Warning! Note that elemental potentials taken from alloy descriptions may not work well for the pure species. This is particularly true if the elements were fit for compounds instead of being optimized separately. As with all interatomic potentials, please check to make sure that the performance is adequate for your problem.
Citation: H. Sharifi, and C.D. Wick (2025), "Developing interatomic potentials for complex concentrated alloys of Cu, Ti, Ni, Cr, Co, Al, Fe, and Mn", Computational Materials Science, 248, 113595. DOI: 10.1016/j.commatsci.2024.113595.
Abstract: Complex concentrated alloys (CCAs) are a new generation of metallic alloys composed of three or more principal elements with physical and mechanical properties that can be tuned by adjusting their compositions. The extensive compositional workspace of CCAs makes it impractical to perform a comprehensive search for a specific material property using experimental measurements. The use of computational methods can rapidly narrow down the search span, improving the efficiency of the design process. We carried out a high-throughput parameterization of modified embedded atom method (MEAM) interatomic potentials for combinations of Cu, Ti, Ni, Cr, Co, Al, Fe, and Mn using a genetic algorithm. Unary systems were parameterized based on DFT calculations and experimental results. MEAM potentials for 28 binary and 56 ternary combinations of the elements were parameterized to DFT results that were carried out with semi-automated frameworks. Specific attention was made to reproduce properties that impact compositional segregation, material strength, and mechanics.
Notes: This is a binary listing for the 2025--Sharifi-H-Wick-C-D--Fe-Mn-Ni-Ti-Cu-Cr-Co-Al potential. This potential focuses on the structural analysis of alloys including shear strength and elastic constants, dislocation dynamics and their impact on alloy strength, and the analysis of defect effects, such as voids, on material properties. However, the potential was not optimized for temperature-dependent properties and was not fit to density, thermal expansion coefficients, or thermal conductivity data.
Citation: A. Mahata, T. Mukhopadhyay, and M. Asle Zaeem (2022), "Modified embedded-atom method interatomic potentials for Al-Cu, Al-Fe and Al-Ni binary alloys: From room temperature to melting point", Computational Materials Science, 201, 110902. DOI: 10.1016/j.commatsci.2021.110902.
Abstract: Second nearest neighbor modified embedded-atom method (2NN-MEAM) interatomic potentials are developed for binary aluminum (Al) alloys applicable from room temperature to the melting point. The binary alloys studied in this work are Al-Cu, Al-Fe and Al-Ni. Sensitivity and uncertainty analyses are performed on potential parameters based on the perturbation approach. The outcome of the sensitivity analysis shows that some of the MEAM parameters interdependently influence all MEAM model outputs, allowing for the definition of an ordered calibration procedure to target specific MEAM outputs. Using these 2NN-MEAM interatomic potentials, molecular dynamics (MD) simulations are performed to calculate low and high-temperature properties, such as the formation energies of stable phases and unstable intermetallics, lattice parameters, elastic constants, thermal expansion coefficients, enthalpy of formation of solids, liquid mixing enthalpy, and liquidus temperatures at a wide range of compositions. The computed data are compared with the available first principle calculations and experimental data, showing high accuracy of the 2NN-MEAM interatomic potentials. In addition, the liquidus temperature of the Al binary alloys is compared to the phase diagrams determined by the CALPHAD method.
Citation: E. Lee, and B.-J. Lee (2010), "Modified embedded-atom method interatomic potential for the Fe–Al system", Journal of Physics: Condensed Matter, 22(17), 175702. DOI: 10.1088/0953-8984/22/17/175702.
Abstract: An interatomic potential for the Fe–Al binary system has been developed based on the modified embedded-atom method (MEAM) potential formalism. The potential can describe various fundamental physical properties of Fe–Al binary alloys—structural, elastic and thermodynamic properties, defect formation behavior and interactions between defects—in reasonable agreement with experimental data or higher-level calculations. The applicability of the potential to atomistic investigations of various defect formation behaviors and their effects on the mechanical properties of high aluminum steels as well as Fe–Al binary alloys is demonstrated.
Citation: M.I. Mendelev, D.J. Srolovitz, G.J. Ackland, and S. Han (2005), "Effect of Fe Segregation on the Migration of a Non-Symmetric Σ5 Tilt Grain Boundary in Al", Journal of Materials Research, 20(1), 208-218. DOI: 10.1557/jmr.2005.0024.
Abstract: We present an analysis, based upon atomistic simulation data, of the effect of Fe impurities on grain boundary migration in Al. The first step is the development of a new interatomic potential for Fe in Al. This potential provides an accurate description of Al–Fe liquid diffraction data and the bulk diffusivity of Fe in Al. We use this potential to determine the physical parameters in the Cahn–Lücke–Stüwe (CLS) model for the effect of impurities on grain boundary mobility. These include the heat of segregation of Fe to grain boundaries in Al and the diffusivity of Fe in Al. Using the simulation-parameterized CLS model, we predict the grain boundary mobility in Al in the presence of Fe as a function of temperature and Fe concentration. The order of magnitude and the trends in the mobility from the simulations are in agreement with existing experimental results.
See Computed Properties Notes: This file was provided by Mikhail Mendelev. Except for the comment lines, this file is identical to "AlFe_mm.eam.fs" in the August 22, 2018 LAMMPS distribution. Update 19 July 2021: The contact email in the file's header has been changed. File(s):
See Computed Properties Notes: Listing found at https://openkim.org. This KIM potential is based on the files from 2005--Mendelev-M-I--Al-Fe--LAMMPS--ipr1. Link(s):