Calculation update! New properties have been added to the website for dislocation monopole core structures, dynamic relaxes of both crystal and liquid phases, and melting temperatures! Currently, the results for these properties predominately focus on EAM-style potentials, but the results will be updated for other potentials as the associated calculations finish. Feel free to give us feedback on the new properties so we can improve their representations as needed.
Warning! Note that elemental potentials taken from alloy descriptions may not work well for the pure species. This is particularly true if the elements were fit for compounds instead of being optimized separately. As with all interatomic potentials, please check to make sure that the performance is adequate for your problem.
Citation: R.G.A. Veiga, C.S. Becquart, and M. Perez (2014), "Comments on “Atomistic modeling of an Fe system with a small concentration of C”", Computational Materials Science82, 118-121. DOI: 10.1016/j.commatsci.2013.09.048.
Abstract: The iron–carbon EAM potential that we have developed [Comput. Mater. Sci. 40 (2007) 119] was found to predict a saddle point slightly off the tetrahedral position. This problem was fixed by adding a Gaussian function to the Fe–C pairwise function, which does not change neither the position corresponding to the local energy minimum, i.e. the octahedral site, nor the energy of the saddle point. The potential energy landscape around the saddle point is now more realistic, without changing the dynamics properties of the former potential.