Calculation update! New properties have been added to the website for dislocation monopole core structures, dynamic relaxes of both crystal and liquid phases, and melting temperatures! Currently, the results for these properties predominately focus on EAM-style potentials, but the results will be updated for other potentials as the associated calculations finish. Feel free to give us feedback on the new properties so we can improve their representations as needed.
Warning! Note that elemental potentials taken from alloy descriptions may not work well for the pure species. This is particularly true if the elements were fit for compounds instead of being optimized separately. As with all interatomic potentials, please check to make sure that the performance is adequate for your problem.
Citation: R.A. MacDonald, and W.M. MacDonald (1981), "Thermodynamic properties of fcc metals at high temperatures", Physical Review B24(4), 1715-1724. DOI: 10.1103/physrevb.24.1715.
Abstract: We have carried out an exact and consistent calculation of the thermodynamic properties of monatomic fcc crystals at high temperatures. These properties are obtained from the Helmholtz free energy of the crystal F(V,T) by means of the appropriate thermodynamic relations. It is crucial to the success of the calculation that we have been able to obtain the volume dependence of the free energy. F(V,T) includes the static lattice energy and the vibrational contributions from the harmonic and lowest-order (cubic and quartic) anharmonic terms in perturbation theory evaluated in the high-temperature limit. The atoms interact via an effective nearest-neighbor central-force potential φ(r). We have calculated the specific heat at constant volume and at constant pressure, the thermal expansion, the coefficient of linear expansion, the isothermal and adiabatic bulk moduli, and the Grüneisen parameter for the following fcc metals: Cu, Ag, Ca, Sr, Al, Pb, and Ni. Good agreement with experiment is obtained in all cases. We discuss the implications of these results for further studies of the properties of metals.