Warning! Note that elemental potentials taken from alloy descriptions may not work well for the pure species. This is particularly true if the elements were fit for compounds instead of being optimized separately. As with all interatomic potentials, please check to make sure that the performance is adequate for your problem.
Citation: Y. Lee, and G.S. Hwang (2012), "Force-matching-based parameterization of the Stillinger-Weber potential for thermal conduction in silicon", Physical Review B, 85(12), 125204. DOI: 10.1103/physrevb.85.125204.
Abstract: A force-matching method is employed to optimize the parameters of the Stillinger–Weber (SW) interatomic potential for calculation of the lattice thermal conductivity of silicon. The parameter fitting is based on first-principles density functional calculations of the restoring forces for atomic displacements. The thermal conductivities of bulk crystalline Si at 300–500 K estimated using nonequilibrium molecular dynamics with the modified parameter set show excellent agreement with existing experimental data. We also briefly discuss how the force-matching-based parameterization can provide the improved estimation of thermal conductivity, as compared to the original SW parameter set, through analysis of phonon density of states and phonon dispersion relations.
Notes: Two parameterizations are provided in the paper. one fit to DFT/LDA and the other to DFT/GGA. This model is the GGA parameterization.