× Updated! Potentials that share interactions are now listed as related models.


Citation: D.J. Hepburn, and G.J. Ackland (2008), "Metallic-covalent interatomic potential for carbon in iron", Physical Review B, 78(16), 165115. DOI: 10.1103/physrevb.78.165115.
Abstract: Existing interatomic potentials for the iron-carbon system suffer from qualitative flaws in describing even the simplest of defects. In contrast to more accurate first-principles calculations, all previous potentials show strong bonding of carbon to overcoordinated defects (e.g., self-interstitials, dislocation cores) and a failure to accurately reproduce the energetics of carbon-vacancy complexes. Thus any results from their application in molecular dynamics to more complex environments are unreliable. The problem arises from a fundamental error in potential design—the failure to describe short-ranged covalent bonding of the carbon p electrons. We describe a resolution to the problem and present an empirical potential based on insights from density-functional theory, showing covalent-type bonding for carbon. The potential correctly describes the interaction of carbon and iron across a wide range of defect environments. It has the embedded atom method form and hence appropriate for billion atom molecular-dynamics simulations.

See Computed Properties
Notes: This file was implemented in the LAMMPS-compatible EAM/FS format by Sebastien Garruchet and posted with the permission of G.J. Ackland on 13 May 2009.
See Computed Properties
Notes: Listing found at https://openkim.org. This KIM potential is based on the files from 2008--Hepburn-D-J--Fe-C--LAMMPS--ipr1.
Date Created: October 5, 2010 | Last updated: July 09, 2021