×
Warning! Note that elemental potentials taken from alloy descriptions may not work well for the pure species. This is particularly true if the elements were fit for compounds instead of being optimized separately. As with all interatomic potentials, please check to make sure that the performance is adequate for your problem.
×
Updated! Potentials that share interactions are now listed as related models.
2016--Kim-Y-K-Kim-H-K-Jung-W-S-Lee-B-J--Al-Ti
Citation: Y.-K. Kim, H.-K. Kim, W.-S. Jung, and B.-J. Lee (2016), "Atomistic modeling of the Ti–Al binary system",
Computational Materials Science,
119, 1-8. DOI:
10.1016/j.commatsci.2016.03.038.
Abstract: An interatomic potential for the Ti–Al binary system has been developed based on the second nearest-neighbor modified embedded-atom method (2NN MEAM) formalism. This potential describes fundamental materials properties (structural, thermodynamic, elastic, defect, deformation and thermal properties) of Ti–Al alloys in good agreements with experimental or first-principles data. The transferability and applicability of the present potential to atomic-scale investigations for Ni-based superalloys or Ti–Al based alloys are demonstrated.
See Computed PropertiesNotes: These potential files were obtained from http://cmse.postech.ac.kr/home_2nnmeam, accessed Nov 9, 2020.
File(s):
Date Created: October 5, 2010 | Last updated: June 09, 2022