× Updated! Potentials that share interactions are now listed as related models.
 
Citation: E.C. Do, Y.-H. Shin, and B.-J. Lee (2009), "Atomistic modeling of III-V nitrides: modified embedded-atom method interatomic potentials for GaN, InN and Ga1-xInxN", Journal of Physics: Condensed Matter, 21(32), 325801. DOI: 10.1088/0953-8984/21/32/325801.
Abstract: Modified embedded-atom method (MEAM) interatomic potentials for the Ga-N and In-N binary and Ga-In-N ternary systems have been developed based on the previously developed potentials for Ga, In and N. The potentials can describe various physical properties (structural, elastic and defect properties) of both zinc-blende and wurtzite-type GaN and InN as well as those of constituent elements, in good agreement with experimental data or high-level calculations. The potential can also describe the structural behavior of Ga1-xInxN ternary nitrides reasonably well. The applicability of the potentials to atomistic investigations of atomic/nanoscale structural evolution in Ga1-xInxN multi-component nitrides during the deposition of constituent element atoms is discussed.

LAMMPS pair_style meam (2009--Do-E-C--Ga-N--LAMMPS--ipr1)
See Computed Properties
Notes: These files are based on files obtained from http://cmse.postech.ac.kr/home_2nnmeam.
File(s):
See Computed Properties
Notes: Listing found at https://openkim.org.
Link(s):
Citation: A. Béré, and A. Serra (2006), "On the atomic structures, mobility and interactions of extended defects in GaN: dislocations, tilt and twin boundaries", Philosophical Magazine, 86(15), 2159-2192. DOI: 10.1080/14786430600640486.
Abstract: Results obtained by atomic computer simulation based on an adapted Stillinger–Weber (SW) potential concerning the structure and relative stability of lattice dislocations, tilt and twin boundaries in GaN are discussed. The method used for the search and description of all possible atomic configurations depends on the crystallographic structure; consequently it is of general application and the results are transferable to the wurtzite binary compounds. On the contrary, the relaxed structures and their relative energetic stability are potential dependent. The results presented here correspond to a GaN model described by a pair potential. Whenever it has been possible our results have been compared with experiments or with ab initio calculations. We present the core shape and energy of a and c crystal dislocations of both edge and screw character; [0001] tilt boundaries of misorientation angles from 9.3° (corresponding to Σ37) to θ = 44.8° (corresponding to Σ43) and (10-1n) twin boundaries (n = 1, 2, 3) [1, 2, 3, 4]. The atomic structures of the tilt boundaries can be described in terms of the three stable structures of the prism a-edge dislocation core. The (10-13) twin boundary is entirely described by 6-coordinated channels whereas the other twin boundaries present more complex structural units.

See Computed Properties
Notes: This file was taken from the August 22, 2018 LAMMPS distribution.
File(s):
See Computed Properties
Notes: Listing found at https://openkim.org. This KIM potential corresponds to the GaN.sw distributed with the LAMMPS package, but the parameter file format is different.
Link(s):
Citation: J. Nord, K. Albe, P. Erhart, and K. Nordlund (2003), "Modelling of compound semiconductors: analytical bond-order potential for gallium, nitrogen and gallium nitride", Journal of Physics: Condensed Matter, 15(32), 5649-5662. DOI: 10.1088/0953-8984/15/32/324.
Abstract: An analytical bond-order potential for GaN is presented that describes a wide range of structural properties of GaN as well as bonding and structure of the pure constituents. For the systematic fit of the potential parameters reference data are taken from total-energy calculations within the density functional theory if not available from experiments. Although long-range interactions are not explicitly included in the potential, the present model provides a good fit to different structural geometries including defects and high-pressure phases of GaN.

LAMMPS pair_style tersoff (2003--Nord-J--Ga-N--LAMMPS--ipr1)
See Computed Properties
Notes: This file was created and verified by Lucas Hale. The parameter values are comparable to those in the GaN.tersoff file in the August 22, 2018 LAMMPS distribution with this file using higher precision for the derived parameters. The parameter values are identical to the ones in the parameter file used by openKIM model MO_612061685362_001.
File(s):
See Computed Properties
Notes: Listing found at https://openkim.org. This KIM potential is based on a parameter file with identical parameter values as 2003--Nord-J--Ga-N--LAMMPS--ipr1.
Link(s):
Date Created: October 5, 2010 | Last updated: June 09, 2022