Calculation update! New properties have been added to the website for dislocation monopole core structures, dynamic relaxes of both crystal and liquid phases, and melting temperatures! Currently, the results for these properties predominately focus on EAM-style potentials, but the results will be updated for other potentials as the associated calculations finish. Feel free to give us feedback on the new properties so we can improve their representations as needed.
Warning! Note that elemental potentials taken from alloy descriptions may not work well for the pure species. This is particularly true if the elements were fit for compounds instead of being optimized separately. As with all interatomic potentials, please check to make sure that the performance is adequate for your problem.
Citation: I. Aslam, M.I. Baskes, D.E. Dickel, S. Adibi, B. Li, H. Rhee, M. Asle Zaeem, and M.F. Horstemeyer (2019), "Thermodynamic and kinetic behavior of low-alloy steels: An atomic level study using an Fe-Mn-Si-C modified embedded atom method (MEAM) potential", Materialia8, 100473. DOI: 10.1016/j.mtla.2019.100473.
Abstract: A quaternary element Modified Embedded Atom Method (MEAM) potential comprising Fe, Mn, Si, and C is developed by employing a hierarchical multiscale modeling paradigm to simulate low-alloy steels. Experimental information alongside first-principles calculations based on Density Functional Theory served as calibration data to upscale and develop the MEAM potential. For calibrating the single element potentials, the cohesive energy, lattice parameters, elastic constants, and vacancy and interstitial formation energies are used as target data. The heat of formation and elastic constants of binary compounds along with substitutional and interstitial formation energies serve as binary potential calibration data, while substitutional and interstitial pair binding energies aid in developing the ternary potential. Molecular dynamics simulations employing the developed potentials predict the thermal expansion coefficient, heat capacity, self-diffusion coefficients, and stacking fault energy for steel alloys comparable to those reported in the literature.