Calculation update! New properties have been added to the website for dislocation monopole core structures, dynamic relaxes of both crystal and liquid phases, and melting temperatures! Currently, the results for these properties predominately focus on EAM-style potentials, but the results will be updated for other potentials as the associated calculations finish. Feel free to give us feedback on the new properties so we can improve their representations as needed.
Warning! Note that elemental potentials taken from alloy descriptions may not work well for the pure species. This is particularly true if the elements were fit for compounds instead of being optimized separately. As with all interatomic potentials, please check to make sure that the performance is adequate for your problem.
Citation: P. Erhart, N. Juslin, O. Goy, K. Nordlund, R. Müller, and K. Albe (2006), "Analytic bond-order potential for atomistic simulations of zinc oxide", Journal of Physics: Condensed Matter18(29), 6585-6605. DOI: 10.1088/0953-8984/18/29/003.
Abstract: An interatomic potential for zinc oxide and its elemental constituents is derived based on an analytical bond-order formalism. The model potential provides a good description of the bulk properties of various solid structures of zinc oxide including cohesive energies, lattice parameters, and elastic constants. For the pure elements zinc and oxygen the energetics and structural parameters of a variety of bulk phases and in the case of oxygen also molecular structures are reproduced. The dependence of thermal and point defect properties on the cutoff parameters is discussed. As exemplary applications the irradiation of bulk zinc oxide and the elastic response of individual nanorods are studied.