× Updated! Potentials that share interactions are now listed as related models.
 
Citation: R.S. Elliott, and A. Akerson (2015), "Efficient "universal" shifted Lennard-Jones model for all KIM API supported species".

Notes: This is the Nd interaction from the "Universal" parameterization for the openKIM LennardJones612 model driver.The parameterization uses a shifted cutoff so that all interactions have a continuous energy function at the cutoff radius. This model was automatically fit using Lorentz-Berthelotmixing rules. It reproduces the dimer equilibrium separation (covalent radii) and the bond dissociation energies. It has not been fitted to other physical properties and its ability to model structures other than dimers is unknown. See the README and params files on the KIM model page for more details.

See Computed Properties
Notes: Listing found at https://openkim.org.
Link(s):
 
Citation: K.-H. Kim, and B.-J. Lee (2017), "Modified embedded-atom method interatomic potentials for Mg-Nd and Mg-Pb binary systems", Calphad, 57, 55-61. DOI: 10.1016/j.calphad.2017.03.003.
Abstract: Interatomic potentials for the Mg-Nd and Mg-Pb binary systems have been developed within the framework of the second nearest-neighbor modified embedded-atom method (2NN MEAM) formalism. The potentials describe a wide range of fundamental materials properties (thermodynamic, structural and elastic properties of compound and solution phases) of relevant systems in reasonable agreement with experimental data or first-principles and CALPHAD calculations. The applicability of the developed potentials to atomistic simulations on deformation behavior in Mg and its alloys is demonstrated by showing that the potentials reproduce related material properties reasonably and are transferable sufficiently.

See Computed Properties
Notes: These potential files were obtained from http://cmse.postech.ac.kr/home_2nnmeam, accessed Nov 9, 2020.
File(s):
Date Created: October 5, 2010 | Last updated: June 09, 2022