Warning! Note that elemental potentials taken from alloy descriptions may not work well for the pure species. This is particularly true if the elements were fit for compounds instead of being optimized separately. As with all interatomic potentials, please check to make sure that the performance is adequate for your problem.
Citation: H.-K. Kim, W.-S. Jung, and B.-J. Lee (2009), "Modified embedded-atom method interatomic potentials for the Fe-Ti-C and Fe-Ti-N ternary systems", Acta Materialia, 57(11), 3140-3147. DOI: 10.1016/j.actamat.2009.03.019.
Abstract: Modified embedded-atom method (MEAM) interatomic potentials for the Fe-Ti-C and Fe-Ti-N ternary systems have been developed based on the previously developed MEAM potentials for sub-unary and binary systems. An attempt was made to find a way to determine ternary potential parameters using the corresponding binary parameters. The calculated coherent interface properties, interfacial energy, work of separation and misfit strain energy between body-centered cubic Fe and NaCl-type TiC or TiN were reasonable when compared with relevant first-principles calculations under the same condition. The applicability of the present potentials for atomistic simulations to investigate nucleation kinetics of TiC or TiN precipitates and their effects on mechanical properties in steels is also demonstrated.
See Computed Properties Notes: This file was submitted by Sebastián ECHEVERRI RESTREPO (SKF Engineering & Research Centre) on 31 August 2015 and approved for distribution by Byeong-Joo Lee (POSTECH). This version is compatible with LAMMPS. Implementation information can be found in FeTiC_Implementation.pdf. File(s):