• Citation: H.-S. Jang, K.-M. Kim, and B.-J. Lee (2018), "Modified embedded-atom method interatomic potentials for pure Zn and Mg-Zn binary system", Calphad, 60, 200-207. DOI: 10.1016/j.calphad.2018.01.003.
    Abstract: Interatomic potentials for pure Zn and Mg-Zn binary system have been developed on the basis of the second nearest-neighbor modified embedded-atom method formalism. The potentials describe fundamental material properties of pure Zn (bulk, defect, and thermal properties) reasonably and reproduce the alloy behavior (thermodynamic, structural, and elastic properties of compounds and solution phases) of Mg-Zn alloys well in good agreement with experiments, first-principles and CALPHAD. The applicability of the developed potentials to atom-scale investigations on the slip behavior of Mg-Zn alloys is also demonstrated by showing that the calculated effects of Zn on the general stacking fault energy on the basal, prismatic and pyramidal planes are consistent with first-principles calculations.

    Related Models:
  • LAMMPS pair_style meam (2018--Jang-H-S--Zn--LAMMPS--ipr1)
    See Computed Properties
    Notes: These potential files were obtained from http://cmse.postech.ac.kr/home_2nnmeam, accessed Nov 9, 2020.
    File(s):
  • Citation: R.S. Elliott, and A. Akerson (2015), "Efficient "universal" shifted Lennard-Jones model for all KIM API supported species".

    Notes: This is the Zn interaction from the "Universal" parameterization for the openKIM LennardJones612 model driver.The parameterization uses a shifted cutoff so that all interactions have a continuous energy function at the cutoff radius. This model was automatically fit using Lorentz-Berthelotmixing rules. It reproduces the dimer equilibrium separation (covalent radii) and the bond dissociation energies. It has not been fitted to other physical properties and its ability to model structures other than dimers is unknown. See the README and params files on the KIM model page for more details.

  • See Computed Properties
    Notes: Listing found at https://openkim.org.
    Link(s):
 
  • Citation: D.E. Dickel, M.I. Baskes, I. Aslam, and C.D. Barrett (2018), "New interatomic potential for Mg-Al-Zn alloys with specific application to dilute Mg-based alloys", Modelling and Simulation in Materials Science and Engineering, 26(4), 045010. DOI: 10.1088/1361-651x/aabaad.
    Abstract: Because of its very large c/a ratio, zinc has proven to be a difficult element to model using semi-empirical classical potentials. It has been shown, in particular, that for the modified embedded atom method (MEAM), a potential cannot simultaneously have an hcp ground state and c/a ratio greater than ideal. As an alloying element, however, useful zinc potentials can be generated by relaxing the condition that hcp be the lowest energy structure. In this paper, we present a MEAM zinc potential, which gives accurate material properties for the pure state, as well as a MEAM ternary potential for the Mg-Al-Zn system which will allow the atomistic modeling of a wide class of alloys containing zinc. The effects of zinc in simple Mg-Zn for this potential is demonstrated and these results verify the accuracy for the new potential in these systems.

    Related Models:
  • See Computed Properties
    Notes: These files were submitted by Doyl Dickel on May 17, 2018.
    File(s):
 
 
  • Citation: X.W. Zhou, D.K. Ward, J.E. Martin, F.B. van Swol, J.L. Cruz-Campa, and D. Zubia (2013), "Stillinger-Weber potential for the II-VI elements Zn-Cd-Hg-S-Se-Te", Physical Review B, 88(8), 085309. DOI: 10.1103/physrevb.88.085309.
    Abstract: Bulk and multilayered thin film crystals of II-VI semiconductor compounds are the leading materials for infrared sensing, γ-ray detection, photovoltaics, and quantum dot lighting applications. The key to achieving high performance for these applications is reducing crystallographic defects. Unfortunately, past efforts to improve these materials have been prolonged due to a lack of understanding with regards to defect formation and evolution mechanisms. To enable high-fidelity and high-efficiency atomistic simulations of defect mechanisms, this paper develops a Stillinger-Weber interatomic potential database for semiconductor compounds composed of the major II-VI elements Zn, Cd, Hg, S, Se, and Te. The potential's fidelity is achieved by optimizing all the pertinent model parameters, by imposing reasonable energy trends to correctly capture the transformation between elemental, solid solution, and compound phases, and by capturing exactly the experimental cohesive energies, lattice constants, and bulk moduli of all binary compounds. Verification tests indicate that our model correctly predicts crystalline growth of all binary compounds during molecular dynamics simulations of vapor deposition. Two stringent cases convincingly show that our potential is applicable for a variety of compound configurations involving all the six elements considered here. In the first case, we demonstrate a successful molecular dynamics simulation of crystalline growth of an alloyed (Cd0.28Zn0.68Hg0.04) (Te0.20Se0.18S0.62) compound on a ZnS substrate. In the second case, we demonstrate the predictive power of our model on defects, such as misfit dislocations, stacking faults, and subgrain nucleation, using a complex growth simulation of ZnS/CdSe/HgTe multilayers that also contain all the six elements considered here. Using CdTe as a case study, a comprehensive comparison of our potential with literature potentials is also made. Finally, we also propose unique insights for improving the Stillinger-Weber potential in future developments.

    Related Models:
  • See Computed Properties
    Notes: This file was sent by Dr. Xiaowang Zhou (Sandia National Laboratories) and approved for distribution on 11 Sept. 2013. This file is compatible with LAMMPS and is intended to be used for elements and compounds of the Zn-Cd-Hg-S-Se-Te system (II-VI semiconductors).
    File(s):
  • See Computed Properties
    Notes: Listing found at https://openkim.org. This KIM potential is based on the files from 2013--Zhou-X-W--Zn-Cd-Hg-S-Se-Te--LAMMPS--ipr1.
    Link(s):
 
 
  • Citation: A. Clement, and T. Auger (2022), "An EAM potential for α-brass copper–zinc alloys: application to plasticity and fracture", Modelling and Simulation in Materials Science and Engineering, 31(1), 015004. DOI: 10.1088/1361-651x/aca4ec.
    Abstract: An embedded atom method potential has been developed for copper–zinc alloys valid from 0% to 37% zinc content (dedicated to describe the α fcc phase). It has been fit to a set of first-principles data for the fcc copper, the fcc Cu3Zn DO23 phase and Zn on a fcc lattice. Elastic anisotropies, the lattice parameter, cohesive energy are used as input. Ponctual defects, surface energies, intrinsic stacking fault and phonon spectrum have been computed and compare well with experimental trends. This potential has been used to study dislocation dissociation and dislocation emission at a crack tip up to 30% Zn. Dislocation emission at the crack tip is correctly described compared with recent parametrization including the surface energy. It is found that with alloying, dislocation emission becomes easier following the decrease of the unstable stacking fault energy with Zn concentration, a non-trivial finding. This potential is therefore well suited to carry out basic studies of plasticity and fracture in α-brass alloys.

    Notes: This potential can be used to model copper and zinc in fcc phase, as well as the alpha-brass alloy up to 35% of zinc. This potential was developed for the alpha-brass alloys only and should not be used with higher zinc concentration.

  • LAMMPS pair_style eam/alloy (2022--Clement-A--Cu-Zn--LAMMPS--ipr1)
    See Computed Properties
    Notes: This file was provided by Antoine Clement on 3 April 2023.
    File(s):
 
  • Citation: P. Brommer, M. Boissieu, H. Euchner, S. Francoual, F. Gähler, M. Johnson, K. Parlinski, and K. Schmalzl (2009), "Vibrational properties of MgZn2", Zeitschrift für Kristallographie - Crystalline Materials, 224(1-2), 97-100. DOI: 10.1524/zkri.2009.1085.
    Abstract: We present here simulation results on the dynamical structure factor of the C14 Laves Phase of MgZn2, the simplest of the Mg–(Al,Zn) Frank-Kasper alloy phases. The dynamical structure factor was determined in two ways. Firstly, the dynamical matrix was obtained in harmonic approximation from ab-initio forces. The dynamical structure factor can then be computed from the eigenvalues of the dynamical matrix. Alternatively, Molecular Dynamics simulations of a larger sample were used to measure the correlation function corresponding to the dynamical structure factor. Both results are compared to data from neutron scattering experiments. This comparison also includes the intensity distribution, which is a very sensitive test. We find that the dynamical structure factor determined with either method agrees reasonably well with the experiment. In particular, the intensity transfer from acoustic to optic phonon modes can be reproduced correctly. This shows that simulation studies can complement phonon dispersion measurements.

    Notes: The EAM potential used in the simulations was fitted to the vibrational properties of the MgZn2 Laves phase.

    Related Models:
  • See Computed Properties
    Notes: Listing found at https://openkim.org.
    Link(s):
 
  • Citation: P. Erhart, N. Juslin, O. Goy, K. Nordlund, R. Müller, and K. Albe (2006), "Analytic bond-order potential for atomistic simulations of zinc oxide", Journal of Physics: Condensed Matter, 18(29), 6585-6605. DOI: 10.1088/0953-8984/18/29/003.
    Abstract: An interatomic potential for zinc oxide and its elemental constituents is derived based on an analytical bond-order formalism. The model potential provides a good description of the bulk properties of various solid structures of zinc oxide including cohesive energies, lattice parameters, and elastic constants. For the pure elements zinc and oxygen the energetics and structural parameters of a variety of bulk phases and in the case of oxygen also molecular structures are reproduced. The dependence of thermal and point defect properties on the cutoff parameters is discussed. As exemplary applications the irradiation of bulk zinc oxide and the elastic response of individual nanorods are studied.

    Related Models:
Date Created: October 5, 2010 | Last updated: November 20, 2024