad.2017.09.005.

2017--Kim-J-S-Seol-D-Ji-J-et-al--Pt-V
J.-S. Kim, D. Seol, J. Ji, H.-S. Jang, Y. Kim, and B.-J. Lee (2017), "Second nearest-neighbor modified embedded-atom method interatomic potentials for the Pt-M (M = Al, Co, Cu, Mo, Ni, Ti, V) binary systems", Calphad 59, 131-141. DOI: 10.1016/j.calphad.2017.09.005.

Pu

2015--Elliott-R-S-Akerson-A--Pu
R.S. Elliott, and A. Akerson (2015), "Efficient "universal" shifted Lennard-Jones model for all KIM API supported species".

Ra

2015--Elliott-R-S-Akerson-A--Ra
R.S. Elliott, and A. Akerson (2015), "Efficient "universal" shifted Lennard-Jones model for all KIM API supported species".

Rb

2016--Nichol-A-Ackland-G-J--Rb
A. Nichol, and G.J. Ackland (2016), "Property trends in simple metals: An empirical potential approach", Physical Review B 93(18), 184101. DOI: 10.1103/physrevb.93.184101.

2015--Elliott-R-S-Akerson-A--Rb
R.S. Elliott, and A. Akerson (2015), "Efficient "universal" shifted Lennard-Jones model for all KIM API supported species".

1959--Girifalco-L-A-Weizer-V-G--Rb
L.A. Girifalco, and V.G. Weizer (1959), "Application of the Morse Potential Function to Cubic Metals", Physical Review 114(3), 687-690. DOI: 10.1103/physrev.114.687.

Re

2015--Elliott-R-S-Akerson-A--Re
R.S. Elliott, and A. Akerson (2015), "Efficient "universal" shifted Lennard-Jones model for all KIM API supported species".

2019--Chen-Y-Fang-J-Liu-L-et-al--W-Re
Y. Chen, J. Fang, L. Liu, W. Hu, C. Jiang, N. Gao, H.-B. Zhou, G.-H. Lu, F. Gao, and H. Deng (2019), "The interactions between rhenium and interstitial-type defects in bulk tungsten: A combined study by molecular dynamics and molecular statics simulations", Journal of Nuclear Materials 522, 200-211. DOI: 10.1016/j.jnucmat.2019.05.003.

2018--Chen-Y-Li-Y-H-Gao-N-et-al--W-Re
Y. Chen, Y.-H. Li, N. Gao, H.-B. Zhou, W. Hu, G.-H. Lu, F. Gao, and H. Deng (2018), "New interatomic potentials of W, Re and W-Re alloy for radiation defects", Journal of Nuclear Materials 502, 141-153. DOI: 10.1016/j.jnucmat.2018.01.059.

2018--Setyawan-W-Gao-N-Kurtz-R-J--W-Re
W. Setyawan, N. Gao, and R.J. Kurtz (2018), "A tungsten-rhenium interatomic potential for point defect studies", Journal of Applied Physics 123(20), 205102. DOI: 10.1063/1.5030113.

2017--Bonny-G-Bakaev-A-Terentyev-D-Mastrikov-Y-A--W-Re
G. Bonny, A. Bakaev, D. Terentyev, and Y.A. Mastrikov (2017), "Interatomic potential to study plastic deformation in tungsten-rhenium alloys", Journal of Applied Physics 121(16), 165107. DOI: 10.1063/1.4982361.

Rf

2015--Elliott-R-S-Akerson-A--Rf
R.S. Elliott, and A. Akerson (2015), "Efficient "universal" shifted Lennard-Jones model for all KIM API supported species".

Rg

2015--Elliott-R-S-Akerson-A--Rg
R.S. Elliott, and A. Akerson (2015), "Efficient "universal" shifted Lennard-Jones model for all KIM API supported species".

Rh

2015--Elliott-R-S-Akerson-A--Rh
R.S. Elliott, and A. Akerson (2015), "Efficient "universal" shifted Lennard-Jones model for all KIM API supported species".

Rn

2015--Elliott-R-S-Akerson-A--Rn
R.S. Elliott, and A. Akerson (2015), "Efficient "universal" shifted Lennard-Jones model for all KIM API supported species".

Ru

2015--Elliott-R-S-Akerson-A--Ru
R.S. Elliott, and A. Akerson (2015), "Efficient "universal" shifted Lennard-Jones model for all KIM API supported species".

2008--Fortini-A-Mendelev-M-I-Buldyrev-S-Srolovitz-D--Ru
A. Fortini, M.I. Mendelev, S. Buldyrev, and D. Srolovitz (2008), "Asperity contacts at the nanoscale: Comparison of Ru and Au", Journal of Applied Physics 104(7), 074320. DOI: 10.1063/1.2991301.

S

2015--Elliott-R-S-Akerson-A--S
R.S. Elliott, and A. Akerson (2015), "Efficient "universal" shifted Lennard-Jones model for all KIM API supported species".

Sb

2015--Elliott-R-S-Akerson-A--Sb
R.S. Elliott, and A. Akerson (2015), "Efficient "universal" shifted Lennard-Jones model for all KIM API supported species".

Sc

2015--Elliott-R-S-Akerson-A--Sc
R.S. Elliott, and A. Akerson (2015), "Efficient "universal" shifted Lennard-Jones model for all KIM API supported species".

Se

2015--Elliott-R-S-Akerson-A--Se
R.S. Elliott, and A. Akerson (2015), "Efficient "universal" shifted Lennard-Jones model for all KIM API supported species".

Sg

2015--Elliott-R-S-Akerson-A--Sg
R.S. Elliott, and A. Akerson (2015), "Efficient "universal" shifted Lennard-Jones model for all KIM API supported species".

Si

2020--Zuo-Y-Chen-C-Li-X-et-al--Si-SNAP
Y. Zuo, C. Chen, X. Li, Z. Deng, Y. Chen, J. Behler, G. Csányi, A.V. Shapeev, A.P. Thompson, M.A. Wood, and S.P. Ong (2020), "Performance and Cost Assessment of Machine Learning Interatomic Potentials", The Journal of Physical Chemistry A 124(4), 731-745. DOI: 10.1021/acs.jpca.9b08723.

2020--Zuo-Y-Chen-C-Li-X-et-al--Si-qSNAP
Y. Zuo, C. Chen, X. Li, Z. Deng, Y. Chen, J. Behler, G. Csányi, A.V. Shapeev, A.P. Thompson, M.A. Wood, and S.P. Ong (2020), "Performance and Cost Assessment of Machine Learning Interatomic Potentials", The Journal of Physical Chemistry A 124(4), 731-745. DOI: 10.1021/acs.jpca.9b08723.

2017--Purja-Pun-G-P-Mishin-Y--Si
G.P. Purja Pun, and Y. Mishin (2017), "Optimized interatomic potential for silicon and its application to thermal stability of silicene", Physical Review B 95(22), 224103. DOI: 10.1103/physrevb.95.224103.

2015--Elliott-R-S-Akerson-A--Si
R.S. Elliott, and A. Akerson (2015), "Efficient "universal" shifted Lennard-Jones model for all KIM API supported species".

2014--Zhang-X-Xie-H-Hu-M-et-al--Si-1
X. Zhang, H. Xie, M. Hu, H. Bao, S. Yue, G. Qin, and G. Su (2014), "Thermal conductivity of silicene calculated using an optimized Stillinger-Weber potential", Physical Review B 89(5), 054310. DOI: 10.1103/physrevb.89.054310.

2014--Zhang-X-Xie-H-Hu-M-et-al--Si-2
X. Zhang, H. Xie, M. Hu, H. Bao, S. Yue, G. Qin, and G. Su (2014), "Thermal conductivity of silicene calculated using an optimized Stillinger-Weber potential", Physical Review B 89(5), 054310. DOI: 10.1103/physrevb.89.054310.

2012--Lee-Y-Hwang-G-S--Si-GGA
Y. Lee, and G.S. Hwang (2012), "Force-matching-based parameterization of the Stillinger-Weber potential for thermal conduction in silicon", Physical Review B 85(12), 125204. DOI: 10.1103/physrevb.85.125204.

2012--Lee-Y-Hwang-G-S--Si-LDA
Y. Lee, and G.S. Hwang (2012), "Force-matching-based parameterization of the Stillinger-Weber potential for thermal conduction in silicon", Physical Review B 85(12), 125204. DOI: 10.1103/physrevb.85.125204.

2011--Du-Y-A-Lenosky-T-J-Hennig-R-G-et-al--Si
Y.A. Du, T.J. Lenosky, R.G. Hennig, S. Goedecker, and J.W. Wilkins (2011), "Energy landscape of silicon tetra-interstitials using an optimized classical potential", physica status solidi (b) 248(9), 2050-2055. DOI: 10.1002/pssb.201147137.

2007--Kumagai-T-Izumi-S-Hara-S-Sakai-S--Si
T. Kumagai, S. Izumi, S. Hara, and S. Sakai (2007), "Development of bond-order potentials that can reproduce the elastic constants and melting point of silicon for classical molecular dynamics simulation", Computational Materials Science 39(2), 457-464. DOI: 10.1016/j.commatsci.2006.07.013.

2007--Lee-B-J--Si
B.-J. Lee (2007), "A modified embedded atom method interatomic potential for silicon", Calphad 31(1), 95-104. DOI: 10.1016/j.calphad.2006.10.002.

2000--Lenosky-T-J-Sadigh-B-Alonso-E-et-al--Si
T.J. Lenosky, B. Sadigh, E. Alonso, V.V. Bulatov, T.D. Rubia, J. Kim, A.F. Voter, and J.D. Kress (2000), "Highly optimized empirical potential model of silicon", Modelling and Simulation in Materials Science and Engineering 8(6), 825-841. DOI: 10.1088/0965-0393/8/6/305.

1999--Hauch-J-A-Holland-D-Marder-M-P-Swinney-H-L--Si
J.A. Hauch, D. Holland, M.P. Marder, and H.L. Swinney (1999), "Dynamic Fracture in Single Crystal Silicon", Physical Review Letters 82(19), 3823-3826. DOI: 10.1103/physrevlett.82.3823.

1998--Justo-J-F-Bazant-M-Z-Kaxiras-E-et-al--Si
J.F. Justo, M.Z. Bazant, E. Kaxiras, V.V. Bulatov, and S. Yip (1998), "Interatomic potential for silicon defects and disordered phases", Physical Review B 58(5), 2539-2550. DOI: 10.1103/physrevb.58.2539.

1996--Stephenson-P-C-L-Radny-M-W-Smith-P-V--Si
P.C.L. Stephenson, M.W. Radny, and P.V. Smith (1996), "A modified Stillinger-Weber potential for modelling silicon surfaces", Surface Science 366(1), 177-184. DOI: 10.1016/0039-6028(96)00801-1.

1993--Gong-X-G--Si
X.G. Gong (1993), "Empirical-potential studies on the structural properties of small silicon clusters", Physical Review B 47(4), 2329-2332. DOI: 10.1103/physrevb.47.2329.

1992--Balamane-H-Halicioglu-T-Tiller-W-A--Si
H. Balamane, T. Halicioglu, and W.A. Tiller (1992), "Comparative study of silicon empirical interatomic potentials", Physical Review B 46(4), 2250-2279. DOI: 10.1103/physrevb.46.2250.
F.H. Stillinger, and T.A. Weber (1985), "Computer simulation of local order in condensed phases of silicon", Physical Review B 31(8), 5262-5271. DOI: 10.1103/physrevb.31.5262.

1992--Baskes-M-I--Si
M.I. Baskes (1992), "Modified embedded-atom potentials for cubic materials and impurities", Physical Review B 46(5), 2727-2742. DOI: 10.1103/physrevb.46.2727.

1991--Wang-J-Rockett-A--Si
J. Wang, and A. Rockett (1991), "Simulating diffusion on Si(001) 2×1 surfaces using a modified interatomic potential", Physical Review B 43(15), 12571-12579. DOI: 10.1103/physrevb.43.12571.

1989--Mistriotis-A-D-Flytzanis-N-Farantos-S-C--Si
A.D. Mistriotis, N. Flytzanis, and S.C. Farantos (1989), "Potential model for silicon clusters", Physical Review B 39(2), 1212-1218. DOI: 10.1103/physrevb.39.1212.

1988--Kaxiras-E-Pandey-K-C--Si
E. Kaxiras, and K.C. Pandey (1988), "New classical potential for accurate simulation of atomic processes in Si", Physical Review B 38(17), 12736-12739. DOI: 10.1103/physrevb.38.12736.

1988--Khor-K-E-Das-Sarma-S--Si
K.E. Khor, and S. Das Sarma (1988), "Proposed universal interatomic potential for elemental tetrahedrally bonded semiconductors", Physical Review B 38(5), 3318-3322. DOI: 10.1103/physrevb.38.3318.

1988--Tersoff-J--Si-b
J. Tersoff (1988), "New empirical approach for the structure and energy of covalent systems", Physical Review B 37(12), 6991-7000. DOI: 10.1103/physrevb.37.6991.

1988--Tersoff-J--Si-c
J. Tersoff (1988), "Empirical interatomic potential for silicon with improved elastic properties", Physical Review B 38(14), 9902-9905. DOI: 10.1103/physrevb.38.9902.

1987--Biswas-R-Hamann-D-R--Si
R. Biswas, and D.R. Hamann (1987), "New classical models for silicon structural energies", Physical Review B 36(12), 6434-6445. DOI: 10.1103/physrevb.36.6434.

1986--Tersoff-J--Si
J. Tersoff (1986), "New empirical model for the structural properties of silicon", Physical Review Letters 56(6), 632-635. DOI: 10.1103/physrevlett.56.632.

1985--Stillinger-F-H-Weber-T-A--Si
F.H. Stillinger, and T.A. Weber (1985), "Computer simulation of local order in condensed phases of silicon", Physical Review B 31(8), 5262-5271. DOI: 10.1103/physrevb.31.5262.
F.H. Stillinger, and T.A. Weber (1986), "Erratum: Computer simulation of local order in condensed phases of silicon [Phys. Rev. B 31, 5262 (1985)]", Physical Review B 33(2), 1451-1451. DOI: 10.1103/physrevb.33.1451.

2017--Beeler-B-Baskes-M-Andersson-D-et-al--U-Si
B. Beeler, M. Baskes, D. Andersson, M.W.D. Cooper, and Y. Zhang (2017), "A modified Embedded-Atom Method interatomic potential for uranium-silicide", Journal of Nuclear Materials 495, 267-276. DOI: 10.1016/j.jnucmat.2017.08.025.

Sm

2015--Elliott-R-S-Akerson-A--Sm
R.S. Elliott, and A. Akerson (2015), "Efficient "universal" shifted Lennard-Jones model for all KIM API supported species".

Sn

2023--Nitol-M-S-Dang-K-Fensin-S-J-et-al--Sn
M.S. Nitol, K. Dang, S.J. Fensin, M.I. Baskes, D.E. Dickel, and C.D. Barrett (2023), "Hybrid interatomic potential for Sn", Physical Review Materials 7(4), 043601. DOI: 10.1103/physrevmaterials.7.043601.

2018--Ko-W-S-Kim-D-H-Kwon-Y-J-Lee-M--Sn
W.-S. Ko, D.-H. Kim, Y.-J. Kwon, and M. Lee (2018), "Atomistic Simulations of Pure Tin Based on a New Modified Embedded-Atom Method Interatomic Potential", Metals 8(11), 900. DOI: 10.3390/met8110900.

2015--Elliott-R-S-Akerson-A--Sn
R.S. Elliott, and A. Akerson (2015), "Efficient "universal" shifted Lennard-Jones model for all KIM API supported species".

Sr

2015--Elliott-R-S-Akerson-A--Sr
R.S. Elliott, and A. Akerson (2015), "Efficient "universal" shifted Lennard-Jones model for all KIM API supported species".

1959--Girifalco-L-A-Weizer-V-G--Sr
L.A. Girifalco, and V.G. Weizer (1959), "Application of the Morse Potential Function to Cubic Metals", Physical Review 114(3), 687-690. DOI: 10.1103/physrev.114.687.

2017--Wang-P-Xu-S-Liu-J-et-al--TWIP
P. Wang, S. Xu, J. Liu, X. Li, Y. Wei, H. Wang, H. Gao, and W. Yang (2017), "Atomistic simulation for deforming complex alloys with application toward TWIP steel and associated physical insights", Journal of the Mechanics and Physics of Solids 98, 290-308. DOI: 10.1016/j.jmps.2016.09.008.

Ta

2022--Lin-Y-S-Purja-Pun-G-P-Mishin-Y--Ta
Y.-S. Lin, G.P. Purja Pun, and Y. Mishin (2022), "Development of a physically-informed neural network interatomic potential for tantalum", Computational Materials Science 205, 111180. DOI: 10.1016/j.commatsci.2021.111180.
Y. Mishin (2021), "Machine-learning interatomic potentials for materials science", Acta Materialia 214, 116980. DOI: 10.1016/j.actamat.2021.116980.

2015--Elliott-R-S-Akerson-A--Ta
R.S. Elliott, and A. Akerson (2015), "Efficient "universal" shifted Lennard-Jones model for all KIM API supported species".

2015--Purja-Pun-G-P-Darling-K-A-Kecskes-L-J-Mishin-Y--Ta
G.P. Purja Pun, K.A. Darling, L.J. Kecskes, and Y. Mishin (2015), "Angular-dependent interatomic potential for the Cu-Ta system and its application to structural stability of nano-crystalline alloys", Acta Materialia 100, 377-391. DOI: 10.1016/j.actamat.2015.08.052.

2015--Thompson-A-P-Swiler-L-P-Trott-C-R-et-al--Ta
A.P. Thompson, L.P. Swiler, C.R. Trott, S.M. Foiles, and G.J. Tucker (2015), "Spectral neighbor analysis method for automated generation of quantum-accurate interatomic potentials", Journal of Computational Physics 285, 316-330. DOI: 10.1016/j.jcp.2014.12.018.

2013--Ravelo-R-Germann-T-C-Guerrero-O-et-al--Ta-1
R. Ravelo, T.C. Germann, O. Guerrero, Q. An, and B.L. Holian (2013), "Shock-induced plasticity in tantalum single crystals: Interatomic potentials and large-scale molecular-dynamics simulations", Physical Review B 88(13), 134101. DOI: 10.1103/physrevb.88.134101.

2013--Ravelo-R-Germann-T-C-Guerrero-O-et-al--Ta-2
R. Ravelo, T.C. Germann, O. Guerrero, Q. An, and B.L. Holian (2013), "Shock-induced plasticity in tantalum single crystals: Interatomic potentials and large-scale molecular-dynamics simulations", Physical Review B 88(13), 134101. DOI: 10.1103/physrevb.88.134101.

2007--Derlet-P-M-Nguyen-Manh-D-Dudarev-S-L--Ta
P.M. Derlet, D. Nguyen-Manh, and S.L. Dudarev (2007), "Multiscale modeling of crowdion and vacancy defects in body-centered-cubic transition metals", Physical Review B 76(5), 054107. DOI: 10.1103/physrevb.76.054107.

2004--Zhou-X-W-Johnson-R-A-Wadley-H-N-G--Ta
X.W. Zhou, R.A. Johnson, and H.N.G. Wadley (2004), "Misfit-energy-increasing dislocations in vapor-deposited CoFe/NiFe multilayers", Physical Review B 69(14), 144113. DOI: 10.1103/physrevb.69.144113.

2003--Han-S-Zepeda-Ruiz-L-A-Ackland-G-J-et-al--Ta
S. Han, L.A. Zepeda-Ruiz, G.J. Ackland, R. Car, and D.J. Srolovitz (2003), "Interatomic potential for vanadium suitable for radiation damage simulations", Journal of Applied Physics 93(6), 3328-3335. DOI: 10.1063/1.1555275.

2003--Li-Y-Siegel-D-J-Adams-J-B-Liu-X-Y--Ta
Y. Li, D.J. Siegel, J.B. Adams, and X.-Y. Liu (2003), "Embedded-atom-method tantalum potential developed by the force-matching method", Physical Review B 67(12), 125101. DOI: 10.1103/physrevb.67.125101.

2001--Lee-B-J-Baskes-M-I-Kim-H-Cho-Y-K--Ta
B.-J. Lee, M.I. Baskes, H. Kim, and Y.K. Cho (2001), "Second nearest-neighbor modified embedded atom method potentials for bcc transition metals", Physical Review B 64(18), 184102. DOI: 10.1103/physrevb.64.184102.

1987--Ackland-G-J-Thetford-R--Ta
G.J. Ackland, and R. Thetford (1987), "An improved N-body semi-empirical model for body-centred cubic transition metals", Philosophical Magazine A 56(1), 15-30. DOI: 10.1080/01418618708204464.

2019--Chen-Y-Fang-J-Liu-L-et-al--W-Ta
Y. Chen, J. Fang, L. Liu, W. Hu, N. Gao, F. Gao, and H. Deng (2019), "Development of the interatomic potentials for W-Ta system", Computational Materials Science 163, 91-99. DOI: 10.1016/j.commatsci.2019.03.021.

Tb

2018--Mendelev-M-I-Zhang-F-Song-H-et-al--Tb
M.I. Mendelev, F. Zhang, H. Song, Y. Sun, C.Z. Wang, and K.M. Ho (2018), "Molecular dynamics simulation of the solid-liquid interface migration in terbium", The Journal of Chemical Physics 148(21), 214705. DOI: 10.1063/1.5026922.

2015--Elliott-R-S-Akerson-A--Tb
R.S. Elliott, and A. Akerson (2015), "Efficient "universal" shifted Lennard-Jones model for all KIM API supported species".

Tc

2015--Elliott-R-S-Akerson-A--Tc
R.S. Elliott, and A. Akerson (2015), "Efficient "universal" shifted Lennard-Jones model for all KIM API supported species".

Te

2015--Elliott-R-S-Akerson-A--Te
R.S. Elliott, and A. Akerson (2015), "Efficient "universal" shifted Lennard-Jones model for all KIM API supported species".

Th

2015--Elliott-R-S-Akerson-A--Th
R.S. Elliott, and A. Akerson (2015), "Efficient "universal" shifted Lennard-Jones model for all KIM API supported species".

Ti

2025--Sharifi-H-Wick-C-D--Ti
H. Sharifi, and C.D. Wick (2025), "Developing interatomic potentials for complex concentrated alloys of Cu, Ti, Ni, Cr, Co, Al, Fe, and Mn", Computational Materials Science 248, 113595. DOI: 10.1016/j.commatsci.2024.113595.

2022--Nitol-M-S-Dickel-D-E-Barrett-C-D--Ti
M.S. Nitol, D.E. Dickel, and C.D. Barrett (2022), "Machine learning models for predictive materials science from fundamental physics: An application to titanium and zirconium", Acta Materialia 224, 117347. DOI: 10.1016/j.actamat.2021.117347.

2016--Gibson-J-S-Srinivasan-S-G-Baskes-M-I-et-al--Ti
J.S. Gibson, S.G. Srinivasan, M.I. Baskes, R.E. Miller, and A.K. Wilson (2016), "A multi-state modified embedded atom method potential for titanium", Modelling and Simulation in Materials Science and Engineering 25(1), 015010. DOI: 10.1088/1361-651x/25/1/015010.

2016--Mendelev-M-I-Underwood-T-L-Ackland-G-J--Ti-1
M.I. Mendelev, T.L. Underwood, and G.J. Ackland (2016), "Development of an interatomic potential for the simulation of defects, plasticity, and phase transformations in titanium", The Journal of Chemical Physics 145(15), 154102. DOI: 10.1063/1.4964654.

2016--Mendelev-M-I-Underwood-T-L-Ackland-G-J--Ti-2
M.I. Mendelev, T.L. Underwood, and G.J. Ackland (2016), "Development of an interatomic potential for the simulation of defects, plasticity, and phase transformations in titanium", The Journal of Chemical Physics 145(15), 154102. DOI: 10.1063/1.4964654.

2016--Mendelev-M-I-Underwood-T-L-Ackland-G-J--Ti-3
M.I. Mendelev, T.L. Underwood, and G.J. Ackland (2016), "Development of an interatomic potential for the simulation of defects, plasticity, and phase transformations in titanium", The Journal of Chemical Physics 145(15), 154102. DOI: 10.1063/1.4964654.

2016--Mendelev-M-I-Underwood-T-L-Ackland-G-J--Ti-Tdep
M.I. Mendelev, T.L. Underwood, and G.J. Ackland (2016), "Development of an interatomic potential for the simulation of defects, plasticity, and phase transformations in titanium", The Journal of Chemical Physics 145(15), 154102. DOI: 10.1063/1.4964654.

2015--Elliott-R-S-Akerson-A--Ti
R.S. Elliott, and A. Akerson (2015), "Efficient "universal" shifted Lennard-Jones model for all KIM API supported species".

2008--Hennig-R-G-Lenosky-T-J-Trinkle-D-R-et-al--Ti
R.G. Hennig, T.J. Lenosky, D.R. Trinkle, S.P. Rudin, and J.W. Wilkins (2008), "Classical potential describes martensitic phase transformations between the α, β, and ω titanium phases", Physical Review B 78(5), 054121. DOI: 10.1103/physrevb.78.054121.

2006--Kim-Y-M-Lee-B-J-Baskes-M-I--Ti
Y.-M. Kim, B.-J. Lee, and M.I. Baskes (2006), "Modified embedded-atom method interatomic potentials for Ti and Zr", Physical Review B 74(1), 014101. DOI: 10.1103/physrevb.74.014101.

2004--Zhou-X-W-Johnson-R-A-Wadley-H-N-G--Ti
X.W. Zhou, R.A. Johnson, and H.N.G. Wadley (2004), "Misfit-energy-increasing dislocations in vapor-deposited CoFe/NiFe multilayers", Physical Review B 69(14), 144113. DOI: 10.1103/physrevb.69.144113.

1992--Ackland-G-J--Ti
G.J. Ackland (1992), "Theoretical study of titanium surfaces and defects with a new many-body potential", Philosophical Magazine A 66(6), 917-932. DOI: 10.1080/01418619208247999.

Tl

2015--Elliott-R-S-Akerson-A--Tl
R.S. Elliott, and A. Akerson (2015), "Efficient "universal" shifted Lennard-Jones model for all KIM API supported species".

Tm

2015--Elliott-R-S-Akerson-A--Tm
R.S. Elliott, and A. Akerson (2015), "Efficient "universal" shifted Lennard-Jones model for all KIM API supported species".

Ts

2015--Elliott-R-S-Akerson-A--Ts
R.S. Elliott, and A. Akerson (2015), "Efficient "universal" shifted Lennard-Jones model for all KIM API supported species".

U

2015--Elliott-R-S-Akerson-A--U
R.S. Elliott, and A. Akerson (2015), "Efficient "universal" shifted Lennard-Jones model for all KIM API supported species".

2014--Fernandez-J-R-Pascuet-M-I--U
J.R. Fernández, and M.I. Pascuet (2014), "On the accurate description of uranium metallic phases: a MEAM interatomic potential approach", Modelling and Simulation in Materials Science and Engineering 22(5), 055019. DOI: 10.1088/0965-0393/22/5/055019.

2011--Smirnova-D-E-Starikov-S-V-Stegailov-V-V--U
D.E. Smirnova, S.V. Starikov, and V.V. Stegailov (2011), "Interatomic potential for uranium in a wide range of pressures and temperatures", Journal of Physics: Condensed Matter 24(1), 015702. DOI: 10.1088/0953-8984/24/1/015702.
D.E. Smirnova, S.V. Starikov, and V.V. Stegailov (2012), "Interatomic potential for uranium in a wide range of pressures and temperatures", Journal of Physics: Condensed Matter 24(14), 149501. DOI: 10.1088/0953-8984/24/14/149501.

2015--Moore-A-P-Beeler-B-Deo-C-et-al--U-Zr
A.P. Moore, B. Beeler, C. Deo, M.I. Baskes, and M.A. Okuniewski (2015), "Atomistic modeling of high temperature uranium-zirconium alloy structure and thermodynamics", Journal of Nuclear Materials 467, 802-819. DOI: 10.1016/j.jnucmat.2015.10.016.

UO2

2014--Thompson-A-E-Meredig-B-Stan-M-Wolverton-C--UO2
A.E. Thompson, B. Meredig, M. Stan, and C. Wolverton (2014), "Interatomic potential for accurate phonons and defects in UO2", Journal of Nuclear Materials 446(1-3), 155-162. DOI: 10.1016/j.jnucmat.2013.11.040.

2009--Tiwary-P-van-de-Walle-A-Gronbech-Jensen-N--UO2
P. Tiwary, A. van de Walle, and N. Grønbech-Jensen (2009), "Ab initio construction of interatomic potentials for uranium dioxide across all interatomic distances", Physical Review B 80(17), 174302. DOI: 10.1103/physrevb.80.174302.

V

2015--Elliott-R-S-Akerson-A--V
R.S. Elliott, and A. Akerson (2015), "Efficient "universal" shifted Lennard-Jones model for all KIM API supported species".

2009--Olsson-P-A-T--V
P.A.T. Olsson (2009), "Semi-empirical atomistic study of point defect properties in BCC transition metals", Computational Materials Science 47(1), 135-145. DOI: 10.1016/j.commatsci.2009.06.025.

2007--Derlet-P-M-Nguyen-Manh-D-Dudarev-S-L--V
P.M. Derlet, D. Nguyen-Manh, and S.L. Dudarev (2007), "Multiscale modeling of crowdion and vacancy defects in body-centered-cubic transition metals", Physical Review B 76(5), 054107. DOI: 10.1103/physrevb.76.054107.

2003--Han-S-Zepeda-Ruiz-L-A-Ackland-G-J-et-al--V
S. Han, L.A. Zepeda-Ruiz, G.J. Ackland, R. Car, and D.J. Srolovitz (2003), "Interatomic potential for vanadium suitable for radiation damage simulations", Journal of Applied Physics 93(6), 3328-3335. DOI: 10.1063/1.1555275.

2001--Lee-B-J-Baskes-M-I-Kim-H-Cho-Y-K--V
B.-J. Lee, M.I. Baskes, H. Kim, and Y.K. Cho (2001), "Second nearest-neighbor modified embedded atom method potentials for bcc transition metals", Physical Review B 64(18), 184102. DOI: 10.1103/physrevb.64.184102.

1987--Ackland-G-J-Thetford-R--V
G.J. Ackland, and R. Thetford (1987), "An improved N-body semi-empirical model for body-centred cubic transition metals", Philosophical Magazine A 56(1), 15-30. DOI: 10.1080/01418618708204464.

V-W

2020--Chen-Y-Liao-X-Gao-N-et-al--W-V
Y. Chen, X. Liao, N. Gao, W. Hu, F. Gao, and H. Deng (2020), "Interatomic potentials of W-V and W-Mo binary systems for point defects studies", Journal of Nuclear Materials 531, 152020. DOI: 10.1016/j.jnucmat.2020.152020.

W

2025--Sharifi-H-Wick-C-D--W
H. Sharifi, and C.D. Wick (2025), "The effects of the W on the phase segregation and shear strength of CrNiCo: A molecular dynamics study", Computational Materials Science 253, 113877. DOI: 10.1016/j.commatsci.2025.113877.

2022--Hiremath-P-Melin-S-Bitzek-E-Olsson-P-A-T--W
P. Hiremath, S. Melin, E. Bitzek, and P.A.T. Olsson (2022), "Effects of interatomic potential on fracture behaviour in single- and bicrystalline tungsten", Computational Materials Science 207, 111283. DOI: 10.1016/j.commatsci.2022.111283.

2017--Mason-D-R-Nguyen-Manh-D-Becquart-C-S--W
D.R. Mason, D. Nguyen-Manh, and C.S. Becquart (2017), "An empirical potential for simulating vacancy clusters in tungsten", Journal of Physics: Condensed Matter 29(50), 505501. DOI: 10.1088/1361-648x/aa9776.

2015--Elliott-R-S-Akerson-A--W
R.S. Elliott, and A. Akerson (2015), "Efficient "universal" shifted Lennard-Jones model for all KIM API supported species".

2013--Marinica-M-C-Ventelon-L-Gilbert-M-R-et-al--W-2
M.-C. Marinica, L. Ventelon, M.R. Gilbert, L. Proville, S.L. Dudarev, J. Marian, G. Bencteux, and F. Willaime (2013), "Interatomic potentials for modelling radiation defects and dislocations in tungsten", Journal of Physics: Condensed Matter 25(39), 395502. DOI: 10.1088/0953-8984/25/39/395502.

2013--Marinica-M-C-Ventelon-L-Gilbert-M-R-et-al--W-3
M.-C. Marinica, L. Ventelon, M.R. Gilbert, L. Proville, S.L. Dudarev, J. Marian, G. Bencteux, and F. Willaime (2013), "Interatomic potentials for modelling radiation defects and dislocations in tungsten", Journal of Physics: Condensed Matter 25(39), 395502. DOI: 10.1088/0953-8984/25/39/395502.

2013--Marinica-M-C-Ventelon-L-Gilbert-M-R-et-al--W-4
M.-C. Marinica, L. Ventelon, M.R. Gilbert, L. Proville, S.L. Dudarev, J. Marian, G. Bencteux, and F. Willaime (2013), "Interatomic potentials for modelling radiation defects and dislocations in tungsten", Journal of Physics: Condensed Matter 25(39), 395502. DOI: 10.1088/0953-8984/25/39/395502.

2013--Wang-J-Zhou-Y-L-Li-M-Hou-Q--W
J. Wang, Y.L. Zhou, M. Li, and Q. Hou (2013), "A modified W-W interatomic potential based on ab initio calculations", Modelling and Simulation in Materials Science and Engineering 22(1), 015004. DOI: 10.1088/0965-0393/22/1/015004.

2009--Olsson-P-A-T--W
P.A.T. Olsson (2009), "Semi-empirical atomistic study of point defect properties in BCC transition metals", Computational Materials Science 47(1), 135-145. DOI: 10.1016/j.commatsci.2009.06.025.

2007--Derlet-P-M-Nguyen-Manh-D-Dudarev-S-L--W
P.M. Derlet, D. Nguyen-Manh, and S.L. Dudarev (2007), "Multiscale modeling of crowdion and vacancy defects in body-centered-cubic transition metals", Physical Review B 76(5), 054107. DOI: 10.1103/physrevb.76.054107.

2004--Zhou-X-W-Johnson-R-A-Wadley-H-N-G--W
X.W. Zhou, R.A. Johnson, and H.N.G. Wadley (2004), "Misfit-energy-increasing dislocations in vapor-deposited CoFe/NiFe multilayers", Physical Review B 69(14), 144113. DOI: 10.1103/physrevb.69.144113.

2003--Han-S-Zepeda-Ruiz-L-A-Ackland-G-J-et-al--W
S. Han, L.A. Zepeda-Ruiz, G.J. Ackland, R. Car, and D.J. Srolovitz (2003), "Interatomic potential for vanadium suitable for radiation damage simulations", Journal of Applied Physics 93(6), 3328-3335. DOI: 10.1063/1.1555275.

2001--Lee-B-J-Baskes-M-I-Kim-H-Cho-Y-K--W
B.-J. Lee, M.I. Baskes, H. Kim, and Y.K. Cho (2001), "Second nearest-neighbor modified embedded atom method potentials for bcc transition metals", Physical Review B 64(18), 184102. DOI: 10.1103/physrevb.64.184102.

1987--Ackland-G-J-Thetford-R--W
G.J. Ackland, and R. Thetford (1987), "An improved N-body semi-empirical model for body-centred cubic transition metals", Philosophical Magazine A 56(1), 15-30. DOI: 10.1080/01418618708204464.

1959--Girifalco-L-A-Weizer-V-G--W
L.A. Girifalco, and V.G. Weizer (1959), "Application of the Morse Potential Function to Cubic Metals", Physical Review 114(3), 687-690. DOI: 10.1103/physrev.114.687.

Xe

2015--Elliott-R-S-Akerson-A--Xe
R.S. Elliott, and A. Akerson (2015), "Efficient "universal" shifted Lennard-Jones model for all KIM API supported species".

1958--Bernardes-N--Xe
N. Bernardes (1958), "Theory of Solid Ne, A, Kr, and Xe at 0°K", Physical Review 112(5), 1534-1539. DOI: 10.1103/physrev.112.1534.

Y

2015--Elliott-R-S-Akerson-A--Y
R.S. Elliott, and A. Akerson (2015), "Efficient "universal" shifted Lennard-Jones model for all KIM API supported species".

2013--Ko-W-S-Lee-B-J--Y
W.-S. Ko, and B.-J. Lee (2013), "Modified embedded-atom method interatomic potentials for pure Y and the V-Pd-Y ternary system", Modelling and Simulation in Materials Science and Engineering 21(8), 085008. DOI: 10.1088/0965-0393/21/8/085008.

Yb

2015--Elliott-R-S-Akerson-A--Yb
R.S. Elliott, and A. Akerson (2015), "Efficient "universal" shifted Lennard-Jones model for all KIM API supported species".

Zn

2018--Jang-H-S-Kim-K-M-Lee-B-J--Zn
H.-S. Jang, K.-M. Kim, and B.-J. Lee (2018), "Modified embedded-atom method interatomic potentials for pure Zn and Mg-Zn binary system", Calphad 60, 200-207. DOI: 10.1016/j.calphad.2018.01.003.

2015--Elliott-R-S-Akerson-A--Zn
R.S. Elliott, and A. Akerson (2015), "Efficient "universal" shifted Lennard-Jones model for all KIM API supported species".

Zr

2022--Nitol-M-S-Dickel-D-E-Barrett-C-D--Zr
M.S. Nitol, D.E. Dickel, and C.D. Barrett (2022), "Machine learning models for predictive materials science from fundamental physics: An application to titanium and zirconium", Acta Materialia 224, 117347. DOI: 10.1016/j.actamat.2021.117347.

2022--Zhou-M-Fu-B-Hou-Q-et-al--Zr
M. Zhou, B. Fu, Q. Hou, L. Wu, and R. Pan (2022), "Determining the diffusion behavior of point defects in zirconium by a multiscale modelling approach", Journal of Nuclear Materials 566, 153772. DOI: 10.1016/j.jnucmat.2022.153772.

2015--Elliott-R-S-Akerson-A--Zr
R.S. Elliott, and A. Akerson (2015), "Efficient "universal" shifted Lennard-Jones model for all KIM API supported species".

2007--Mendelev-M-I-Ackland-G-J--Zr-1
M.I. Mendelev, and G.J. Ackland (2007), "Development of an interatomic potential for the simulation of phase transformations in zirconium", Philosophical Magazine Letters 87(5), 349-359. DOI: 10.1080/09500830701191393.

2007--Mendelev-M-I-Ackland-G-J--Zr-2
M.I. Mendelev, and G.J. Ackland (2007), "Development of an interatomic potential for the simulation of phase transformations in zirconium", Philosophical Magazine Letters 87(5), 349-359. DOI: 10.1080/09500830701191393.

2007--Mendelev-M-I-Ackland-G-J--Zr-3
M.I. Mendelev, and G.J. Ackland (2007), "Development of an interatomic potential for the simulation of phase transformations in zirconium", Philosophical Magazine Letters 87(5), 349-359. DOI: 10.1080/09500830701191393.

2006--Kim-Y-M-Lee-B-J-Baskes-M-I--Zr
Y.-M. Kim, B.-J. Lee, and M.I. Baskes (2006), "Modified embedded-atom method interatomic potentials for Ti and Zr", Physical Review B 74(1), 014101. DOI: 10.1103/physrevb.74.014101.

2004--Zhou-X-W-Johnson-R-A-Wadley-H-N-G--Zr
X.W. Zhou, R.A. Johnson, and H.N.G. Wadley (2004), "Misfit-energy-increasing dislocations in vapor-deposited CoFe/NiFe multilayers", Physical Review B 69(14), 144113. DOI: 10.1103/physrevb.69.144113.

1995--Ackland-G-J-Wooding-S-J-Bacon-D-J--Zr
G.J. Ackland, S.J. Wooding, and D.J. Bacon (1995), "Defect, surface and displacement-threshold properties of α-zirconium simulated with a many-body potential", Philosophical Magazine A 71(3), 553-565. DOI: 10.1080/01418619508244468.

2016--Borovikov-V-Mendelev-M-I-King-A-H--fictional-Cu-31
V. Borovikov, M.I. Mendelev, and A.H. King (2016), "Effects of stable and unstable stacking fault energy on dislocation nucleation in nano-crystalline metals", Modelling and Simulation in Materials Science and Engineering 24(8), 085017. DOI: 10.1088/0965-0393/24/8/085017.

2016--Borovikov-V-Mendelev-M-I-King-A-H--fictional-Cu-32
V. Borovikov, M.I. Mendelev, and A.H. King (2016), "Effects of stable and unstable stacking fault energy on dislocation nucleation in nano-crystalline metals", Modelling and Simulation in Materials Science and Engineering 24(8), 085017. DOI: 10.1088/0965-0393/24/8/085017.

2016--Borovikov-V-Mendelev-M-I-King-A-H--fictional-Cu-33
V. Borovikov, M.I. Mendelev, and A.H. King (2016), "Effects of stable and unstable stacking fault energy on dislocation nucleation in nano-crystalline metals", Modelling and Simulation in Materials Science and Engineering 24(8), 085017. DOI: 10.1088/0965-0393/24/8/085017.

2016--Borovikov-V-Mendelev-M-I-King-A-H--fictional-Cu-34
V. Borovikov, M.I. Mendelev, and A.H. King (2016), "Effects of stable and unstable stacking fault energy on dislocation nucleation in nano-crystalline metals", Modelling and Simulation in Materials Science and Engineering 24(8), 085017. DOI: 10.1088/0965-0393/24/8/085017.

2016--Wilson-S-R-Mendelev-M-I--fictional-Mg
S.R. Wilson, and M.I. Mendelev (2016), "A unified relation for the solid-liquid interface free energy of pure FCC, BCC, and HCP metals", The Journal of Chemical Physics 144(14), 144707. DOI: 10.1063/1.4946032.

2016--Wilson-S-R-Mendelev-M-I--fictional-W
S.R. Wilson, and M.I. Mendelev (2016), "A unified relation for the solid-liquid interface free energy of pure FCC, BCC, and HCP metals", The Journal of Chemical Physics 144(14), 144707. DOI: 10.1063/1.4946032.

2015--Borovikov-V-Mendelev-M-I-King-A-H-LeSar-R--fictional-Cu-1
V. Borovikov, M.I. Mendelev, A.H. King, and R. LeSar (2015), "Effect of stacking fault energy on mechanism of plastic deformation in nanotwinned FCC metals", Modelling and Simulation in Materials Science and Engineering 23(5), 055003. DOI: 10.1088/0965-0393/23/5/055003.

2015--Borovikov-V-Mendelev-M-I-King-A-H-LeSar-R--fictional-Cu-2
V. Borovikov, M.I. Mendelev, A.H. King, and R. LeSar (2015), "Effect of stacking fault energy on mechanism of plastic deformation in nanotwinned FCC metals", Modelling and Simulation in Materials Science and Engineering 23(5), 055003. DOI: 10.1088/0965-0393/23/5/055003.

2015--Borovikov-V-Mendelev-M-I-King-A-H-LeSar-R--fictional-Cu-3
V. Borovikov, M.I. Mendelev, A.H. King, and R. LeSar (2015), "Effect of stacking fault energy on mechanism of plastic deformation in nanotwinned FCC metals", Modelling and Simulation in Materials Science and Engineering 23(5), 055003. DOI: 10.1088/0965-0393/23/5/055003.

2015--Borovikov-V-Mendelev-M-I-King-A-H-LeSar-R--fictional-Cu-4
V. Borovikov, M.I. Mendelev, A.H. King, and R. LeSar (2015), "Effect of stacking fault energy on mechanism of plastic deformation in nanotwinned FCC metals", Modelling and Simulation in Materials Science and Engineering 23(5), 055003. DOI: 10.1088/0965-0393/23/5/055003.

2015--Borovikov-V-Mendelev-M-I-King-A-H-LeSar-R--fictional-Cu-5
V. Borovikov, M.I. Mendelev, A.H. King, and R. LeSar (2015), "Effect of stacking fault energy on mechanism of plastic deformation in nanotwinned FCC metals", Modelling and Simulation in Materials Science and Engineering 23(5), 055003. DOI: 10.1088/0965-0393/23/5/055003.

2015--Borovikov-V-Mendelev-M-I-King-A-H-LeSar-R--fictional-Cu-6
V. Borovikov, M.I. Mendelev, A.H. King, and R. LeSar (2015), "Effect of stacking fault energy on mechanism of plastic deformation in nanotwinned FCC metals", Modelling and Simulation in Materials Science and Engineering 23(5), 055003. DOI: 10.1088/0965-0393/23/5/055003.

2015--Borovikov-V-Mendelev-M-I-King-A-H-LeSar-R--fictional-Cu-7
V. Borovikov, M.I. Mendelev, A.H. King, and R. LeSar (2015), "Effect of stacking fault energy on mechanism of plastic deformation in nanotwinned FCC metals", Modelling and Simulation in Materials Science and Engineering 23(5), 055003. DOI: 10.1088/0965-0393/23/5/055003.

2015--Wilson-S-R-Gunawardana-K-G-S-H-Mendelev-M-I--fictional-Na-2
S.R. Wilson, K.G.S.H. Gunawardana, and M.I. Mendelev (2015), "Solid-liquid interface free energies of pure bcc metals and B2 phases", The Journal of Chemical Physics 142(13), 134705. DOI: 10.1063/1.4916741.

2015--Wilson-S-R-Gunawardana-K-G-S-H-Mendelev-M-I--fictional-Na-3
S.R. Wilson, K.G.S.H. Gunawardana, and M.I. Mendelev (2015), "Solid-liquid interface free energies of pure bcc metals and B2 phases", The Journal of Chemical Physics 142(13), 134705. DOI: 10.1063/1.4916741.

2010--Mendelev-M-I-Rahman-M-J-Hoyt-J-J-Asta-M--fictional-Al-1
M.I. Mendelev, M.J. Rahman, J.J. Hoyt, and M. Asta (2010), "Molecular-dynamics study of solid-liquid interface migration in fcc metals", Modelling and Simulation in Materials Science and Engineering 18(7), 074002. DOI: 10.1088/0965-0393/18/7/074002.

2010--Mendelev-M-I-Rahman-M-J-Hoyt-J-J-Asta-M--fictional-Al-2
M.I. Mendelev, M.J. Rahman, J.J. Hoyt, and M. Asta (2010), "Molecular-dynamics study of solid-liquid interface migration in fcc metals", Modelling and Simulation in Materials Science and Engineering 18(7), 074002. DOI: 10.1088/0965-0393/18/7/074002.

2010--Mendelev-M-I-Rahman-M-J-Hoyt-J-J-Asta-M--fictional-Al-3
M.I. Mendelev, M.J. Rahman, J.J. Hoyt, and M. Asta (2010), "Molecular-dynamics study of solid-liquid interface migration in fcc metals", Modelling and Simulation in Materials Science and Engineering 18(7), 074002. DOI: 10.1088/0965-0393/18/7/074002.

2020--Wang-P-Bu-Y-Liu-J-et-al--meta-Ta-Hf-Zr-Ti
P. Wang, Y. Bu, J. Liu, Q. Li, H. Wang, and W. Yang (2020), "Atomic deformation mechanism and interface toughening in metastable high entropy alloy", Materials Today 37, 64-73. DOI: 10.1016/j.mattod.2020.02.017.

toy

2016--Rajan-V-P-Warner-D-H-Curtin-W-A--fictional-toy-a
V.P. Rajan, D.H. Warner, and W.A. Curtin (2016), "An interatomic pair potential with tunable intrinsic ductility", Modelling and Simulation in Materials Science and Engineering 24(2), 025005. DOI: 10.1088/0965-0393/24/2/025005.

2016--Rajan-V-P-Warner-D-H-Curtin-W-A--fictional-toy-b
V.P. Rajan, D.H. Warner, and W.A. Curtin (2016), "An interatomic pair potential with tunable intrinsic ductility", Modelling and Simulation in Materials Science and Engineering 24(2), 025005. DOI: 10.1088/0965-0393/24/2/025005.

2016--Rajan-V-P-Warner-D-H-Curtin-W-A--fictional-toy-c
V.P. Rajan, D.H. Warner, and W.A. Curtin (2016), "An interatomic pair potential with tunable intrinsic ductility", Modelling and Simulation in Materials Science and Engineering 24(2), 025005. DOI: 10.1088/0965-0393/24/2/025005.

2016--Rajan-V-P-Warner-D-H-Curtin-W-A--fictional-toy-d
V.P. Rajan, D.H. Warner, and W.A. Curtin (2016), "An interatomic pair potential with tunable intrinsic ductility", Modelling and Simulation in Materials Science and Engineering 24(2), 025005. DOI: 10.1088/0965-0393/24/2/025005.

2016--Rajan-V-P-Warner-D-H-Curtin-W-A--fictional-toy-e
V.P. Rajan, D.H. Warner, and W.A. Curtin (2016), "An interatomic pair potential with tunable intrinsic ductility", Modelling and Simulation in Materials Science and Engineering 24(2), 025005. DOI: 10.1088/0965-0393/24/2/025005.

2016--Rajan-V-P-Warner-D-H-Curtin-W-A--fictional-toy-f
V.P. Rajan, D.H. Warner, and W.A. Curtin (2016), "An interatomic pair potential with tunable intrinsic ductility", Modelling and Simulation in Materials Science and Engineering 24(2), 025005. DOI: 10.1088/0965-0393/24/2/025005.

2015--Elliott-R-S-Akerson-A--toy
R.S. Elliott, and A. Akerson (2015), "Efficient "universal" shifted Lennard-Jones model for all KIM API supported species".

2009--Molinero-V-Moore-E-B--water
V. Molinero, and E.B. Moore (2009), "Water Modeled As an Intermediate Element between Carbon and Silicon", The Journal of Physical Chemistry B 113(13), 4008-4016. DOI: 10.1021/jp805227c.

Date Created: October 5, 2010 | Last updated: September 19, 2025