× Updated! Potentials that share interactions are now listed as related models.

2012--Jelinek-B-Groh-S-Horstemeyer-M-F-et-al--Al-Si-Mg-Cu-Fe

Citation: B. Jelinek, S. Groh, M.F. Horstemeyer, J. Houze, S.G. Kim, G.J. Wagner, A. Moitra, and M.I. Baskes (2012), "Modified embedded atom method potential for Al, Si, Mg, Cu, and Fe alloys", Physical Review B, 85(24), 245102. DOI: 10.1103/physrevb.85.245102.
Abstract: A set of modified embedded-atom method (MEAM) potentials for the interactions between Al, Si, Mg, Cu, and Fe was developed from a combination of each element's MEAM potential in order to study metal alloying. Previously published MEAM parameters of single elements have been improved for better agreement to the generalized stacking fault energy (GSFE) curves when compared with ab initio generated GSFE curves. The MEAM parameters for element pairs were constructed based on the structural and elastic properties of element pairs in the NaCl reference structure garnered from ab initio calculations, with adjustment to reproduce the ab initio heat of formation of the most stable binary compounds. The new MEAM potentials were validated by comparing the formation energies of defects, equilibrium volumes, elastic moduli, and heat of formation for several binary compounds with ab initio simulations and experiments. Single elements in their ground-state crystal structure were subjected to heating to test the potentials at elevated temperatures. An Al potential was modified to avoid formation of an unphysical solid structure at high temperatures. The thermal expansion coefficient of a compound with the composition of AA 6061 alloy was evaluated and compared with experimental values. MEAM potential tests performed in this work, utilizing the universal atomistic simulation environment (ASE), are distributed to facilitate reproducibility of the results.

See Computed Properties
Notes: This file was sent by Bohumir Jelinek (Mississippi State University) and posted on 3 July 2012. He noted, "This is a MEAM potential for Al, Si, Mg, Cu, Fe alloys. It works with LAMMPS, version 19 Jul 2011 or later, when compiled with MEAM support. Most of the MEAM potential results presented in the accompanying paper can be reproduced with Atomistic Simulation Environment (ASE) and testing routines are provided in ase-atomistic-potential-tests-rev60.tar.gz"
File(s):

Implementation Information

This page displays computed properties for the 2012--Jelinek-B--Al-Si-Mg-Cu-Fe--LAMMPS--ipr2 implementation of the 2012--Jelinek-B-Groh-S-Horstemeyer-M-F-et-al--Al-Si-Mg-Cu-Fe potential. Computed values for other implementations can be seen by clicking on the links below:

Diatom Energy vs. Interatomic Spacing

Plots of the potential energy vs interatomic spacing, r, are shown below for all diatom sets associated with the interatomic potential. This calculation provides insights into the functional form of the potential's two-body interactions. A system consisting of only two atoms is created, and the potential energy is evaluated for the atoms separated by 0.02 Å <= r <= 6.0> Å in intervals of 0.02 Å. Two plots are shown: one for the "standard" interaction distance range, and one for small values of r. The small r plot is useful for determining whether the potential is suitable for radiation studies.

The calculation method used is available as the iprPy diatom_scan calculation method.

Clicking on the image of a plot will open an interactive version of it in a new tab. The underlying data for the plots can be downloaded by clicking on the links above each plot.

Notes and Disclaimers:

  • These values are meant to be guidelines for comparing potentials, not the absolute values for any potential's properties. Values listed here may change if the calculation methods are updated due to improvements/corrections. Variations in the values may occur for variations in calculation methods, simulation software and implementations of the interatomic potentials.
  • As this calculation only involves two atoms, it neglects any multi-body interactions that may be important in molecules, liquids and crystals.
  • NIST disclaimer

Version Information:

  • 2019-11-14. Maximum value range on the shortrange plots are now limited to "expected" levels as details are otherwise lost.
  • 2019-08-07. Plots added.

Download data

Click on plot to load interactive version

2012--Jelinek-B--Al-Si-Mg-Cu-Fe--LAMMPS--ipr2/diatom

Click on plot to load interactive version

2012--Jelinek-B--Al-Si-Mg-Cu-Fe--LAMMPS--ipr2/diatom_short

Cohesive Energy vs. Interatomic Spacing

Plots of potential energy vs interatomic spacing, r, are shown below for a number of crystal structures. The structures are generated based on the ideal atomic positions and b/a and c/a lattice parameter ratios for a given crystal prototype. The size of the system is then uniformly scaled, and the energy calculated without relaxing the system. To obtain these plots, values of r are evaluated every 0.02 Å up to 6 Å.

The calculation method used is available as the iprPy E_vs_r_scan calculation method.

Clicking on the image of a plot will open an interactive version of it in a new tab. The underlying data for the plots can be downloaded by clicking on the links above each plot.

Notes and Disclaimers:

  • These values are meant to be guidelines for comparing potentials, not the absolute values for any potential's properties. Values listed here may change if the calculation methods are updated due to improvements/corrections. Variations in the values may occur for variations in calculation methods, simulation software and implementations of the interatomic potentials.
  • The minima identified by this calculation do not guarantee that the associated crystal structures will be stable since no relaxation is performed.
  • NIST disclaimer

Version Information:

  • 2020-12-18. Descriptions, tables and plots updated to reflect that the energy values are the measuredper atom potential energy rather than cohesive energy as some potentials have non-zero isolated atom energies.
  • 2019-02-04. Values regenerated with even r spacings of 0.02 Å, and now include values less than 2 Å when possible. Updated calculation method and parameters enhance compatibility with more potential styles.
  • 2019-04-26. Results for hcp, double hcp, α-As and L10 prototypes regenerated from different unit cell representations. Only α-As results show noticable (>1e-5 eV) difference due to using a different coordinate for Wykoff site c position.
  • 2018-06-13. Values for MEAM potentials corrected. Dynamic versions of the plots moved to separate pages to improve page loading. Cosmetic changes to how data is shown and updates to the documentation.
  • 2017-01-11. Replaced png pictures with interactive Bokeh plots. Data regenerated with 200 values of r instead of 300.
  • 2016-09-28. Plots for binary structures added. Data and plots for elemental structures regenerated. Data values match the values of the previous version. Data table formatting slightly changed to increase precision and ensure spaces between large values. Composition added to plot title and structure names made longer.
  • 2016-04-07. Plots for elemental structures added.

Select a composition:

Download data

Click on plot to load interactive version

2012--Jelinek-B--Al-Si-Mg-Cu-Fe--LAMMPS--ipr2/EvsR.AlS

Crystal Structure Predictions

Computed lattice constants and cohesive/potential energies are displayed for a variety of crystal structures. The values displayed here are obtained using the following process.

  1. Initial crystal structure guesses are taken from:
    1. The iprPy E_vs_r_scan calculation results (shown above) by identifying all energy minima along the measured curves for a given crystal prototype + composition.
    2. Structures in the Materials Project and OQMD DFT databases.
  2. All initial guesses are relaxed using three independent methods using a 10x10x10 supercell:
    1. "box": The system's lattice constants are adjusted to zero pressure without internal relaxations using the iprPy relax_box calculation with a strainrange of 1e-6.
    2. "static": The system's lattice and atomic positions are statically relaxed using the iprPy relax_static calculation with a minimization force tolerance of 1e-10 eV/Angstrom.
    3. "dynamic": The system's lattice and atomic positions are dynamically relaxed for 10000 timesteps of 0.01 ps using the iprPy relax_dynamic calculation with an nph integration plus Langevin thermostat. The final configuration is then used as input in running an iprPy relax_static calculation with a minimization force tolerance of 1e-10 eV/Angstrom.
  3. The relaxed structures obtained from #2 are then evaluated using the spglib package to identify an ideal crystal unit cell based on the results.
  4. The space group information of the ideal unit cells is compared to the space group information of the corresponding reference structures to identify which structures transformed upon relaxation. The structures that did not transform to a different structure are listed in the table(s) below. The "method" field indicates the most rigorous relaxation method where the structure did not transform. The space group information is also used to match the DFT reference structures to the used prototype, where possible.
  5. The cohesive energy, Ecoh, is calculated from the measured potential energy per atom, Epot$, by subtracting the isolated energy averaged across all atoms in the unit cell. The isolated atom energies of each species model is obtained either by evaluating a single atom atomic configuration, or by identifying the first energy plateau from the diatom scan calculations for r > 2 Å.

The calculation methods used are implemented into iprPy as the following calculation styles

Notes and Disclaimers:

  • These values are meant to be guidelines for comparing potentials, not the absolute values for any potential's properties. Values listed here may change if the calculation methods are updated due to improvements/corrections. Variations in the values may occur for variations in calculation methods, simulation software and implementations of the interatomic potentials.
  • The presence of any structures in this list does not guarantee that those structures are stable. Also, the lowest energy structure may not be included in this list.
  • Multiple values for the same crystal structure but different lattice constants are possible. This is because multiple energy minima are possible for a given structure and interatomic potential. Having multiple energy minima for a structure does not necessarily make the potential "bad" as unwanted configurations may be unstable or correspond to conditions that may not be relevant to the problem of interest (eg. very high strains).
  • NIST disclaimer

Version Information:

  • 2022-05-27. The "box" method results have all been redone with an updated methodology more suited for non-orthogonal systems.
  • 2020-12-18. Cohesive energies have been corrected by making them relative to the energies of the isolated atoms. The previous cohesive energy values are now listed as the potential energies.
  • 2019-06-07. Structures with positive or near zero cohesive energies removed from the display tables. All values still present in the raw data files.
  • 2019-04-26. Calculations now computed for each implementation. Results for hcp, double hcp, α-As and L10 prototypes regenerated from different unit cell representations.
  • 2018-06-14. Methodology completely changed affecting how the information is displayed. Calculations involving MEAM potentials corrected.
  • 2016-09-28. Values for simple compounds added. All identified energy minima for each structure are listed. The existing elemental data was regenerated. Most values are consistent with before, but some differences have been noted. Specifically, variations are seen with some values for potentials where the elastic constants don't vary smoothly near the equilibrium state. Additionally, the inclusion of some high-energy structures has changed based on new criteria for identifying when structures have relaxed to another structure.
  • 2016-04-07. Values for elemental crystal structures added. Only values for the global energy minimum of each unique structure given.

Select a composition:

Download raw data (including filtered results)

Reference structure matches:

prototypemethodEcoh (eV/atom)Epot (eV/atom)a0 (Å)b0 (Å)c0 (Å)α (degrees)β (degrees)γ (degrees)
A1--Cu--fccdynamic-3.353-3.3534.054.054.0590.090.090.0
A3'--alpha-La--double-hcpdynamic-3.3372-3.33722.84672.84679.48590.090.0120.0
oqmd-1216017static-3.3323-3.33232.84152.841521.433790.090.0120.0
A3--Mg--hcpdynamic-3.3229-3.32292.83172.83174.802690.090.0120.0
mp-1245307dynamic-3.2951-3.295111.828212.05912.386792.594.892.5
oqmd-1215037box-3.2938-3.29382.54794.535612.241290.090.090.0
mp-1245129dynamic-3.2724-3.272411.807512.205512.235891.591.0100.1
oqmd-1214859dynamic-3.2706-3.27066.94926.94926.949290.090.090.0
mp-1244953dynamic-3.2654-3.265411.880812.173512.217982.088.285.6
mp-1245152dynamic-3.2618-3.261811.893511.971312.237894.793.591.2
oqmd-1214859box-3.2618-3.26186.9616.9616.96190.090.090.0
mp-1245067dynamic-3.2612-3.261211.997912.147612.216198.195.293.1
A15--beta-Wstatic-3.2073-3.20735.10545.10545.105490.090.090.0
A2--W--bccbox-3.205-3.2053.20573.20573.205790.090.090.0
oqmd-1214770box-3.2029-3.20299.93329.93329.933290.090.090.0
mp-1245152box-3.1991-3.199111.873512.11512.133792.191.895.6
mp-1244953box-3.199-3.19911.953812.041112.265486.480.387.5
mp-1245129box-3.1964-3.196411.684412.041512.415393.592.096.9
mp-1245307box-3.1858-3.185811.976912.033712.151890.087.785.8
mp-1245067box-3.1742-3.174211.876812.25612.263492.698.193.9
A5--beta-Snstatic-3.1165-3.11655.2815.2812.599690.090.090.0
Ah--alpha-Po--scstatic-2.9962-2.99622.70232.70232.702390.090.090.0
mp-1239196box-2.7885-2.78853.81473.814713.729690.090.090.0
oqmd-1214681box-2.7207-2.72074.473610.24363.924390.090.090.0
A4--C--dcstatic-2.3097-2.30976.36956.36956.369590.090.090.0
A2--W--bccstatic-1.0492-1.04924.98394.98394.983990.090.090.0
A15--beta-Wbox-1.0087-1.00878.15778.15778.157790.090.090.0
A3--Mg--hcpbox-0.5908-0.59084.88224.88228.003890.090.0120.0
A3'--alpha-La--double-hcpbox-0.5868-0.58684.88534.885315.987390.090.0120.0
A1--Cu--fccbox-0.5825-0.58256.91216.91216.912190.090.090.0

Elastic Constants Predictions

Static elastic constants are displayed for the unique structures identified in Crystal Structure Predictions above. The values displayed here are obtained by measuring the change in virial stresses due to applying small strains to the relaxed crystals. The initial structure and the strained states are all relaxed using force minimization.

The calculation method used is available as the iprPy elastic_constants_static calculation method.

Notes and Disclaimers:

  • These values are meant to be guidelines for comparing potentials, not the absolute values for any potential's properties. Values listed here may change if the calculation methods are updated due to improvements/corrections. Variations in the values may occur for variations in calculation methods, simulation software and implementations of the interatomic potentials.
  • The presence of any structures in this list does not guarantee that those structures are stable.
  • The elastic constants have been computed for a variety of strains, and in some cases for slightly different lattice constant values. The static nature of this calculation can give poor predictions if the evaluated states straddle a functional discontinuity in the potential's third derivative. Be sure to compare the elastic constants for the different strains (positive and negative).
  • NIST disclaimer

Version Information:

  • 2019-08-07. Data added.

Composition:
Prototype:
a0:
strain:

Download raw data

Cij in GPa:
110.52960.90460.9040.00.00.0
60.904110.52960.9040.00.00.0
60.90460.904110.5290.00.00.0
0.00.00.028.3920.00.0
0.00.00.00.028.392-0.0
0.00.00.00.0-0.028.392