Warning! Note that elemental potentials taken from alloy descriptions may not work well for the pure species. This is particularly true if the elements were fit for compounds instead of being optimized separately. As with all interatomic potentials, please check to make sure that the performance is adequate for your problem.
Citation: H. Sharifi, and C.D. Wick (2025), "Developing interatomic potentials for complex concentrated alloys of Cu, Ti, Ni, Cr, Co, Al, Fe, and Mn", Computational Materials Science, 248, 113595. DOI: 10.1016/j.commatsci.2024.113595.
Abstract: Complex concentrated alloys (CCAs) are a new generation of metallic alloys composed of three or more principal elements with physical and mechanical properties that can be tuned by adjusting their compositions. The extensive compositional workspace of CCAs makes it impractical to perform a comprehensive search for a specific material property using experimental measurements. The use of computational methods can rapidly narrow down the search span, improving the efficiency of the design process. We carried out a high-throughput parameterization of modified embedded atom method (MEAM) interatomic potentials for combinations of Cu, Ti, Ni, Cr, Co, Al, Fe, and Mn using a genetic algorithm. Unary systems were parameterized based on DFT calculations and experimental results. MEAM potentials for 28 binary and 56 ternary combinations of the elements were parameterized to DFT results that were carried out with semi-automated frameworks. Specific attention was made to reproduce properties that impact compositional segregation, material strength, and mechanics.
Notes: This is a binary listing for the 2025--Sharifi-H-Wick-C-D--Fe-Mn-Ni-Ti-Cu-Cr-Co-Al potential. This potential focuses on the structural analysis of alloys including shear strength and elastic constants, dislocation dynamics and their impact on alloy strength, and the analysis of defect effects, such as voids, on material properties. However, the potential was not optimized for temperature-dependent properties and was not fit to density, thermal expansion coefficients, or thermal conductivity data.
Citation: B.-J. Lee, B.D. Wirth, J.-H. Shim, J. Kwon, S.C. Kwon, and J.-H. Hong (2005), "Modified embedded-atom method interatomic potential for the Fe-Cu alloy system and cascade simulations on pure Fe and Fe-Cu alloys", Physical Review B, 71(18), 184205. DOI: 10.1103/physrevb.71.184205.
Abstract: A modified embedded-atom method (MEAM) interatomic potential for the Fe−Cu binary system has been developed using previously developed MEAM potentials of Fe and Cu. The Fe−Cu potential was determined by fitting to data on the mixing enthalpy and the composition dependencies of the lattice parameters in terminal solid solutions. The potential gives a value of 0.65 eV for the dilute heat of solution and reproduces the increase of lattice parameter of Fe with addition of Cu in good agreement with experiments. The potential was used to investigate the primary irradiation defect formation in pure Fe and Fe−0.5 at.% Cu alloy by a molecular dynamics cascade simulation study with a PKA energy of 2 keV at 573 K. A tendency for self-interstitial atom-Cu binding, the formation of mixed (Fe−Cu) dumbbells and even Cu−Cu dumbbells was observed. Given a positive binding energy between Cu atoms and self-interstitials, Cu transport by an interstitial diffusion mechanism could be proposed to contribute to the formation of Cu-rich precipitates and irradiation-induced embrittlement in nuclear structural steels.