• Citation: F.-S. Meng, S. Shinzato, S. Zhang, K. Matsubara, J.-P. Du, P. Yu, W.-T. Geng, and S. Ogata (2024), "A highly transferable and efficient machine learning interatomic potentials study of α-Fe–C binary system", Acta Materialia, 281, 120408. DOI: 10.1016/j.actamat.2024.120408.
    Abstract: Machine learning interatomic potentials (MLIPs) for α-iron and carbon binary system have been constructed aiming for understanding the mechanical behavior of Fe–C steel and carbides. The MLIPs were trained using an extensive reference database produced by spin polarized density functional theory (DFT) calculations. The MLIPs reach the DFT accuracies in many important properties which are frequently engaged in Fe and Fe–C studies, including kinetics and thermodynamics of C in α-Fe with vacancy, grain boundary, and screw dislocation, and basic properties of cementite and cementite–ferrite interfaces. In conjunction with these MLIPs, the impact of C atoms on the mobility of screw dislocation at finite temperature, and the C-decorated core configuration of screw dislocation were investigated, and a uniaxial tensile test on a model with multiple types of defects was conducted.

    Notes: This entry is for the BNNP potential in the reference that was trained using the n2p2 package. BNNP shows better overall accuracy, and DP shows advantages in the atomic stress computation. These potentials can be used to simulate 𝛼-Fe-C systems and pure 𝛼-Fe systems, but these potentials should not be used for pure C system.

  • See Computed Properties
    Notes: These files were provided by Fan-Shun Meng on October 22, 2024. Detailed instructions on using these potentials in MD simulations can be found at the link below.
    File(s): Link(s):
  • Citation: F.-S. Meng, S. Shinzato, S. Zhang, K. Matsubara, J.-P. Du, P. Yu, W.-T. Geng, and S. Ogata (2024), "A highly transferable and efficient machine learning interatomic potentials study of α-Fe–C binary system", Acta Materialia, 281, 120408. DOI: 10.1016/j.actamat.2024.120408.
    Abstract: Machine learning interatomic potentials (MLIPs) for α-iron and carbon binary system have been constructed aiming for understanding the mechanical behavior of Fe–C steel and carbides. The MLIPs were trained using an extensive reference database produced by spin polarized density functional theory (DFT) calculations. The MLIPs reach the DFT accuracies in many important properties which are frequently engaged in Fe and Fe–C studies, including kinetics and thermodynamics of C in α-Fe with vacancy, grain boundary, and screw dislocation, and basic properties of cementite and cementite–ferrite interfaces. In conjunction with these MLIPs, the impact of C atoms on the mobility of screw dislocation at finite temperature, and the C-decorated core configuration of screw dislocation were investigated, and a uniaxial tensile test on a model with multiple types of defects was conducted.

    Notes: This entry is for the DP potential in the reference that was trained using the DeepMD-kit (v2.2.3) package. BNNP shows better overall accuracy, and DP shows advantages in the atomic stress computation. These potentials can be used to simulate 𝛼-Fe-C systems and pure 𝛼-Fe systems, but these potentials should not be used for pure C system.

  • See Computed Properties
    Notes: These files were provided by Fan-Shun Meng on October 22, 2024. The authors suggest users compress the DP-FeC.dp model (see the DeepMD-kit documentation) before using it for MD simulation, as this will make the calculation significantly faster with limited influence on accuracy. Detailed instructions on using these potentials in MD simulations can be found at the link below.
    File(s): Link(s):
  • Citation: A. Allera, F. Ribeiro, M. Perez, and D. Rodney (2022), "Carbon-induced strengthening of bcc iron at the atomic scale", Physical Review Materials, 6(1), 013608. DOI: 10.1103/physrevmaterials.6.013608.
    Abstract: In steels, the interaction between screw dislocations and carbon solutes has a great influence on the yield strength. Fe-C potentials used in molecular dynamics (MD) simulations yield a poor description of screw dislocation properties-their core structure and Peierls barrier-compared to ab initio calculations. Here we combine two EAM potentials from the literature, which greatly improves dislocation property accuracy in FeC alloys. Using this hybrid potential, MD simulations of dislocation glide in random solid solutions confirm a powerful solute strengthening, caused by complex interaction processes. We analyze these processes in a model geometry, where a row of carbon atoms is inserted in the dislocation core with varying separations. We use a combination of MD simulations, minimum-energy path calculations, and a statistical model based on the harmonic transition state theory to explain the strengthening induced by carbon. We unveil that carbon disrupts the glide process, as unpinning requires the successive nucleation of two kink pairs. When solute separation is below about 100 Burgers vectors, the activation enthalpy of both kink pairs are markedly increased compared to pure iron, resulting in a strong dependence of the unpinning stress on solute spacing. Our simulations also suggest an effect of carbon spacing on the kink-pair activation entropy. This work provides elementary processes and parameters that will be useful for larger-scale models and, in particular, kinetic Monte Carlo simulations.

    Notes: This interatomic potential is a combination of the Fe-Fe interaction from 2012--Proville-L-Rodney-D-Marinica-M-C--Fe and the Fe-C interaction from 10.1016/j.commatsci.2013.09.048. It was adjusted for screw dislocation-carbon interaction, in the dilute limit (details in the paper). Authors recommend using it in reasonably similar settings.

    Related Models:
  • LAMMPS pair_style eam/alloy (2022--Allera-A--Fe-C--LAMMPS--ipr1)
    See Computed Properties
    Notes: This file was taken from the github repository listed below at the request of Arnaud Allera on 16 May 2023
    File(s): Link(s):
    Companion repository for the paper https://github.com/arn-all/FeC-EAM-potential

  • Citation: L.S.I. Liyanage, S.-G. Kim, J. Houze, S. Kim, M.A. Tschopp, M.I. Baskes, and M.F. Horstemeyer (2014), "Structural, elastic, and thermal properties of cementite (Fe3C) calculated using a modified embedded atom method", Physical Review B, 89(9), 094102. DOI: 10.1103/physrevb.89.094102.
    Abstract: Structural, elastic, and thermal properties of cementite (Fe3C) were studied using a modified embedded atom method (MEAM) potential for iron-carbon (Fe-C) alloys. Previously developed Fe and C single-element potentials were used to develop a Fe-C alloy MEAM potential, using a statistics-based optimization scheme to reproduce structural and elastic properties of cementite, the interstitial energies of C in bcc Fe, and heat of formation of Fe-C alloys in L12 and B1 structures. The stability of cementite was investigated by molecular dynamics simulations at high temperatures. The nine single-crystal elastic constants for cementite were obtained by computing total energies for strained cells. Polycrystalline elastic moduli for cementite were calculated from the single-crystal elastic constants of cementite. The formation energies of (001), (010), and (100) surfaces of cementite were also calculated. The melting temperature and the variation of specific heat and volume with respect to temperature were investigated by performing a two-phase (solid/liquid) molecular dynamics simulation of cementite. The predictions of the potential are in good agreement with first-principles calculations and experiments.

    Related Models:
  • See Computed Properties
    Notes: These files were contributed by Laalitha Liyanage (Central Michigan Univ., Univ. of North Texas) on 14 Apr. 2014.
    File(s):
  • Citation: K.O.E. Henriksson, C. Björkas, and K. Nordlund (2013), "Atomistic simulations of stainless steels: a many-body potential for the Fe-Cr-C system", Journal of Physics: Condensed Matter, 25(44), 445401. DOI: 10.1088/0953-8984/25/44/445401.
    Abstract: Stainless steels found in real-world applications usually have some C content in the base Fe–Cr alloy, resulting in hard and dislocation-pinning carbides—Fe3C (cementite) and Cr23C6—being present in the finished steel product. The higher complexity of the steel microstructure has implications, for example, for the elastic properties and the evolution of defects such as Frenkel pairs and dislocations. This makes it necessary to re-evaluate the effects of basic radiation phenomena and not simply to rely on results obtained from purely metallic Fe–Cr alloys. In this report, an analytical interatomic potential parameterization in the Abell–Brenner–Tersoff form for the entire Fe–Cr–C system is presented to enable such calculations. The potential reproduces, for example, the lattice parameter(s), formation energies and elastic properties of the principal Fe and Cr carbides (Fe3C, Fe5C2, Fe7C3, Cr3C2, Cr7C3, Cr23C6), the Fe–Cr mixing energy curve, formation energies of simple C point defects in Fe and Cr, and the martensite lattice anisotropy, with fair to excellent agreement with empirical results. Tests of the predictive power of the potential show, for example, that Fe–Cr nanowires and bulk samples become elastically stiffer with increasing Cr and C concentrations. High-concentration nanowires also fracture at shorter relative elongations than wires made of pure Fe. Also, tests with Fe3C inclusions show that these act as obstacles for edge dislocations moving through otherwise pure Fe.

    Notes: Note that this entry only represents the Fe-C subset of interatomic potentials developed and used in this reference.

    Related Models:
  • LAMMPS pair_style tersoff/zbl (2013--Henriksson-K-O-E--Fe-C--LAMMPS--ipr1)
    See Computed Properties
    Notes: The Tersoff/ZBL file was contributed by Astrid Gubbels-Elzas and Peter Klaver (Delft University of Technology, Netherlands) and posted with their approval and that of Krister Henriksson (Univ. of Helsinki, Finland) on 9 Jul. 2014. Note that this file only represents the Fe-C subset of interatomic potentials developed and used in this reference.
    File(s):
  • EAM tabulated functions (2013--Henriksson-K-O-E--Fe-C--table--ipr1)
    Notes: The following files were contributed by Dr. Henriksson and modified by C. Becker to include the reference and format in the header information. They represent the potential in Equation 7 of the reference, and the columns are r, VZBL, and d/dr (VZBL). They were approved by Dr. Henriksson for posting on 25 Jul. 2014.
    File(s):
Date Created: October 5, 2010 | Last updated: November 20, 2024