× Updated! Potentials that share interactions are now listed as related models.

2013--Bonny-G-Terentyev-D-Bakaev-A-et-al--Fe-Cu-Ni-Mn

Citation: G. Bonny, D. Terentyev, A. Bakaev, E.E. Zhurkin, M. Hou, D. Van Neck, and L. Malerba (2013), "On the thermal stability of late blooming phases in reactor pressure vessel steels: An atomistic study", Journal of Nuclear Materials, 442(1-3), 282-291. DOI: 10.1016/j.jnucmat.2013.08.018.
Abstract: Radiation-induced embrittlement of bainitic steels is the lifetime limiting factor of reactor pressure vessels in existing nuclear light water reactors. The primary mechanism of embrittlement is the obstruction of dislocation motion produced by nanometric defect structures that develop in the bulk of the material due to irradiation. In view of improving the predictive capability of existing models it is necessary to understand better the mechanisms leading to the formation of these defects, amongst which the so-called "late blooming phases". In this work we study the stability of the latter by means of density functional theory (DFT) calculations and Monte Carlo simulations based on a here developed quaternary FeCuNiMn interatomic potential. The potential is based on extensive DFT and experimental data. The reference DFT data on solute–solute interaction reveal that, while Mn–Ni pairs and triplets are unstable, larger clusters are kept together by attractive binding energy. The NiMnCu synergy is found to increase the temperature range of stability of solute atom precipitates in Fe significantly as compared to binary FeNi and FeMn alloys. This allows for thermodynamically stable phases close to reactor temperature, the range of stability being, however, very sensitive to composition.

EAM tabulated functions (2013--Bonny-G--Fe-Cu-Ni-Mn--table--ipr1)
Notes: These files were provided by Giovanni Bonny on October 31, 2023.
File(s):
Fe F(ρ) F_Fe.spt
Cu F(ρ) F_Cu.spt
Ni F(ρ) F_Ni.spt
Mn F(ρ) F_Mn.spt
Fe ρ(r) rhoFe.spt
Cu ρ(r) rhoCu.spt
Ni ρ(r) rhoNi.spt
Mn ρ(r) rhoMn.spt
Fe φ(r) pFeFe.spt
Cu φ(r) pCuCu.spt
Ni φ(r) pNiNi.spt
Mn φ(r) pMnMn.spt
Fe-Cu φ(r) pFeCu.spt
Fe-Ni φ(r) pFeNi.spt
Fe-Mn φ(r) pFeMn.spt
Cu-Ni φ(r) pCuNi.spt
Cu-Mn φ(r) pCuMn.spt
Ni-Mn φ(r) pNiMn.spt

LAMMPS pair_style eam/alloy (2013--Bonny-G--Fe-Cu-Ni-Mn--LAMMPS--ipr1)
See Computed Properties
Notes: These files were provided by Giovanni Bonny on October 31, 2023.
File(s):

Implementation Information

This page displays computed properties for the 2013--Bonny-G--Fe-Cu-Ni-Mn--LAMMPS--ipr1 implementation of the 2013--Bonny-G-Terentyev-D-Bakaev-A-et-al--Fe-Cu-Ni-Mn potential. Computed values for other implementations can be seen by clicking on the links below:

Diatom Energy vs. Interatomic Spacing

Plots of the potential energy vs interatomic spacing, r, are shown below for all diatom sets associated with the interatomic potential. This calculation provides insights into the functional form of the potential's two-body interactions. A system consisting of only two atoms is created, and the potential energy is evaluated for the atoms separated by 0.02 Å <= r <= 6.0> Å in intervals of 0.02 Å. Two plots are shown: one for the "standard" interaction distance range, and one for small values of r. The small r plot is useful for determining whether the potential is suitable for radiation studies.

The calculation method used is available as the iprPy diatom_scan calculation method.

Clicking on the image of a plot will open an interactive version of it in a new tab. The underlying data for the plots can be downloaded by clicking on the links above each plot.

Notes and Disclaimers:

  • These values are meant to be guidelines for comparing potentials, not the absolute values for any potential's properties. Values listed here may change if the calculation methods are updated due to improvements/corrections. Variations in the values may occur for variations in calculation methods, simulation software and implementations of the interatomic potentials.
  • As this calculation only involves two atoms, it neglects any multi-body interactions that may be important in molecules, liquids and crystals.
  • NIST disclaimer

Version Information:

  • 2019-11-14. Maximum value range on the shortrange plots are now limited to "expected" levels as details are otherwise lost.
  • 2019-08-07. Plots added.

Download data

Click on plot to load interactive version

2013--Bonny-G--Fe-Cu-Ni-Mn--LAMMPS--ipr1/diatom

Click on plot to load interactive version

2013--Bonny-G--Fe-Cu-Ni-Mn--LAMMPS--ipr1/diatom_short

Cohesive Energy vs. Interatomic Spacing

Plots of potential energy vs interatomic spacing, r, are shown below for a number of crystal structures. The structures are generated based on the ideal atomic positions and b/a and c/a lattice parameter ratios for a given crystal prototype. The size of the system is then uniformly scaled, and the energy calculated without relaxing the system. To obtain these plots, values of r are evaluated every 0.02 Å up to 6 Å.

The calculation method used is available as the iprPy E_vs_r_scan calculation method.

Clicking on the image of a plot will open an interactive version of it in a new tab. The underlying data for the plots can be downloaded by clicking on the links above each plot.

Notes and Disclaimers:

  • These values are meant to be guidelines for comparing potentials, not the absolute values for any potential's properties. Values listed here may change if the calculation methods are updated due to improvements/corrections. Variations in the values may occur for variations in calculation methods, simulation software and implementations of the interatomic potentials.
  • The minima identified by this calculation do not guarantee that the associated crystal structures will be stable since no relaxation is performed.
  • NIST disclaimer

Version Information:

  • 2020-12-18. Descriptions, tables and plots updated to reflect that the energy values are the measuredper atom potential energy rather than cohesive energy as some potentials have non-zero isolated atom energies.
  • 2019-02-04. Values regenerated with even r spacings of 0.02 Å, and now include values less than 2 Å when possible. Updated calculation method and parameters enhance compatibility with more potential styles.
  • 2019-04-26. Results for hcp, double hcp, α-As and L10 prototypes regenerated from different unit cell representations. Only α-As results show noticable (>1e-5 eV) difference due to using a different coordinate for Wykoff site c position.
  • 2018-06-13. Values for MEAM potentials corrected. Dynamic versions of the plots moved to separate pages to improve page loading. Cosmetic changes to how data is shown and updates to the documentation.
  • 2017-01-11. Replaced png pictures with interactive Bokeh plots. Data regenerated with 200 values of r instead of 300.
  • 2016-09-28. Plots for binary structures added. Data and plots for elemental structures regenerated. Data values match the values of the previous version. Data table formatting slightly changed to increase precision and ensure spaces between large values. Composition added to plot title and structure names made longer.
  • 2016-04-07. Plots for elemental structures added.

Select a composition:

Download data

Click on plot to load interactive version

2013--Bonny-G--Fe-Cu-Ni-Mn--LAMMPS--ipr1/EvsR.Cu
Date Created: October 5, 2010 | Last updated: January 04, 2024