Warning! Note that elemental potentials taken from alloy descriptions may not work well for the pure species. This is particularly true if the elements were fit for compounds instead of being optimized separately. As with all interatomic potentials, please check to make sure that the performance is adequate for your problem.
Citation: G. Bonny, D. Terentyev, R.C. Pasianot, S. Poncé, and A. Bakaev (2011), "Interatomic potential to study plasticity in stainless steels: the FeNiCr model alloy", Modelling and Simulation in Materials Science and Engineering, 19(8), 085008. DOI: 10.1088/0965-0393/19/8/085008.
Abstract: Austenitic stainless steels are commonly used materials for in-core components of nuclear light water reactors. In service, such components are exposed to harsh conditions: intense neutron irradiation, mechanical and thermal stresses, and aggressive corrosion environment which all contribute to the components' degradation. For a better understanding of the prevailing mechanisms responsible for the materials degradation, large-scale atomistic simulations are desirable. In this framework we developed an embedded atom method type interatomic potential for the ternary FeNiCr system to model movement of dislocations and their interaction with radiation defects. Special attention has been drawn to the Fe-10Ni-20Cr alloy, whose properties were ensured to be close to those of 316L austenitic stainless steel. In particular, the stacking fault energy and elastic constants are well reproduced. The fcc phase for the Fe–10Ni-20Cr random alloy was proven to be stable in the temperature range 0–900 K and under shear strain up to 5%. For the same alloy the stable glide of screw dislocations and stability of Frank loops was confirmed.
Notes: Notes from Giovanni Bonny: "The present potential was developed to model dislocations around the Fe-10Ni-20Cr composition."
See Computed Properties Notes: This file was provided by Giovanni Bonny (Nuclear Materials Science Institute of SCK-CEN, Belgium) on 2 Sept. 2013. Update May 26 2021: This version is not compatible for LAMMPS versions starting with 29 Oct 2020 due to Infinify and NaN values no longer allowed. File(s): superseded
See Computed Properties Notes: This is a modification to the previous LAMMPS version and was posted by Lucas Hale on May 26, 2021. To make the file compatible with LAMMPS versions after 29 Oct 2020, INF values at r=0 for the elemental r*phi tables were replaced by values computed using the parameters listed in the paper. File(s):