× Updated! Potentials that share interactions are now listed as related models.
 
Citation: L.K. Béland, C. Lu, Y.N. Osetskiy, G.D. Samolyuk, A. Caro, L. Wang, and R.E. Stoller (2016), "Features of primary damage by high energy displacement cascades in concentrated Ni-based alloys", Journal of Applied Physics, 119(8), 085901. DOI: 10.1063/1.4942533.
Abstract: Alloying of Ni with Fe or Co has been shown to reduce primary damage production under ion irradiation. Similar results have been obtained from classical molecular dynamics simulations of 1, 10, 20, and 40 keV collision cascades in Ni, NiFe, and NiCo. In all cases, a mix of imperfect stacking fault tetrahedra, faulted loops with a 1/3⟨111⟩ Burgers vector, and glissile interstitial loops with a 1/2⟨110⟩ Burgers vector were formed, along with small sessile point defect complexes and clusters. Primary damage reduction occurs by three mechanisms. First, Ni-Co, Ni-Fe, Co-Co, and Fe-Fe short-distance repulsive interactions are stiffer than Ni-Ni interactions, which lead to a decrease in damage formation during the transition from the supersonic ballistic regime to the sonic regime. This largely controls final defect production. Second, alloying decreases thermal conductivity, leading to a longer thermal spike lifetime. The associated annealing reduces final damage production. These two mechanisms are especially important at cascades energies less than 40 keV. Third, at the higher energies, the production of large defect clusters by subcascades is inhibited in the alloys. A number of challenges and limitations pertaining to predictive atomistic modeling of alloys under high-energy particle irradiation are discussed.

Notes: Prof. Beland notes that "The potential takes elemental Ni from 2004--Mishin-Y--Ni-Al and Co from 2012--Purja-Pun-G-P-Mishin-Y--Co and mixes them. We first applied the effective gauge transformation, and then fitted the cross-term as to reproduce the heat of mixing of Ni(x)-Co(1-x). The potential is very soft at short distances. In order to perform collision cascades, it should be overlaid to the ZBL potential, with an outer cutoff of 2.0 Angstroms."

LAMMPS pair_style eam/alloy (2016--Beland-L-K--Ni-Co--LAMMPS--ipr1)
See Computed Properties
Notes: This file was provided by Laurent Béland on 7 Nov 2019 and posted with his permission. Note: The EAM potential by itself is very soft at short distances. In order to perform collision cascades, use the hybrid style listed below.
File(s):
LAMMPS pair_style hybrid/overlay zbl eam/alloy (2016--Beland-L-K--Ni-Co--LAMMPS--ipr2)
See Computed Properties
Notes: The eam file was provided by Laurent Béland on 7 Nov 2019 and posted with his permission. It is the same eam/alloy file as the above implementation. example.lammps.in provides an example of how to call the potential with the ZBL overlay applied.
File(s):
Citation: Y.-K. Kim, W.-S. Jung, and B.-J. Lee (2015), "Modified embedded-atom method interatomic potentials for the Ni-Co binary and the Ni-Al-Co ternary systems", Modelling and Simulation in Materials Science and Engineering, 23(5), 055004. DOI: 10.1088/0965-0393/23/5/055004.
Abstract: Interatomic potentials for the Ni-Co binary and Ni-Al-Co ternary systems have been developed on the basis of the second nearest-neighbor modified embedded-atom method (2NN MEAM) formalism. The potentials describe structural, thermodynamic, deformation and defect properties of solid solution phases or compound phases in reasonable agreements with experiments or first-principles calculations. The results demonstrate the transferability of the potentials and their applicability to large-scale atomistic simulations to investigate the effect of an alloying element, cobalt, on various microstructural factors related to mechanical properties of Ni-based superalloys on an atomic scale.

See Computed Properties
Notes: These files are based on files obtained from http://cmse.postech.ac.kr/home_2nnmeam.
File(s):
Citation: G.P. Purja Pun, V. Yamakov, and Y. Mishin (2015), "Interatomic potential for the ternary Ni–Al–Co system and application to atomistic modeling of the B2–L10 martensitic transformation", Modelling and Simulation in Materials Science and Engineering, 23(6), 065006. DOI: 10.1088/0965-0393/23/6/065006.
Abstract: Ni–Al–Co is a promising system for ferromagnetic shape memory applications. This paper reports on the development of a ternary embedded-atom potential for this system by fitting to experimental and first-principles data. Reasonably good agreement is achieved for physical properties between values predicted by the potential and values known from experiment and/or first-principles calculations. The potential reproduces basic features of the martensitic phase transformation from the B2-ordered high-temperature phase to a tetragonal CuAu-ordered low-temperature phase. The compositional and temperature ranges of this transformation and the martensite microstructure predicted by the potential compare well with existing experimental data. These results indicate that the proposed potential can be used for simulations of the shape memory effect in the Ni–Al–Co system.

Notes: The reference information was updated on 26 Aug. 2015.

LAMMPS pair_style eam/alloy (2015--Purja-Pun-G-P--Ni-Co--LAMMPS--ipr1)
See Computed Properties
Notes: This file was sent by Y. Mishin (George Mason Univ.) on 17 Sept. 2013 and was posted on 17 Jan. 2014. This version is compatible with LAMMPS. Validation and usage information can be found in Mishin-Ni-Co-2013_lammps.pdf.
File(s): superseded


LAMMPS pair_style eam/alloy (2015--Purja-Pun-G-P--Ni-Co--LAMMPS--ipr2)
See Computed Properties
Notes: This file was sent by G Purja Pun (George Mason Univ.) on 12 Oct. 2015 and was posted on 15 Dec. 2015. This version corrects an issue with the cutoff distance for Co interactions that was discovered during calculations of pressure dependent elastic constants.
File(s):
See Computed Properties
Notes: Listing found at https://openkim.org. This KIM potential is based on the files from 2015--Purja-Pun-G-P--Ni-Co--LAMMPS--ipr2.
Link(s):
Date Created: October 5, 2010 | Last updated: June 09, 2022