• Citation: R.S. Elliott, and A. Akerson (2015), "Efficient "universal" shifted Lennard-Jones model for all KIM API supported species".

    Notes: This is the As interaction from the "Universal" parameterization for the openKIM LennardJones612 model driver.The parameterization uses a shifted cutoff so that all interactions have a continuous energy function at the cutoff radius. This model was automatically fit using Lorentz-Berthelotmixing rules. It reproduces the dimer equilibrium separation (covalent radii) and the bond dissociation energies. It has not been fitted to other physical properties and its ability to model structures other than dimers is unknown. See the README and params files on the KIM model page for more details.

  • See Computed Properties
    Notes: Listing found at https://openkim.org.
    Link(s):
 
  • Citation: D.S. Oliveira, and M.A. Cotta (2021), "Role of Group V Atoms during GaAs Nanowire Growth Revealed by Molecular Dynamics Simulations: Implications in the Formation of Sharp Interfaces", ACS Applied Nano Materials, 4(3), 2903–2909. DOI: 10.1021/acsanm.1c00057.
    Abstract: Understanding atomistic mechanisms for catalyst-assisted nanowire growth is an essential step to improve control over the properties of these versatile nanomaterials. However, in silico approaches for III-V nanowire growth have been hindered so far mainly by the limited number of interatomic potentials. Here, we present an original interatomic potential for molecular dynamics simulations of Au-catalyzed GaAs nanowire growth. Our simulations provide important insights about the atomic distribution in the nanowire catalyst and the role of As atoms during GaAs nanowire growth. We show that a stable, thin layer of As around the catalyst is essential for nanowire growth and that the composition of the region close to the solid-liquid interface is nonuniform, alternating between Ga-rich and As/Au-rich layers. These features contribute to the reservoir effect, enlarging interface widths when exchanging group III or V species for heterostructure growth. Our simulation results also provide directions for challenging in situ experiments to further probe the existence of this thin As layer on the catalyst surface, as well as for finding improved conditions to obtain sharp interfaces in nanowires with axial heterostructures.

    Notes: This potential was specifically designed for simulating Au catalyzed GaAs nanowires. It should not be used for simulations involving interatomic distances below 1.8 Å, as the fitting was optimized for larger distances. Additionally, the cutoff distance applied was 6 Å.

  • See Computed Properties
    Notes: This file was provided by Douglas Soares de Oliveira on November 12, 2024.
    File(s):
 
  • Citation: D.A. Murdick, X.W. Zhou, H.N.G. Wadley, D. Nguyen-Manh, R. Drautz, and D.G. Pettifor (2006), "Analytic bond-order potential for the gallium arsenide system", Physical Review B, 73(4), 045206. DOI: 10.1103/physrevb.73.045206.
    Abstract: An analytic, bond-order potential (BOP) is proposed and parametrized for the gallium arsenide system. The potential addresses primary (σ) and secondary (π) bonding and the valence-dependent character of heteroatomic bonding, and it can be combined with an electron counting potential to address the distribution of electrons on the GaAs surface. The potential was derived from a tight-binding description of covalent bonding by retaining the first two levels of an expanded Green’s function for the σ and π bond-order terms. Predictions using the potential were compared with independent estimates for the structures and binding energy of small clusters (dimers, trimers, and tetramers) and for various bulk lattices with coordinations varying from 4 to 12. The structure and energies of simple point defects and melting transitions were also investigated. The relative stabilities of the (001) surface reconstructions of GaAs were well predicted, especially under high-arsenic-overpressure conditions. The structural and binding energy trends of this GaAs BOP generally match experimental observations and ab initio calculations.

    Related Models:
  • See Computed Properties
    Notes: This file was taken from the August 22, 2018 LAMMPS distribution and listed as having been created by X.W. Zhou (Sandia)
    File(s):
  • Citation: K. Albe, K. Nordlund, J. Nord, and A. Kuronen (2002), "Modeling of compound semiconductors: Analytical bond-order potential for Ga, As, and GaAs", Physical Review B, 66(3), 035205. DOI: 10.1103/physrevb.66.035205.
    Abstract: An analytical bond-order potential for GaAs is presented, that allows one to model a wide range of properties of GaAs compound structures, as well as the pure phases of gallium and arsenide, including nonequilibrium configurations. The functional form is based on the bond-order scheme as devised by Abell-Tersoff and Brenner, while a systematic fitting scheme starting from the Pauling relation is used for determining all adjustable parameters. Reference data were taken from experiments if available, or computed by self-consistent total-energy calculations within the local density-functional theory otherwise. For fitting the parameters, only structural data of the metallic phases of gallium and arsenide as well as those of different GaAs phases were used. A number of tests on point defect properties, surface properties, and melting behavior have been performed afterward in order to validate the accuracy and transferability of the potential model, but were not part of the fitting procedure. While point defect properties and surfaces with low As content are found to be in good agreement with literature data, the description of As-rich surface reconstructions is not satisfactory. In the case of molten GaAs we find support for a structural model based on experiment that indicates a polymerized arsenic phase in the melt.

    Related Models:
  • LAMMPS pair_style tersoff (2002--Albe-K--Ga-As--LAMMPS--ipr1)
    See Computed Properties
    Notes: This file was created and verified by Lucas Hale. The parameter values are identical to the ones in the parameter file used by openKIM model MO_799020228312_001.
    File(s):
  • See Computed Properties
    Notes: Listing found at https://openkim.org. Does not include the modified repulsive potential for high-energy collison from the appendix.
    Link(s):
Date Created: October 5, 2010 | Last updated: November 20, 2024