× Notice! This site is currently being redesigned. Please let us know any feedback on the new design or if you find something incorrect/not working.
× Cool! Click on a potential's identifier for computed properties.
 
Citation: C.A. Howells, and Y. Mishin (2018), "Angular-dependent interatomic potential for the binary Ni-Cr system", Modelling and Simulation in Materials Science and Engineering, 26(8), 085008. DOI: 10.1088/1361-651x/aae400.
Abstract: A new interatomic potential has been developed for the Ni–Cr system in the angular-dependent potential (ADP) format by fitting the potential parameters to a set of experimental and first-principles data. The ADP potential reproduces a wide range of properties of both elements as well as binary alloys with reasonable accuracy, including thermal and mechanical properties, defects, melting points of Ni and Cr, and the Ni–Cr phase diagram. The potential can be used for atomistic simulations of solidification, mechanical behavior and microstructure of the Ni-based and Cr-based phases as well as two-phase alloys.

LAMMPS pair_style adp (2018--Howells-C-A--Cr--LAMMPS--ipr1)
Notes: This file was provided by Yuri Mishin (George Mason University) on 2 Nov. 2018.
File(s):
 
Citation: S.M. Eich, D. Beinke, and G. Schmitz (2015), "Embedded-atom potential for an accurate thermodynamic description of the iron-chromium system", Computational Materials Science, 104, 185-192. DOI: 10.1016/j.commatsci.2015.03.047.
Abstract: A new potential for the iron–chromium (Fe–Cr) alloy system was optimized for the embedded-atom method (EAM) within the two-band model (TBM) extension. In contrast to previous works, free model parameters are predominantly adapted to available experimental high-temperature data of the mixing enthalpy. As a major improvement, the metastable α/α' miscibility gap is accurately described in agreement with experimental data and a recent CALPHAD parametrization. The potential was also fitted to obtain an enriched solubility for chromium atoms in an iron matrix at 0 K, as it is predicted by several ab initio calculations. Furthermore, it was benchmarked against phonon excess entropies at 300 K and 1600 K demonstrating good agreement with respective results of inelastic neutron scattering.

EAM tabulated functions
Notes: These files were sent by S.M. Eich (University of Stuttgart) on 20 Aug. 2015 and posted with his permission. Dr. Eich noted, "That the provided tables are directly obtained by the fitting process for the Fe-Cr interaction without subsequent transformation into the effective pair format. This was done in the publication for comparison, but the additional rescaling of the electron density for pure components wouldn't describe the energetics of alloys correctly unless the rescaling has been performed before starting the fitting routine (which then would affect the fitting process)." Dr. Eich noted that the distance units are Angstroms and the energy units are eV.
File(s):
Citation: G. Bonny, R.C. Pasianot, D. Terentyev, and L. Malerba (2011), "Iron chromium potential to model high-chromium ferritic alloys", Philosophical Magazine, 91(12), 1724-1746. DOI: 10.1080/14786435.2010.545780.
Abstract: We present an Fe–Cr interatomic potential to model high-Cr ferritic alloys. The potential is fitted to thermodynamic and point-defect properties obtained from density functional theory (DFT) calculations and experiments. The developed potential is also benchmarked against other potentials available in literature. It shows particularly good agreement with the DFT obtained mixing enthalpy of the random alloy, the formation energy of intermetallics and experimental excess vibrational entropy and phase diagram. In addition, DFT calculated point-defect properties, both interstitial and substitutional, are well reproduced, as is the screw dislocation core structure. As a first validation of the potential, we study the precipitation hardening of Fe–Cr alloys via static simulations of the interaction between Cr precipitates and screw dislocations. It is concluded that the description of the dislocation core modification near a precipitate might have a significant influence on the interaction mechanisms observed in dynamic simulations.

EAM tabulated functions
Notes: These files were sent by Dr. Giovanni Bonny (Nuclear Materials Science Institute of SCK-CEN, Belgium) on 2 November 2017 and posted with his permission.
File(s):
Fe F(ρ): Fd_Fe.spt
Cr F(ρ): Fd_Cr.spt
Fe ρd(r): rhoFe.spt
Cr ρd(r): rhoCr.spt
Fe-Cr ρs(r): rhoFeCr.spt
Fe-Fe φ(r): pFeFe.spt
Cr-Cr φ(r): pCrCr.spt
Fe-Cr φ(r): pFeCr.spt
Documentation: README.txt

LAMMPS pair_style hybrid/overlay eam/alloy eam/fs (2011--Bonny-G--Fe-Cr--LAMMPS--ipr1)
Notes: These files were sent by Dr. Giovanni Bonny (Nuclear Materials Science Institute of SCK-CEN, Belgium) on 2 November 2017 and posted with his permission. Giovanni Bonny also included Caution.pdf file, which explains why a large number of grid points for the s-embedding function are necessary. Giovanni Bonny noted that this warning is in fact valid for all known two-band model (2BM) potentials. Giovanni Bonny thanks Junlei Zhao (Department of Physics, University of Helsinki, Finland) for help in preparation of the LAMMPS files.
File(s):
Documentation: READ_ME.txt
Documentation: Caution.pdf
d_band: FeCr_d.eam.alloy
S_band: FeCr_s.eam.fs

Citation: A. Stukowski, B. Sadigh, P. Erhart, and A. Caro (2009), "Efficient implementation of the concentration-dependent embedded atom method for molecular-dynamics and Monte-Carlo simulations", Modelling and Simulation in Materials Science and Engineering, 17(7), 075005. DOI: 10.1088/0965-0393/17/7/075005.
Abstract: The concentration-dependent embedded atom method (CD-EAM) is a powerful model for atomistic simulation of concentrated alloys with arbitrarily complex mixing enthalpy curves. In this paper, we show that in spite of explicit three-body forces, this model can be implemented quite simply with a computational efficiency comparable to the standard EAM for molecular-dynamics (MD) simulations. Ready-to-use subroutines for the parallel MD code LAMMPS can be provided by the authors upon request. We further propose an improved version of this potential that allows for very efficient calculations of single-particle displacement/transmutation energies, while retaining the complexity implicit in the three-body interactions. This enables large-scale Monte-Carlo simulations of alloys with the interatomic interactions described by the CD-EAM model.

LAMMPS pair_style eam/cd (2009--Stukowski-A--Fe-Cr--LAMMPS--ipr1)
Notes: This file was taken from the August 22, 2018 LAMMPS distribution. It is listed as being contributed by Alexander Stukowski (Technische Universität Darmstadt)
File(s):
 
Citation: G. Bonny, N. Castin, and D. Terentyev (2013), "Interatomic potential for studying ageing under irradiation in stainless steels: the FeNiCr model alloy", Modelling and Simulation in Materials Science and Engineering, 21(8), 85004. DOI: 10.1088/0965-0393/21/8/085004.
Abstract: The degradation of austenitic stainless steels in a radiation environment is a known problem for the in-core components of nuclear light water reactors. For a better understanding of the prevailing mechanisms responsible for the materials' degradation, large-scale atomistic simulations are desirable. In this framework and as a follow-up on Bonny et al (2011 Modelling Simul. Mater. Sci. Eng. 19 085008), we developed an embedded atom method type interatomic potential for the ternary FeNiCr system to model the production and evolution of radiation defects. Special attention has been drawn to the Fe10Ni20Cr alloy, whose properties were ensured to be close to those of 316L austenitic stainless steels. The potential is extensively benchmarked against density functional theory calculations and the potential developed in our earlier work. As a first validation, the potential is used in AKMC simulations to simulate thermal annealing experiments in order to determine the self-diffusion coefficients of the components in FeNiCr alloys around the Fe10Ni20Cr composition. The results from these simulations are consistent with experiments, i.e., DCr > DNi > DFe.

Notes: Notes from Giovanni Bonny: "The present potential was developed to model POINT DEFECTS near the Fe-10Ni-20Cr composition.

LAMMPS pair_style eam/alloy (2013--Bonny-G--Fe-Ni-Cr--LAMMPS--ipr1)
Notes: This file was provided by Giovanni Bonny (Nuclear Materials Science Institute of SCK-CEN, Belgium) on 13 Jan. 2014.
File(s):
EAM tabulated functions
Notes: These files were provided by Giovanni Bonny on 13 Jan. 2014.
File(s):
Citation: G. Bonny, D. Terentyev, R.C. Pasianot, S. Poncé, and A. Bakaev (2011), "Interatomic potential to study plasticity in stainless steels: the FeNiCr model alloy", Modelling and Simulation in Materials Science and Engineering, 19(8), 85008. DOI: 10.1088/0965-0393/19/8/085008.
Abstract: Austenitic stainless steels are commonly used materials for in-core components of nuclear light water reactors. In service, such components are exposed to harsh conditions: intense neutron irradiation, mechanical and thermal stresses, and aggressive corrosion environment which all contribute to the components' degradation. For a better understanding of the prevailing mechanisms responsible for the materials degradation, large-scale atomistic simulations are desirable. In this framework we developed an embedded atom method type interatomic potential for the ternary FeNiCr system to model movement of dislocations and their interaction with radiation defects. Special attention has been drawn to the Fe-10Ni-20Cr alloy, whose properties were ensured to be close to those of 316L austenitic stainless steel. In particular, the stacking fault energy and elastic constants are well reproduced. The fcc phase for the Fe–10Ni-20Cr random alloy was proven to be stable in the temperature range 0–900 K and under shear strain up to 5%. For the same alloy the stable glide of screw dislocations and stability of Frank loops was confirmed.

Notes: Notes from Giovanni Bonny: "The present potential was developed to model dislocations around the Fe-10Ni-20Cr composition."

LAMMPS pair_style eam/alloy (2011--Bonny-G--Fe-Ni-Cr--LAMMPS--ipr1)
Notes: This file was provided by Giovanni Bonny (Nuclear Materials Science Institute of SCK-CEN, Belgium) on 2 Sept. 2013.
File(s):
EAM tabulated functions
Notes: These files were provided by Giovanni Bonny on 2 Sept. 2013.
File(s):
Fe F(ρ): F_Fe.spt
Ni F(ρ): F_Ni.spt
Cr F(ρ): F_Cr.spt
Fe ρ(r): rhoFe.spt
Ni ρ(r): rhoNi.spt
Cr ρ(r): rhoCr.spt
Fe φ(r): pFeFe.spt
Ni φ(r): pNiNi.spt
Cr φ(r): pCrCr.spt
Fe-Ni φ(r): pFeNi.spt
Fe-Cr φ(r): pFeCr.spt
Ni-Cr φ(r): pNiCr.spt

 
Citation: G. Bonny, N. Castin, J. Bullens, A. Bakaev, T.C.P. Klaver, and D. Terentyev (2013), "On the mobility of vacancy clusters in reduced activation steels: an atomistic study in the Fe-Cr-W model alloy", Journal of Physics: Condensed Matter, 25(31), 315401. DOI: 10.1088/0953-8984/25/31/315401.
Abstract: Reduced activation steels are considered as structural materials for future fusion reactors. Besides iron and the main alloying element chromium, these steels contain other minor alloying elements, typically tungsten, vanadium and tantalum. In this work we study the impact of chromium and tungsten, being major alloying elements of ferritic Fe–Cr–W-based steels, on the stability and mobility of vacancy defects, typically formed under irradiation in collision cascades. For this purpose, we perform ab initio calculations, develop a many-body interatomic potential (EAM formalism) for large-scale calculations, validate the potential and apply it using an atomistic kinetic Monte Carlo method to characterize the lifetime and diffusivity of vacancy clusters. To distinguish the role of Cr and W we perform atomistic kinetic Monte Carlo simulations in Fe–Cr, Fe–W and Fe–Cr–W alloys. Within the limitation of transferability of the potentials it is found that both Cr and W enhance the diffusivity of vacancy clusters, while only W strongly reduces their lifetime. The cluster lifetime reduction increases with W concentration and saturates at about 1-2 at.%. The obtained results imply that W acts as an efficient 'breaker' of small migrating vacancy clusters and therefore the short-term annealing process of cascade debris is modified by the presence of W, even in small concentrations.

Notes: Dr. Bonny noted that the FeCr part is identical to the bcc FeCr potential by himself and posted to the NIST Repository. He further noted that since the FeCr potential is in the 2BM formalism, the ternary is in the same format.

LAMMPS pair_style hybrid/overlay eam/alloy eam/fs (2013--Bonny-G--Fe-Cr-W-LAMMPS--ipr1)
Notes: These files were provided by Giovanni Bonny (Nuclear Materials Science Institute of SCK-CEN, Belgium) on 7 Mar. 2018 and posted with his permission. Dr. Bonny noted that the potentials were not stiffened and cannot be used in their present form for collision cascades.
File(s):
EAM tabulated functions
Notes: These files were provided by Giovanni Bonny (Nuclear Materials Science Institute of SCK-CEN, Belgium) on 7 Mar. 2018 and posted with his permission.
File(s):
Cr Fd(ρ): Fd_Cr.spt
Fe Fd(ρ): Fd_Fe.spt
W Fd(ρ): Fd_W.spt
Cr Fs(ρ): Fs_Cr.spt
Fe Fs(ρ): Fs_Fe.spt
Cr ρ(r): rhoCr.spt
Fe ρ(r): rhoFe.spt
Fe-Cr ρ(r): rhoFeCr.spt
W ρ(r): rhoW.spt
Cr φ(r): pCrCr.spt
Fe φ(r): pFeFe.spt
W φ(r): pWW.spt
Cr-W φ(r): pCrW.spt
Fe-Cr φ(r): pFeCr.spt
Fe-W φ(r): pFeW.spt

 
Citation: C.A. Howells, and Y. Mishin (2018), "Angular-dependent interatomic potential for the binary Ni-Cr system", Modelling and Simulation in Materials Science and Engineering, 26(8), 085008. DOI: 10.1088/1361-651x/aae400.
Abstract: A new interatomic potential has been developed for the Ni–Cr system in the angular-dependent potential (ADP) format by fitting the potential parameters to a set of experimental and first-principles data. The ADP potential reproduces a wide range of properties of both elements as well as binary alloys with reasonable accuracy, including thermal and mechanical properties, defects, melting points of Ni and Cr, and the Ni–Cr phase diagram. The potential can be used for atomistic simulations of solidification, mechanical behavior and microstructure of the Ni-based and Cr-based phases as well as two-phase alloys.

LAMMPS pair_style adp (2018--Howells-C-A--Cr-Ni--LAMMPS--ipr1)
Notes: This file was provided by Yuri Mishin (George Mason University) on 2 Nov. 2018.
File(s):
Date Created: October 5, 2010 | Last updated: November 19, 2018