Warning! Note that elemental potentials taken from alloy descriptions may not work well for the pure species. This is particularly true if the elements were fit for compounds instead of being optimized separately. As with all interatomic potentials, please check to make sure that the performance is adequate for your problem.
Citation: G. Bonny, R.C. Pasianot, N. Castin, and L. Malerba (2009), "Ternary Fe-Cu-Ni many-body potential to model reactor pressure vessel steels: First validation by simulated thermal annealing", Philosophical Magazine, 89(34-36), 3531-3546. DOI: 10.1080/14786430903299824.
Abstract: In recent years, the development of atomistic models dealing with microstructure evolution and subsequent mechanical property change in reactor pressure vessel steels has been recognised as an important complement to experiments. In this framework, a literature study has shown the necessity of many-body interatomic potentials for multi-component alloys. In this paper, we develop a ternary many-body Fe–Cu–Ni potential for this purpose. As a first validation, we used it to perform a simulated thermal annealing study of the Fe–Cu and Fe–Cu–Ni alloys. Good qualitative agreement with experiments is found, although fully quantitative comparison proved impossible, due to limitations in the used simulation techniques. These limitations are also briefly discussed.
Notes: Notes from Giovanni Bonny: The references for the elements and binary potentials used in Fe-Cu-Ni are
Fe: 'potential 2' from M.I. Mendelev, A. Han, D.J. Srolovitz, G.J. Ackland, D.Y. Sun and M. Asta, Phil. Mag. A 83 (2003) 3977.
Cu: 'EAM 1' from Y. Mishin, M.J. Mehl, D.A. Papaconstantopoulos, A.F. Voter, J.D. Kress, Phys. Rev. B 63 (2001) 224106.
Ni: A.F. Voter and S.P. Chen, Mater. Res. Soc. Symp. Proc. 82 (1987) 175.
FeCu: R.C. Pasianot and L. Malerba, J. Nucl. Mater. 360 (2007) 118.
FeNi: G. Bonny, R.C. Pasianot and L. Malerba, Model. Simul. Mater. Sci. Eng. 17 (2009) 025010.
F_Ni.spt was modified for densities past 4.8 because of a discontinuity. Unless for cascade conditions (for which the potential was not stiffened), the properties should stay exactly the same (equilibrium density is around 1).
See Computed Properties Notes: This file was provided by Giovanni Bonny (Nuclear Materials Science Institute of SCK-CEN, Belgium) on 8 Feb. 2010. File(s):
See Computed Properties Notes: Listing found at https://openkim.org. This KIM potential is based on the files from 2009--Bonny-G--Fe-Cu-Ni--LAMMPS--ipr1. Link(s):