2023-Kalika-E-B-Verkhovtsev-A-V-Maslov-M-M-et-al-Ni-Cl

March 21, 2024

The potential is constructed as a sum of the short-term exponential, long-term r^{-4} power, and the Coulomb potentials:

$$U(r_{ij}) = A_{ij}e^{-\alpha_{ij}r_{ij}} - \frac{C_{ij}}{r_{ij}^4} + \frac{q_iq_j}{4\pi\epsilon_0r_{ij}}$$

The corresponding parameters of the potential have been determined as described in the abovementioned manuscript:

	A_{ij} (eV)	$\alpha_{ij} \; (\text{\AA}^{-1})$	$C_{ij} \; (\text{eVÅ}^4)$
Ni-Cl	10715.83	5.034	0.0
Cl-Cl	1439.08	3.494	0.779
Ni-Ni	0.0	0.0	0.0

$$\begin{array}{c|c}
 q (|e|) \\
 \hline
 Ni & 1.34 \\
 Cl & -0.67
 \end{array}$$

A 7 $\hbox{\normalfont\AA}$ cutoff was applied for the exponential and power terms of the potential. The Coulomb potential was calculated using the Ewald summation method with the cutoff of 12 $\hbox{\normalfont\AA}$.