Calculation update! New properties have been added to the website for dislocation monopole core structures, dynamic relaxes of both crystal and liquid phases, and melting temperatures! Currently, the results for these properties predominately focus on EAM-style potentials, but the results will be updated for other potentials as the associated calculations finish. Feel free to give us feedback on the new properties so we can improve their representations as needed.
Warning! Note that elemental potentials taken from alloy descriptions may not work well for the pure species. This is particularly true if the elements were fit for compounds instead of being optimized separately. As with all interatomic potentials, please check to make sure that the performance is adequate for your problem.
Citation: M.-C. Marinica, L. Ventelon, M.R. Gilbert, L. Proville, S.L. Dudarev, J. Marian, G. Bencteux, and F. Willaime (2013), "Interatomic potentials for modelling radiation defects and dislocations in tungsten", Journal of Physics: Condensed Matter25(39), 395502. DOI: 10.1088/0953-8984/25/39/395502.
Abstract: We have developed empirical interatomic potentials for studying radiation defects and dislocations in tungsten. The potentials use the embedded atom method formalism and are fitted to a mixed database, containing various experimentally measured properties of tungsten and ab initio formation energies of defects, as well as ab initio interatomic forces computed for random liquid configurations. The availability of data on atomic force fields proves critical for the development of the new potentials. Several point and extended defect configurations were used to test the transferability of the potentials. The trends predicted for the Peierls barrier of the 1/2<111> screw dislocation are in qualitative agreement with ab initio calculations, enabling quantitative comparison of the predicted kink-pair formation energies with experimental data.
Notes: This listing is for potential the reference's potential parameter set EAM4.
See Computed Properties Notes: Listing found at https://openkim.org. This KIM potential is based on the files from 2013--Marinica-M-C--W-4--LAMMPS--ipr1. Link(s):