× Updated! Potentials that share interactions are now listed as related models.
 
Citation: V. Borovikov, M.I. Mendelev, and A.H. King (2016), "Effects of stable and unstable stacking fault energy on dislocation nucleation in nano-crystalline metals", Modelling and Simulation in Materials Science and Engineering, 24(8), 085017. DOI: 10.1088/0965-0393/24/8/085017.
Abstract: Dislocation nucleation from grain boundaries (GB) can control plastic deformation in nano-crystalline metals under certain conditions, but little is known about what controls dislocation nucleation, because when data from different materials are compared, the variations of many interacting properties tend to obscure the effects of any single property. In this study, we seek clarification by applying a unique capability of semi-empirical potentials in molecular dynamics simulations: the potentials can be modified such that all significant material properties but one, are kept constant. Using a set of potentials developed to isolate the effects of stacking fault energy, we show that for a given grain boundary, loading orientation and strain rate, the yield stress depends linearly on both the stable and unstable stacking fault energies. The coefficients of proportionality depend on the GB structure and the value of the yield stress is related to the density of the E structural units in the GB. While the impact of the stable stacking fault energy is easy to understand, the unstable stacking fault energy requires more elucidation and we provide a framework for understanding how it affects the nucleation and propagation process.

Notes: This listing is for the MCu31 parameterization listed in the reference. Dr. M.I. Mendelev (Ames Laboratory) noted that these are new fictional potentials intended to supplement the existing potentials posted to the NIST repository (as the 2015--Borovikov-V-Mendelev-M-I-King-A-H-LeSar-R--fictional-Cu-# listings). Dr. Mendelev further noted that, "the new potentials provide the same SFE as 2013--Mendelev-M-I-King-A-H--Cu but different unstable stacking fault energy (USFE). All these Cu fictional potentials are designed to study the effect of SFE and USFE on the deformation behavior in fcc metals." Reference information added March 5, 2020.

See Computed Properties
Notes: This file was sent by M.I. Mendelev (Ames Laboratory) on 19 Aug. 2015 and posted with his permission. Update 19 July 2021: The contact email in the file's header has been changed. Update Jan 14 2022: Citation information has been updated in the file's header.
File(s):
Citation: V. Borovikov, M.I. Mendelev, and A.H. King (2016), "Effects of stable and unstable stacking fault energy on dislocation nucleation in nano-crystalline metals", Modelling and Simulation in Materials Science and Engineering, 24(8), 085017. DOI: 10.1088/0965-0393/24/8/085017.
Abstract: Dislocation nucleation from grain boundaries (GB) can control plastic deformation in nano-crystalline metals under certain conditions, but little is known about what controls dislocation nucleation, because when data from different materials are compared, the variations of many interacting properties tend to obscure the effects of any single property. In this study, we seek clarification by applying a unique capability of semi-empirical potentials in molecular dynamics simulations: the potentials can be modified such that all significant material properties but one, are kept constant. Using a set of potentials developed to isolate the effects of stacking fault energy, we show that for a given grain boundary, loading orientation and strain rate, the yield stress depends linearly on both the stable and unstable stacking fault energies. The coefficients of proportionality depend on the GB structure and the value of the yield stress is related to the density of the E structural units in the GB. While the impact of the stable stacking fault energy is easy to understand, the unstable stacking fault energy requires more elucidation and we provide a framework for understanding how it affects the nucleation and propagation process.

Notes: This listing is for the MCu32 parameterization listed in the reference. Dr. M.I. Mendelev (Ames Laboratory) noted that these are new fictional potentials intended to supplement the existing potentials posted to the NIST repository (as the 2015--Borovikov-V-Mendelev-M-I-King-A-H-LeSar-R--fictional-Cu-# listings). Dr. Mendelev further noted that, "the new potentials provide the same SFE as 2013--Mendelev-M-I-King-A-H--Cu but different unstable stacking fault energy (USFE). All these Cu fictional potentials are designed to study the effect of SFE and USFE on the deformation behavior in fcc metals." Reference information added March 5, 2020.

See Computed Properties
Notes: This file was sent by M.I. Mendelev (Ames Laboratory) on 19 Aug. 2015 and posted with his permission. Update 19 July 2021: The contact email in the file's header has been changed. Update Jan 14 2022: Citation information has been updated in the file's header.
File(s):
Citation: V. Borovikov, M.I. Mendelev, and A.H. King (2016), "Effects of stable and unstable stacking fault energy on dislocation nucleation in nano-crystalline metals", Modelling and Simulation in Materials Science and Engineering, 24(8), 085017. DOI: 10.1088/0965-0393/24/8/085017.
Abstract: Dislocation nucleation from grain boundaries (GB) can control plastic deformation in nano-crystalline metals under certain conditions, but little is known about what controls dislocation nucleation, because when data from different materials are compared, the variations of many interacting properties tend to obscure the effects of any single property. In this study, we seek clarification by applying a unique capability of semi-empirical potentials in molecular dynamics simulations: the potentials can be modified such that all significant material properties but one, are kept constant. Using a set of potentials developed to isolate the effects of stacking fault energy, we show that for a given grain boundary, loading orientation and strain rate, the yield stress depends linearly on both the stable and unstable stacking fault energies. The coefficients of proportionality depend on the GB structure and the value of the yield stress is related to the density of the E structural units in the GB. While the impact of the stable stacking fault energy is easy to understand, the unstable stacking fault energy requires more elucidation and we provide a framework for understanding how it affects the nucleation and propagation process.

Notes: This listing is for the MCu33 parameterization listed in the reference. Dr. M.I. Mendelev (Ames Laboratory) noted that these are new fictional potentials intended to supplement the existing potentials posted to the NIST repository (as the 2015--Borovikov-V-Mendelev-M-I-King-A-H-LeSar-R--fictional-Cu-# listings). Dr. Mendelev further noted that, "the new potentials provide the same SFE as 2013--Mendelev-M-I-King-A-H--Cu but different unstable stacking fault energy (USFE). All these Cu fictional potentials are designed to study the effect of SFE and USFE on the deformation behavior in fcc metals." Reference information added March 5, 2020.

See Computed Properties
Notes: This file was sent by M.I. Mendelev (Ames Laboratory) on 19 Aug. 2015 and posted with his permission. Update 19 July 2021: The contact email in the file's header has been changed. Update Jan 14 2022: Citation information has been updated in the file's header.
File(s):
Citation: V. Borovikov, M.I. Mendelev, and A.H. King (2016), "Effects of stable and unstable stacking fault energy on dislocation nucleation in nano-crystalline metals", Modelling and Simulation in Materials Science and Engineering, 24(8), 085017. DOI: 10.1088/0965-0393/24/8/085017.
Abstract: Dislocation nucleation from grain boundaries (GB) can control plastic deformation in nano-crystalline metals under certain conditions, but little is known about what controls dislocation nucleation, because when data from different materials are compared, the variations of many interacting properties tend to obscure the effects of any single property. In this study, we seek clarification by applying a unique capability of semi-empirical potentials in molecular dynamics simulations: the potentials can be modified such that all significant material properties but one, are kept constant. Using a set of potentials developed to isolate the effects of stacking fault energy, we show that for a given grain boundary, loading orientation and strain rate, the yield stress depends linearly on both the stable and unstable stacking fault energies. The coefficients of proportionality depend on the GB structure and the value of the yield stress is related to the density of the E structural units in the GB. While the impact of the stable stacking fault energy is easy to understand, the unstable stacking fault energy requires more elucidation and we provide a framework for understanding how it affects the nucleation and propagation process.

Notes: This listing is for the MCu34 parameterization listed in the reference. Dr. M.I. Mendelev (Ames Laboratory) noted that these are new fictional potentials intended to supplement the existing potentials posted to the NIST repository (as the 2015--Borovikov-V-Mendelev-M-I-King-A-H-LeSar-R--fictional-Cu-# listings). Dr. Mendelev further noted that, "the new potentials provide the same SFE as 2013--Mendelev-M-I-King-A-H--Cu but different unstable stacking fault energy (USFE). All these Cu fictional potentials are designed to study the effect of SFE and USFE on the deformation behavior in fcc metals." Reference information added March 5, 2020.

See Computed Properties
Notes: This file was sent by M.I. Mendelev (Ames Laboratory) on 19 Aug. 2015 and posted with his permission. Update 19 July 2021: The contact email in the file's header has been changed. Update Jan 14 2022: Citation information has been updated in the file's header.
File(s):
Citation: S.R. Wilson, and M.I. Mendelev (2016), "A unified relation for the solid-liquid interface free energy of pure FCC, BCC, and HCP metals", The Journal of Chemical Physics, 144(14), 144707. DOI: 10.1063/1.4946032.
Abstract: We study correlations between the solid-liquid interface (SLI) free energy and bulk material properties (melting temperature, latent heat, and liquid structure) through the determination of SLI free energies for bcc and hcp metals from molecular dynamics (MD) simulation. Values obtained for the bcc metals in this study were compared to values predicted by the Turnbull, Laird, and Ewing relations on the basis of previously published MD simulation data. We found that of these three empirical relations, the Ewing relation better describes the MD simulation data. Moreover, whereas the original Ewing relation contains two constants for a particular crystal structure, we found that the first coefficient in the Ewing relation does not depend on crystal structure, taking a common value for all three phases, at least for the class of the systems described by embedded-atom method potentials (which are considered to provide a reasonable approximation for metals).

Notes: This listing is for the Mg' parameterization listed in the reference. This potential is a modification of the 2016--Wilson-S-R-Mendelev-M-I--Mg potential. This potential was developed to study the effects of the latent heat and the liquid structure on the SLI free energy. Reference information updated March 5, 2020.

See Computed Properties
Notes: These files were sent by M.I. Mendelev (Ames Laboratory) on 7 Dec. 2015 and posted with his permission. Update 19 July 2021: The contact email in the file's header has been changed. Update Jan 14 2022: Citation information has been updated in the file's header.
File(s):
Citation: S.R. Wilson, and M.I. Mendelev (2016), "A unified relation for the solid-liquid interface free energy of pure FCC, BCC, and HCP metals", The Journal of Chemical Physics, 144(14), 144707. DOI: 10.1063/1.4946032.
Abstract: We study correlations between the solid-liquid interface (SLI) free energy and bulk material properties (melting temperature, latent heat, and liquid structure) through the determination of SLI free energies for bcc and hcp metals from molecular dynamics (MD) simulation. Values obtained for the bcc metals in this study were compared to values predicted by the Turnbull, Laird, and Ewing relations on the basis of previously published MD simulation data. We found that of these three empirical relations, the Ewing relation better describes the MD simulation data. Moreover, whereas the original Ewing relation contains two constants for a particular crystal structure, we found that the first coefficient in the Ewing relation does not depend on crystal structure, taking a common value for all three phases, at least for the class of the systems described by embedded-atom method potentials (which are considered to provide a reasonable approximation for metals).

Notes: This listing is for the W2 parameterization listed in the reference. This potential is a modification of the 2003--Han-S-Zepeda-Ruiz-L-A-Ackland-G-J-et-al--W potential. This potential was developed to study the effects of the latent heat and the liquid structure on the SLI free energy.Reference information added March 3, 2020.

See Computed Properties
Notes: These files were sent by M.I. Mendelev (Ames Laboratory) on 7 Dec. 2015 and posted with his permission. Update 19 July 2021: The contact email in the file's header has been changed. Update Jan 14 2022: Citation information has been updated in the file's header.
File(s):
Citation: V. Borovikov, M.I. Mendelev, A.H. King, and R. LeSar (2015), "Effect of stacking fault energy on mechanism of plastic deformation in nanotwinned FCC metals", Modelling and Simulation in Materials Science and Engineering, 23(5), 055003. DOI: 10.1088/0965-0393/23/5/055003.
Abstract: Starting from a semi-empirical potential designed for Cu, we have developed a series of potentials that provide essentially constant values of all significant (calculated) materials properties except for the intrinsic stacking fault energy, which varies over a range that encompasses the lowest and highest values observed in nature. These potentials were employed in molecular dynamics (MD) simulations to investigate how stacking fault energy affects the mechanical behavior of nanotwinned face-centered cubic (FCC) materials. The results indicate that properties such as yield strength and microstructural stability do not vary systematically with stacking fault energy, but rather fall into two distinct regimes corresponding to 'low' and 'high' stacking fault energies.

Notes: This listing is for the MCu1 parameterization listed in the reference. The reference information was updated on 13 June 2015. Dr. Mendelev noted that these "are fictional potentials. MCu3 is a realistic potential for Cu; it is the same as 2013--Mendelev-M-I-King-A-H--Cu The rest of potentials were developed using exactly the same fitting procedure except of the target value for the stacking fault energy (SFE) which was varied. The potentials are designed to study the effect of SFE on the mechanical behavior of fcc metals. I also attached a table with the some properties by these potentials." The table is in PotentialProperties_MCu.pdf.

See Computed Properties
Notes: These files were sent by M.I. Mendelev (Ames Laboratory) on 24 Nov. 2014 and posted with his permission. A corrected file for MCu1_MendelevM_2014.eam.fs was sent by M.I. Mendelev (Ames Laboratory) on 07 Oct. 2015, and the file has been replaced. It was determined that MCu2_MendelevM_2014.eam.fs was incidentally saved as MCu1_MendelevM_2014.eam.fs. Update 19 July 2021: The contact email in the file's header has been changed. Update Jan 14 2022: Citation information has been updated in the file's header.
File(s):
Citation: V. Borovikov, M.I. Mendelev, A.H. King, and R. LeSar (2015), "Effect of stacking fault energy on mechanism of plastic deformation in nanotwinned FCC metals", Modelling and Simulation in Materials Science and Engineering, 23(5), 055003. DOI: 10.1088/0965-0393/23/5/055003.
Abstract: Starting from a semi-empirical potential designed for Cu, we have developed a series of potentials that provide essentially constant values of all significant (calculated) materials properties except for the intrinsic stacking fault energy, which varies over a range that encompasses the lowest and highest values observed in nature. These potentials were employed in molecular dynamics (MD) simulations to investigate how stacking fault energy affects the mechanical behavior of nanotwinned face-centered cubic (FCC) materials. The results indicate that properties such as yield strength and microstructural stability do not vary systematically with stacking fault energy, but rather fall into two distinct regimes corresponding to 'low' and 'high' stacking fault energies.

Notes: This listing is for the MCu2 parameterization listed in the reference. The reference information was updated on 13 June 2015. Dr. Mendelev noted that these "are fictional potentials. MCu3 is a realistic potential for Cu; it is the same as 2013--Mendelev-M-I-King-A-H--Cu The rest of potentials were developed using exactly the same fitting procedure except of the target value for the stacking fault energy (SFE) which was varied. The potentials are designed to study the effect of SFE on the mechanical behavior of fcc metals. I also attached a table with the some properties by these potentials." The table is in PotentialProperties_MCu.pdf.

See Computed Properties
Notes: These files were sent by M.I. Mendelev (Ames Laboratory) on 24 Nov. 2014 and posted with his permission. Update 19 July 2021: The contact email in the file's header has been changed. Update Jan 14 2022: Citation information has been updated in the file's header.
File(s):
Citation: V. Borovikov, M.I. Mendelev, A.H. King, and R. LeSar (2015), "Effect of stacking fault energy on mechanism of plastic deformation in nanotwinned FCC metals", Modelling and Simulation in Materials Science and Engineering, 23(5), 055003. DOI: 10.1088/0965-0393/23/5/055003.
Abstract: Starting from a semi-empirical potential designed for Cu, we have developed a series of potentials that provide essentially constant values of all significant (calculated) materials properties except for the intrinsic stacking fault energy, which varies over a range that encompasses the lowest and highest values observed in nature. These potentials were employed in molecular dynamics (MD) simulations to investigate how stacking fault energy affects the mechanical behavior of nanotwinned face-centered cubic (FCC) materials. The results indicate that properties such as yield strength and microstructural stability do not vary systematically with stacking fault energy, but rather fall into two distinct regimes corresponding to 'low' and 'high' stacking fault energies.

Notes: This listing is for the MCu3 parameterization listed in the reference. The reference information was updated on 13 June 2015. Dr. Mendelev noted that these "are fictional potentials. MCu3 is a realistic potential for Cu; it is the same as 2013--Mendelev-M-I-King-A-H--Cu The rest of potentials were developed using exactly the same fitting procedure except of the target value for the stacking fault energy (SFE) which was varied. The potentials are designed to study the effect of SFE on the mechanical behavior of fcc metals. I also attached a table with the some properties by these potentials." The table is in PotentialProperties_MCu.pdf.

See Computed Properties
Notes: These files were sent by M.I. Mendelev (Ames Laboratory) on 24 Nov. 2014 and posted with his permission. Update 19 July 2021: The contact email in the file's header has been changed. Update Jan 14 2022: Citation information has been updated in the file's header.
File(s):
Citation: V. Borovikov, M.I. Mendelev, A.H. King, and R. LeSar (2015), "Effect of stacking fault energy on mechanism of plastic deformation in nanotwinned FCC metals", Modelling and Simulation in Materials Science and Engineering, 23(5), 055003. DOI: 10.1088/0965-0393/23/5/055003.
Abstract: Starting from a semi-empirical potential designed for Cu, we have developed a series of potentials that provide essentially constant values of all significant (calculated) materials properties except for the intrinsic stacking fault energy, which varies over a range that encompasses the lowest and highest values observed in nature. These potentials were employed in molecular dynamics (MD) simulations to investigate how stacking fault energy affects the mechanical behavior of nanotwinned face-centered cubic (FCC) materials. The results indicate that properties such as yield strength and microstructural stability do not vary systematically with stacking fault energy, but rather fall into two distinct regimes corresponding to 'low' and 'high' stacking fault energies.

Notes: This listing is for the MCu4 parameterization listed in the reference. The reference information was updated on 13 June 2015. Dr. Mendelev noted that these "are fictional potentials. MCu3 is a realistic potential for Cu; it is the same as 2013--Mendelev-M-I-King-A-H--Cu The rest of potentials were developed using exactly the same fitting procedure except of the target value for the stacking fault energy (SFE) which was varied. The potentials are designed to study the effect of SFE on the mechanical behavior of fcc metals. I also attached a table with the some properties by these potentials." The table is in PotentialProperties_MCu.pdf.

See Computed Properties
Notes: These files were sent by M.I. Mendelev (Ames Laboratory) on 24 Nov. 2014 and posted with his permission. Update 19 July 2021: The contact email in the file's header has been changed. Update Jan 14 2022: Citation information has been updated in the file's header.
File(s):
Citation: V. Borovikov, M.I. Mendelev, A.H. King, and R. LeSar (2015), "Effect of stacking fault energy on mechanism of plastic deformation in nanotwinned FCC metals", Modelling and Simulation in Materials Science and Engineering, 23(5), 055003. DOI: 10.1088/0965-0393/23/5/055003.
Abstract: Starting from a semi-empirical potential designed for Cu, we have developed a series of potentials that provide essentially constant values of all significant (calculated) materials properties except for the intrinsic stacking fault energy, which varies over a range that encompasses the lowest and highest values observed in nature. These potentials were employed in molecular dynamics (MD) simulations to investigate how stacking fault energy affects the mechanical behavior of nanotwinned face-centered cubic (FCC) materials. The results indicate that properties such as yield strength and microstructural stability do not vary systematically with stacking fault energy, but rather fall into two distinct regimes corresponding to 'low' and 'high' stacking fault energies.

Notes: This listing is for the MCu5 parameterization listed in the reference. The reference information was updated on 13 June 2015. Dr. Mendelev noted that these "are fictional potentials. MCu3 is a realistic potential for Cu; it is the same as 2013--Mendelev-M-I-King-A-H--Cu The rest of potentials were developed using exactly the same fitting procedure except of the target value for the stacking fault energy (SFE) which was varied. The potentials are designed to study the effect of SFE on the mechanical behavior of fcc metals. I also attached a table with the some properties by these potentials." The table is in PotentialProperties_MCu.pdf.

See Computed Properties
Notes: These files were sent by M.I. Mendelev (Ames Laboratory) on 24 Nov. 2014 and posted with his permission. Update 19 July 2021: The contact email in the file's header has been changed. Update Jan 14 2022: Citation information has been updated in the file's header.
File(s):
Citation: V. Borovikov, M.I. Mendelev, A.H. King, and R. LeSar (2015), "Effect of stacking fault energy on mechanism of plastic deformation in nanotwinned FCC metals", Modelling and Simulation in Materials Science and Engineering, 23(5), 055003. DOI: 10.1088/0965-0393/23/5/055003.
Abstract: Starting from a semi-empirical potential designed for Cu, we have developed a series of potentials that provide essentially constant values of all significant (calculated) materials properties except for the intrinsic stacking fault energy, which varies over a range that encompasses the lowest and highest values observed in nature. These potentials were employed in molecular dynamics (MD) simulations to investigate how stacking fault energy affects the mechanical behavior of nanotwinned face-centered cubic (FCC) materials. The results indicate that properties such as yield strength and microstructural stability do not vary systematically with stacking fault energy, but rather fall into two distinct regimes corresponding to 'low' and 'high' stacking fault energies.

Notes: This listing is for the MCu6 parameterization listed in the reference. The reference information was updated on 13 June 2015. Dr. Mendelev noted that these "are fictional potentials. MCu3 is a realistic potential for Cu; it is the same as 2013--Mendelev-M-I-King-A-H--Cu The rest of potentials were developed using exactly the same fitting procedure except of the target value for the stacking fault energy (SFE) which was varied. The potentials are designed to study the effect of SFE on the mechanical behavior of fcc metals. I also attached a table with the some properties by these potentials." The table is in PotentialProperties_MCu.pdf.

See Computed Properties
Notes: These files were sent by M.I. Mendelev (Ames Laboratory) on 24 Nov. 2014 and posted with his permission. Update 19 July 2021: The contact email in the file's header has been changed. Update Jan 14 2022: Citation information has been updated in the file's header.
File(s):
Citation: V. Borovikov, M.I. Mendelev, A.H. King, and R. LeSar (2015), "Effect of stacking fault energy on mechanism of plastic deformation in nanotwinned FCC metals", Modelling and Simulation in Materials Science and Engineering, 23(5), 055003. DOI: 10.1088/0965-0393/23/5/055003.
Abstract: Starting from a semi-empirical potential designed for Cu, we have developed a series of potentials that provide essentially constant values of all significant (calculated) materials properties except for the intrinsic stacking fault energy, which varies over a range that encompasses the lowest and highest values observed in nature. These potentials were employed in molecular dynamics (MD) simulations to investigate how stacking fault energy affects the mechanical behavior of nanotwinned face-centered cubic (FCC) materials. The results indicate that properties such as yield strength and microstructural stability do not vary systematically with stacking fault energy, but rather fall into two distinct regimes corresponding to 'low' and 'high' stacking fault energies.

Notes: This listing is for the MCu7 parameterization listed in the reference. The reference information was updated on 13 June 2015. Dr. Mendelev noted that these "are fictional potentials. MCu3 is a realistic potential for Cu; it is the same as 2013--Mendelev-M-I-King-A-H--Cu The rest of potentials were developed using exactly the same fitting procedure except of the target value for the stacking fault energy (SFE) which was varied. The potentials are designed to study the effect of SFE on the mechanical behavior of fcc metals. I also attached a table with the some properties by these potentials." The table is in PotentialProperties_MCu.pdf.

See Computed Properties
Notes: These files were sent by M.I. Mendelev (Ames Laboratory) on 24 Nov. 2014 and posted with his permission. Update 19 July 2021: The contact email in the file's header has been changed. Update Jan 14 2022: Citation information has been updated in the file's header.
File(s):
Citation: S.R. Wilson, K.G.S.H. Gunawardana, and M.I. Mendelev (2015), "Solid-liquid interface free energies of pure bcc metals and B2 phases", The Journal of Chemical Physics, 142(13), 134705. DOI: 10.1063/1.4916741.
Abstract: The solid-liquid interface (SLI) free energy was determined from molecular dynamics (MD) simulation for several body centered cubic (bcc) metals and B2 metallic compounds (space group: Pm-3m; prototype: CsCl). In order to include a bcc metal with a low melting temperature in our study, a semi-empirical potential was developed for Na. Two additional synthetic "Na" potentials were also developed to explore the effect of liquid structure and latent heat on the SLI free energy. The obtained MD data were compared with the empirical Turnbull, Laird, and Ewing relations. All three relations are found to predict the general trend observed in the MD data for bcc metals obtained within the present study. However, only the Laird and Ewing relations are able to predict the trend obtained within the sequence of "Na" potentials. The Laird relation provides the best prediction for our MD data and other MD data for bcc metals taken from the literature. Overall, the Laird relation also agrees well with our B2 data but requires a proportionality constant that is substantially different from the bcc case. It also fails to explain a considerable difference between the SLI free energies of some B2 phases which have nearly the same melting temperature. In contrast, this difference is satisfactorily described by the Ewing relation. Moreover, the Ewing relation obtained from the bcc dataset also provides a reasonable description of the B2 data.

Notes: This listing is for the Na2 parameterization listed in the reference. M.I. Mendelev (Ames Laboratory) noted that "these 'Na' potentials were developed using the same fitting procedure as for the realistic Na potential 2015--Wilson-S-R-Gunawardana-K-G-S-H-Mendelev-M-I--Na except the fact that the latent heat of melting was purposely increased and the liquid was purposely made less ordered. The potentials were developed to study the effect of the latent heat and liquid structure on the SLI properties of bcc metals." Update 27 Apr. 2015: Changed the reference to update publication status.

See Computed Properties
Notes: This file was sent by M.I. Mendelev (Ames Laboratory) on 13 Jan. 2015 and posted with his permission. Update 19 July 2021: The contact email in the file's header has been changed. Update Jan 14 2022: Citation information has been updated in the file's header.
File(s):
Citation: S.R. Wilson, K.G.S.H. Gunawardana, and M.I. Mendelev (2015), "Solid-liquid interface free energies of pure bcc metals and B2 phases", The Journal of Chemical Physics, 142(13), 134705. DOI: 10.1063/1.4916741.
Abstract: The solid-liquid interface (SLI) free energy was determined from molecular dynamics (MD) simulation for several body centered cubic (bcc) metals and B2 metallic compounds (space group: Pm-3m; prototype: CsCl). In order to include a bcc metal with a low melting temperature in our study, a semi-empirical potential was developed for Na. Two additional synthetic "Na" potentials were also developed to explore the effect of liquid structure and latent heat on the SLI free energy. The obtained MD data were compared with the empirical Turnbull, Laird, and Ewing relations. All three relations are found to predict the general trend observed in the MD data for bcc metals obtained within the present study. However, only the Laird and Ewing relations are able to predict the trend obtained within the sequence of "Na" potentials. The Laird relation provides the best prediction for our MD data and other MD data for bcc metals taken from the literature. Overall, the Laird relation also agrees well with our B2 data but requires a proportionality constant that is substantially different from the bcc case. It also fails to explain a considerable difference between the SLI free energies of some B2 phases which have nearly the same melting temperature. In contrast, this difference is satisfactorily described by the Ewing relation. Moreover, the Ewing relation obtained from the bcc dataset also provides a reasonable description of the B2 data.

Notes: This listing is for the Na3 parameterization listed in the reference. M.I. Mendelev (Ames Laboratory) noted that "these 'Na' potentials were developed using the same fitting procedure as for the realistic Na potential 2015--Wilson-S-R-Gunawardana-K-G-S-H-Mendelev-M-I--Na except the fact that the latent heat of melting was purposely increased and the liquid was purposely made less ordered. The potentials were developed to study the effect of the latent heat and liquid structure on the SLI properties of bcc metals." Update 27 Apr. 2015: Changed the reference to update publication status.

See Computed Properties
Notes: This file was sent by M.I. Mendelev (Ames Laboratory) on 13 Jan. 2015 and posted with his permission. Update 19 July 2021: The contact email in the file's header has been changed. Update Jan 14 2022: Citation information has been updated in the file's header.
File(s):
Citation: M.I. Mendelev, M.J. Rahman, J.J. Hoyt, and M. Asta (2010), "Molecular-dynamics study of solid-liquid interface migration in fcc metals", Modelling and Simulation in Materials Science and Engineering, 18(7), 074002. DOI: 10.1088/0965-0393/18/7/074002.
Abstract: In order to establish a link between various structural and kinetic properties of metals and the crystal–melt interfacial mobility, free-solidification molecular-dynamics simulations have been performed for a total of nine embedded atom method interatomic potentials describing pure Al, Cu and Ni. To fully explore the space of materials properties three new potentials have been developed. The new potentials are based on a previous description of Al, but in each case the liquid structure, the melting point and/or the latent heat are varied considerably. The kinetic coefficient, μ, for all systems has been compared with several theoretical predictions. It is found that at temperatures close to the melting point the magnitude of μ correlates well with the value of the diffusion coefficient in the liquid.

Notes: This listing is for the Al' parameterization listed in the reference. It has exactly the same functional form and used the same fitting method as 2008--Mendelev-M-I-Kramer-M-J-Becker-C-A-Asta-M--Al except that the target values for the melting temperature and the latent heat of melting were set to 500 K and 0.05 eV/atom, respectively.

See Computed Properties
Notes: This file was sent by M.I. Mendelev (Ames Laboratory) on 29 Mar. 2010 and posted with his permission on 21 Apr. 2010. The reference was later updated when the publication status changed. Update 19 July 2021: The contact email in the file's header has been changed.
File(s):
Citation: M.I. Mendelev, M.J. Rahman, J.J. Hoyt, and M. Asta (2010), "Molecular-dynamics study of solid-liquid interface migration in fcc metals", Modelling and Simulation in Materials Science and Engineering, 18(7), 074002. DOI: 10.1088/0965-0393/18/7/074002.
Abstract: In order to establish a link between various structural and kinetic properties of metals and the crystal–melt interfacial mobility, free-solidification molecular-dynamics simulations have been performed for a total of nine embedded atom method interatomic potentials describing pure Al, Cu and Ni. To fully explore the space of materials properties three new potentials have been developed. The new potentials are based on a previous description of Al, but in each case the liquid structure, the melting point and/or the latent heat are varied considerably. The kinetic coefficient, μ, for all systems has been compared with several theoretical predictions. It is found that at temperatures close to the melting point the magnitude of μ correlates well with the value of the diffusion coefficient in the liquid.

Notes: This listing is for the Al'' parameterization listed in the reference. It has exactly the same functional form and used the same fitting method as 2008--Mendelev-M-I-Kramer-M-J-Becker-C-A-Asta-M--Al except that the target pair correlation function was selected to give a more ordered liquid structure.

See Computed Properties
Notes: This file was sent by M.I. Mendelev (Ames Laboratory) on 29 Mar. 2010 and posted with his permission on 21 Apr. 2010. The reference was later updated when the publication status changed. Update 19 July 2021: The contact email in the file's header has been changed.
File(s):
Citation: M.I. Mendelev, M.J. Rahman, J.J. Hoyt, and M. Asta (2010), "Molecular-dynamics study of solid-liquid interface migration in fcc metals", Modelling and Simulation in Materials Science and Engineering, 18(7), 074002. DOI: 10.1088/0965-0393/18/7/074002.
Abstract: In order to establish a link between various structural and kinetic properties of metals and the crystal–melt interfacial mobility, free-solidification molecular-dynamics simulations have been performed for a total of nine embedded atom method interatomic potentials describing pure Al, Cu and Ni. To fully explore the space of materials properties three new potentials have been developed. The new potentials are based on a previous description of Al, but in each case the liquid structure, the melting point and/or the latent heat are varied considerably. The kinetic coefficient, μ, for all systems has been compared with several theoretical predictions. It is found that at temperatures close to the melting point the magnitude of μ correlates well with the value of the diffusion coefficient in the liquid.

Notes: This listing is for the Al''' parameterization listed in the reference. It has exactly the same functional form and used the same fitting method as 2008--Mendelev-M-I-Kramer-M-J-Becker-C-A-Asta-M--Al except that the target pair correlation function was selected to give a considerably more ordered liquid structure.

See Computed Properties
Notes: This file was sent by M.I. Mendelev (Ames Laboratory) on 29 Mar. 2010 and posted with his permission on 21 Apr. 2010. The reference was later updated when the publication status changed. Update 19 July 2021: The contact email in the file's header has been changed.
File(s):
Date Created: October 5, 2010 | Last updated: June 09, 2022