Warning! Note that elemental potentials taken from alloy descriptions may not work well for the pure species. This is particularly true if the elements were fit for compounds instead of being optimized separately. As with all interatomic potentials, please check to make sure that the performance is adequate for your problem.
Citation: R.G. Hennig, T.J. Lenosky, D.R. Trinkle, S.P. Rudin, and J.W. Wilkins (2008), "Classical potential describes martensitic phase transformations between the α, β, and ω titanium phases", Physical Review B, 78(5), 054121. DOI: 10.1103/physrevb.78.054121.
Abstract: A description of the martensitic transformations between the α, β, and ω phases of titanium that includes nucleation and growth requires an accurate classical potential. Optimization of the parameters of a modified embedded atom potential to a database of density-functional calculations yields an accurate and transferable potential as verified by comparison to experimental and density-functional data for phonons, surface and stacking fault energies, and energy barriers for homogeneous martensitic transformations. Molecular-dynamics simulations map out the pressure-temperature phase diagram of titanium. For this potential the martensitic phase transformation between α and β appears at ambient pressure and 1200 K, between α and ω at ambient conditions, between β and ω at 1200 K and pressures above 8 GPa, and the triple point occurs at 8 GPa and 1200 K. Molecular-dynamics explorations of the kinetics of the martensitic α−ω transformation show a fast moving interface with a low interfacial energy of 30 meV/Å2. The potential is applicable to the study of defects and phase transformations of Ti.
See Computed Properties Notes: This file was taken from the August 22, 2018 LAMMPS distribution. It is listed as being contributed by Alexander Stukowski (Technische Universität Darmstadt) File(s):