× Updated! Potentials that share interactions are now listed as related models.
 
Citation: R.S. Elliott, and A. Akerson (2015), "Efficient "universal" shifted Lennard-Jones model for all KIM API supported species".

Notes: This is the Mn interaction from the "Universal" parameterization for the openKIM LennardJones612 model driver.The parameterization uses a shifted cutoff so that all interactions have a continuous energy function at the cutoff radius. This model was automatically fit using Lorentz-Berthelotmixing rules. It reproduces the dimer equilibrium separation (covalent radii) and the bond dissociation energies. It has not been fitted to other physical properties and its ability to model structures other than dimers is unknown. See the README and params files on the KIM model page for more details.

See Computed Properties
Notes: Listing found at https://openkim.org.
Link(s):
Citation: Y.-M. Kim, Y.-H. Shin, and B.-J. Lee (2009), "Modified embedded-atom method interatomic potentials for pure Mn and the Fe-Mn system", Acta Materialia, 57(2), 474-482. DOI: 10.1016/j.actamat.2008.09.031.
Abstract: Modified embedded-atom method (MEAM) interatomic potentials for pure Mn and the Fe-Mn binary system have been developed using a previously developed MEAM potential for Fe. The potentials can describe various fundamental physical properties of pure Mn (cohesive energy, structural energy differences, lattice parameters, elastic constants, vacancy formation energy, surface energy, etc.) and alloy behaviors (enthalpy of mixing in face-centered cubic and liquid phases, composition dependency of lattice parameters in various solid solutions) in reasonable agreement with experimental information or other empirical approaches. The applicability of the potential to atomistic investigations on a wide range of mechanical or deformation properties of the Fe-Mn alloys is demonstrated.

LAMMPS pair_style meam (2009--Kim-Y-M--Mn--LAMMPS--ipr1)
See Computed Properties
Notes: These files are based on files obtained from http://cmse.postech.ac.kr/home_2nnmeam.
File(s):
See Computed Properties
Notes: Listing found at https://openkim.org.
Link(s):
 
Citation: D. Schopf, P. Brommer, B. Frigan, and H.-R. Trebin (2012), "Embedded atom method potentials for Al-Pd-Mn phases", Physical Review B, 85(5), 054201. DOI: 10.1103/physrevb.85.054201.
Abstract: A novel embedded atom method (EAM) potential for the Ξ phases of Al-Pd-Mn has been determined with the force-matching method. Different combinations of analytic functions were tested for the pair and transfer part. The best results are obtained if one allows for oscillations on two different length scales. These potentials stabilize structure models of the Ξ phases and describe their energy with high accuracy. Simulations at temperatures up to 1200 K show very good agreement with ab initio results with respect to stability and dynamics of the system.

LAMMPS pair_style eam/alloy (2012--Schopf-D--Al-Mn-Pd--LAMMPS--ipr1)
See Computed Properties
Notes: This version is compatible with LAMMPS. UPDATE 11 June 2012: The version posted on 26 April 2012 had an extra line in the header and did not work with LAMMPS. This was brought to our attention by Daniel Schopf and the correct version has been posted. Original note: This file was provided by Daniel Schopf (Stuttgart University) and posted with his permission on 26 April 2012.
File(s):
IMD option EAM (2012--Schopf-D--Al-Mn-Pd--IMD--ipr1)
Notes: These files were provided by Daniel Schopf.
File(s):
See Computed Properties
Notes: Listing found at https://openkim.org. This KIM potential is based on the files from 2012--Schopf-D--Al-Mn-Pd--LAMMPS--ipr1.
Link(s):
See Computed Properties
Notes: Listing found at https://openkim.org. This KIM potential is based on the same files as 2012--Schopf-D--Al-Mn-Pd--IMD--ipr1.
Link(s):
 
Citation: I. Aslam, M.I. Baskes, D.E. Dickel, S. Adibi, B. Li, H. Rhee, M. Asle Zaeem, and M.F. Horstemeyer (2019), "Thermodynamic and kinetic behavior of low-alloy steels: An atomic level study using an Fe-Mn-Si-C modified embedded atom method (MEAM) potential", Materialia, 8, 100473. DOI: 10.1016/j.mtla.2019.100473.
Abstract: A quaternary element Modified Embedded Atom Method (MEAM) potential comprising Fe, Mn, Si, and C is developed by employing a hierarchical multiscale modeling paradigm to simulate low-alloy steels. Experimental information alongside first-principles calculations based on Density Functional Theory served as calibration data to upscale and develop the MEAM potential. For calibrating the single element potentials, the cohesive energy, lattice parameters, elastic constants, and vacancy and interstitial formation energies are used as target data. The heat of formation and elastic constants of binary compounds along with substitutional and interstitial formation energies serve as binary potential calibration data, while substitutional and interstitial pair binding energies aid in developing the ternary potential. Molecular dynamics simulations employing the developed potentials predict the thermal expansion coefficient, heat capacity, self-diffusion coefficients, and stacking fault energy for steel alloys comparable to those reported in the literature.

See Computed Properties
Notes: This file was provided by Imran Aslam (Mississippi State) on Feb 28, 2020 and posted with his permission.
File(s):
 
Citation: R. Gröger, V. Vitek, and A. Dlouhý (2020), "Effective pair potential for random fcc CoCrFeMnNi alloys", Modelling and Simulation in Materials Science and Engineering, 28(7), 075006. DOI: 10.1088/1361-651x/ab7f8b.
Abstract: The single-phase equiatomic CoCrFeMnNi alloy is a random solid solution of five elements on the face-centered cubic lattice, whose pure constituents crystallize in very different structures and exhibit diverse magnetic properties. Due to the randomness of the alloy, 80% of nearest neighbor bonds are between unlike elements and thus the details of bonding in pure structures are less important. The elastic moduli of this alloy give rise to small Cauchy pressure C12 − C44, which suggests that the dominant part of bonding may be described by a simple pair potential. We test this hypothesis by developing a long-range Lennard-Jones potential in which the equilibrium crystal structures of pure constituents are taken as reference. The standard mixing rules for regular solutions are then adopted to obtain parameters for bonds between unlike elements in the quinary system. The transferability of this potential to quaternary CoCrFeNi, ternary CoCrNi, and binary FeNi alloys is investigated and the predictions compared with experiments and density functional theory calculations. By sampling over a large number of random configurations, we investigate the effect of compositional randomness on misfit volumes, energies of point defects and stacking faults, and the dislocation friction stresses experienced by moving edge and screw dislocations.

Notes: R. Gröger notes that "This is the Mie n-2n potential, where n=6 was found to give the best results - it is the same as the Lennard-Jones 6-12 potential. These potential files contain parameterizations of the Co-Cr-Fe-Mn-Ni system intended for studies of compositionally complex alloys with spatially random distributions of individual elements. Although it was developed primarily for studies of the quinary fcc CoCrFeMnNi system, the paper above demonstrates that it can be used equally well for quaternaries and ternaries. We emphasize that the model ceases to be applicable for binary and unary systems, where most or all first neighbor bonds are between the same elements."

See Computed Properties
Notes: These files were provided by Roman Gröger on Oct 23, 2021 and posted with his permission. The file mie.mod shows how to include these potentials in LAMMPS simulations via "include mie.mod".
File(s):
Citation: W.-M. Choi, Y.H. Jo, S.S. Sohn, S. Lee, and B.-J. Lee (2018), "Understanding the physical metallurgy of the CoCrFeMnNi high-entropy alloy: an atomistic simulation study", npj Computational Materials, 4(1), 1. DOI: 10.1038/s41524-017-0060-9.
Abstract: Although high-entropy alloys (HEAs) are attracting interest, the physical metallurgical mechanisms related to their properties have mostly not been clarified, and this limits wider industrial applications, in addition to the high alloy costs. We clarify the physical metallurgical reasons for the materials phenomena (sluggish diffusion and micro-twining at cryogenic temperatures) and investigate the effect of individual elements on solid solution hardening for the equiatomic CoCrFeMnNi HEA based on atomistic simulations (Monte Carlo, molecular dynamics and molecular statics). A significant number of stable vacant lattice sites with high migration energy barriers exists and is thought to cause the sluggish diffusion. We predict that the hexagonal close-packed (hcp) structure is more stable than the face-centered cubic (fcc) structure at 0 K, which we propose as the fundamental reason for the micro-twinning at cryogenic temperatures. The alloying effect on the critical resolved shear stress (CRSS) is well predicted by the atomistic simulation, used for a design of non-equiatomic fcc HEAs with improved strength, and is experimentally verified. This study demonstrates the applicability of the proposed atomistic approach combined with a thermodynamic calculation technique to a computational design of advanced HEAs.

See Computed Properties
Notes: These potential files were obtained from http://cmse.postech.ac.kr/home_2nnmeam, accessed Nov 9, 2020.
File(s):
 
Citation: W.-M. Choi, Y. Kim, D. Seol, and B.-J. Lee (2017), "Modified embedded-atom method interatomic potentials for the Co-Cr, Co-Fe, Co-Mn, Cr-Mn and Mn-Ni binary systems", Computational Materials Science, 130, 121-129. DOI: 10.1016/j.commatsci.2017.01.002.
Abstract: Interatomic potentials for the Co-Cr, Co-Fe, Co-Mn, Cr-Mn and Mn-Ni binary systems have been developed in the framework of the second nearest-neighbor modified embedded-atom method (2NN MEAM) formalism. The potentials describe various fundamental alloy behaviors (structural, elastic and thermodynamic behavior of solution and compound phases), mostly in reasonable agreements with experimental data or first-principles calculations. The potentials can be utilized to complete the interatomic potential for the CoCrFeMnNi alloy and to investigate the atomic scale physical metallurgy of high entropy alloys.

See Computed Properties
Notes: These potential files were obtained from http://cmse.postech.ac.kr/home_2nnmeam, accessed Nov 9, 2020.
File(s):
 
Citation: A. Daramola, G. Bonny, G. Adjanor, C. Domain, G. Monnet, and A. Fraczkiewicz (2022), "Development of a plasticity-oriented interatomic potential for CrFeMnNi high entropy alloys", Computational Materials Science, 203, 111165. DOI: 10.1016/j.commatsci.2021.111165.
Abstract: An interatomic potential (termed EAM-21) has been developed with the embedded atomic method (EAM) for CrFeMnNi quaternary HEAs. This potential is based on a previously developed potential for CrFeNi ternary alloys. The parameters to develop the potential were determined by fitting to experimental values, density functional theory (DFT) and thermodynamic calculations, to reproduce the main crystal characteristics, namely: the stability of the fcc phase, elastic constants, and stacking fault energy. Its applicability for the study of plastic deformation mechanisms was checked by calculations of behaviour of a ½<1 1 0>1 1 1 edge dislocation in equiatomic quaternary CrFeMnNi alloy, as well as its less-complex subsystems (ternaries, binaries, and pure metals). The calculations were performed in the domain of temperatures between 0 and 900 K; smooth and stable glide of an edge dislocation and fcc phase stability in this temperature range was confirmed. This study demonstrates the suitability of the EAM-21 potential for the analysis of plasticity mechanisms and mechanical properties of CrFeMnNi HEAs.

Notes: This potential is mostly suitable for microplasticity studies. This version of the potential is not stiffened for irradiation damage and displacement cascades studies.

See Computed Properties
Notes: This file was provided by Giovanni Bonny on April 3, 2024 with the agreement of all the authors.
File(s):
 
Citation: W.-M. Choi, Y. Kim, D. Seol, and B.-J. Lee (2017), "Modified embedded-atom method interatomic potentials for the Co-Cr, Co-Fe, Co-Mn, Cr-Mn and Mn-Ni binary systems", Computational Materials Science, 130, 121-129. DOI: 10.1016/j.commatsci.2017.01.002.
Abstract: Interatomic potentials for the Co-Cr, Co-Fe, Co-Mn, Cr-Mn and Mn-Ni binary systems have been developed in the framework of the second nearest-neighbor modified embedded-atom method (2NN MEAM) formalism. The potentials describe various fundamental alloy behaviors (structural, elastic and thermodynamic behavior of solution and compound phases), mostly in reasonable agreements with experimental data or first-principles calculations. The potentials can be utilized to complete the interatomic potential for the CoCrFeMnNi alloy and to investigate the atomic scale physical metallurgy of high entropy alloys.

See Computed Properties
Notes: These potential files were obtained from http://cmse.postech.ac.kr/home_2nnmeam, accessed Nov 9, 2020.
File(s):
 
Citation: G. Bonny, D. Terentyev, A. Bakaev, E.E. Zhurkin, M. Hou, D. Van Neck, and L. Malerba (2013), "On the thermal stability of late blooming phases in reactor pressure vessel steels: An atomistic study", Journal of Nuclear Materials, 442(1-3), 282-291. DOI: 10.1016/j.jnucmat.2013.08.018.
Abstract: Radiation-induced embrittlement of bainitic steels is the lifetime limiting factor of reactor pressure vessels in existing nuclear light water reactors. The primary mechanism of embrittlement is the obstruction of dislocation motion produced by nanometric defect structures that develop in the bulk of the material due to irradiation. In view of improving the predictive capability of existing models it is necessary to understand better the mechanisms leading to the formation of these defects, amongst which the so-called "late blooming phases". In this work we study the stability of the latter by means of density functional theory (DFT) calculations and Monte Carlo simulations based on a here developed quaternary FeCuNiMn interatomic potential. The potential is based on extensive DFT and experimental data. The reference DFT data on solute–solute interaction reveal that, while Mn–Ni pairs and triplets are unstable, larger clusters are kept together by attractive binding energy. The NiMnCu synergy is found to increase the temperature range of stability of solute atom precipitates in Fe significantly as compared to binary FeNi and FeMn alloys. This allows for thermodynamically stable phases close to reactor temperature, the range of stability being, however, very sensitive to composition.

EAM tabulated functions (2013--Bonny-G--Fe-Cu-Ni-Mn--table--ipr1)
Notes: These files were provided by Giovanni Bonny on October 31, 2023.
File(s):
Fe F(ρ) F_Fe.spt
Cu F(ρ) F_Cu.spt
Ni F(ρ) F_Ni.spt
Mn F(ρ) F_Mn.spt
Fe ρ(r) rhoFe.spt
Cu ρ(r) rhoCu.spt
Ni ρ(r) rhoNi.spt
Mn ρ(r) rhoMn.spt
Fe φ(r) pFeFe.spt
Cu φ(r) pCuCu.spt
Ni φ(r) pNiNi.spt
Mn φ(r) pMnMn.spt
Fe-Cu φ(r) pFeCu.spt
Fe-Ni φ(r) pFeNi.spt
Fe-Mn φ(r) pFeMn.spt
Cu-Ni φ(r) pCuNi.spt
Cu-Mn φ(r) pCuMn.spt
Ni-Mn φ(r) pNiMn.spt

LAMMPS pair_style eam/alloy (2013--Bonny-G--Fe-Cu-Ni-Mn--LAMMPS--ipr1)
See Computed Properties
Notes: These files were provided by Giovanni Bonny on October 31, 2023.
File(s):
 
Citation: Y.-M. Kim, Y.-H. Shin, and B.-J. Lee (2009), "Modified embedded-atom method interatomic potentials for pure Mn and the Fe-Mn system", Acta Materialia, 57(2), 474-482. DOI: 10.1016/j.actamat.2008.09.031.
Abstract: Modified embedded-atom method (MEAM) interatomic potentials for pure Mn and the Fe-Mn binary system have been developed using a previously developed MEAM potential for Fe. The potentials can describe various fundamental physical properties of pure Mn (cohesive energy, structural energy differences, lattice parameters, elastic constants, vacancy formation energy, surface energy, etc.) and alloy behaviors (enthalpy of mixing in face-centered cubic and liquid phases, composition dependency of lattice parameters in various solid solutions) in reasonable agreement with experimental information or other empirical approaches. The applicability of the potential to atomistic investigations on a wide range of mechanical or deformation properties of the Fe-Mn alloys is demonstrated.

See Computed Properties
Notes: These potential files were obtained from http://cmse.postech.ac.kr/home_2nnmeam, accessed Nov 9, 2020.
File(s):
See Computed Properties
Notes: Listing found at https://openkim.org.
Link(s):
 
Citation: E. Lee, K.-R. Lee, and B.-J. Lee (2017), "Interatomic Potential of Li–Mn–O and Molecular Dynamics Simulations on Li Diffusion in Spinel Li1–xMn2O4", The Journal of Physical Chemistry C, 121(24), 13008-13017. DOI: 10.1021/acs.jpcc.7b02727.
Abstract: An interatomic potential of the Li–Mn–O ternary system has been developed on the basis of the second-nearest-neighbor modified embedded-atom method (2NN MEAM) formalism combined with a charge equilibration (Qeq) concept. The potential reproduces fundamental physical properties (structural, elastic, thermodynamic and migration properties) of various compounds well, including lithium oxides, manganese oxides, and lithium manganese ternary oxides. Through molecular dynamics (MD) simulations using the developed potential, lithium diffusion properties (activation energy for lithium migration and diffusion coefficient) in spinel Li1–xMn2O4 are also reproduced in good agreement with experiments. We have found that the effect of the lithium vacancy concentration is marginal on the activation energy for lithium diffusion in the Li1–xMn2O4 cathode, but it is significant in the lithium diffusion coefficient. The potential can be further utilized for atomistic simulations of various materials phenomena (phase transitions, defect formation, lithiation/delithiation, etc.) in LIB cathode materials.

hybrid/overlay coul/streitz meam (2017--Lee-E--Li-Mn-O--LAMMPS--ipr1)
See Computed Properties
Notes: These files were obtained from http://cmse.postech.ac.kr/home_2nnmeam, accessed Nov 9, 2020. More information on using the 2NNMEAM-QEQ potentials can be found at https://cmse.postech.ac.kr/lammps/140341.
File(s):
 
Citation: W.-M. Choi, Y. Kim, D. Seol, and B.-J. Lee (2017), "Modified embedded-atom method interatomic potentials for the Co-Cr, Co-Fe, Co-Mn, Cr-Mn and Mn-Ni binary systems", Computational Materials Science, 130, 121-129. DOI: 10.1016/j.commatsci.2017.01.002.
Abstract: Interatomic potentials for the Co-Cr, Co-Fe, Co-Mn, Cr-Mn and Mn-Ni binary systems have been developed in the framework of the second nearest-neighbor modified embedded-atom method (2NN MEAM) formalism. The potentials describe various fundamental alloy behaviors (structural, elastic and thermodynamic behavior of solution and compound phases), mostly in reasonable agreements with experimental data or first-principles calculations. The potentials can be utilized to complete the interatomic potential for the CoCrFeMnNi alloy and to investigate the atomic scale physical metallurgy of high entropy alloys.

See Computed Properties
Notes: These potential files were obtained from http://cmse.postech.ac.kr/home_2nnmeam, accessed Nov 9, 2020.
File(s):
 
Citation: P. Wang, S. Xu, J. Liu, X. Li, Y. Wei, H. Wang, H. Gao, and W. Yang (2017), "Atomistic simulation for deforming complex alloys with application toward TWIP steel and associated physical insights", Journal of the Mechanics and Physics of Solids, 98, 290-308. DOI: 10.1016/j.jmps.2016.09.008.
Abstract: The interest in promoting deformation twinning for plasticity is mounting for advanced materials. In contrast to disordered grain boundaries, highly organized twin boundaries are beneficial to promoting strength-ductility combination. Twinning deformation typically involves the kinetics of stacking faults, its interplay with dislocations, as well as the interactions between dislocations and twin boundaries. While the latter has been intensively studied, the dynamics of stacking faults has been rarely touched upon. In this work, we report new physical insights on the stacking fault dynamics in twin induced plasticity (TWIP) steels. The atomistic simulation is made possible by a newly introduced approach: meta-atom molecular dynamics simulation. The simulation suggests that the stacking fault interactions are dominated by dislocation reactions that take place spontaneously, different from the existing mechanisms. Whether to generate a single stacking fault, or a twinning partial and a trailing partial dislocation, depends upon a unique parameter, namely the stacking fault energy. The latter in turn determines the deformation twinning characteristics. The complex twin-slip and twin-dislocation interactions demonstrate the dual role of deformation twins as both the dislocation barrier and dislocation storage. This duality contributes to the high strength and high ductility of TWIP steels.

Notes: Dr. Peng Wang noted that this potential for TWIP steel was developed based on the concept "meta-atom method". The meta-atom method is developed based on the basic assumption that the mechanical properties of an alloy system are primarily governed by a finite set of material constants instead of specific atomic configurations. Once the completeness of this set of material constants is established, two systems with the same material constants should exhibit identical mechanical behaviors in experimental observations. In this way, a detailed distinction among various atomic species is discarded and an alloy system is represented by a set of meta-atoms with a single interatomic potential to fit all related material constants. This method is firstly published in Journal of the Mechanics and Physics of Solids (2017), 98, 290-308. It is not possible to model individual elements of Fe or Mn with this potential.

LAMMPS pair_style eam/fs (2017--Wang-P--TWIP--LAMMPS--ipr1)
See Computed Properties
Notes: This file was sent by P. Wang (Zhejiang University) on 24 Feb. 2017 and posted with the permission of Dr. Peng Wang and Prof. Hongtao Wang.
File(s): superseded


LAMMPS pair_style eam/fs (2017--Wang-P--TWIP--LAMMPS--ipr2)
See Computed Properties
Notes: Dr. P. Wang (Zhejiang University) sent a revised file on 25 Sept. 2017 to address significant confusion regarding the appropriate use of the potential. The file name was changed and the element label Fe was replaced with meta_TWIP. It is not possible to model individual elements of Fe or Mn with this potential.
File(s):
Date Created: October 5, 2010 | Last updated: April 15, 2024