× Notice! This site is currently being redesigned. Please let us know any feedback on the new design or if you find something incorrect/not working.
× Cool! Click on a potential's identifier for computed properties.
 
Citation: G.P. Purja Pun, and Y. Mishin (2009), "Development of an interatomic potential for the Ni-Al system", Philosophical Magazine, 89(34-36), 3245-3267. DOI: 10.1080/14786430903258184.
Abstract: We construct an interatomic potential for the Ni-Al system within the embedded-atom method formalism. The potential is based on previously developed accurate potentials for pure Ni and Al. The cross-interactions are fitted to experimental cohesive energy, lattice parameter and elastic constants of B2-NiAl, as well as to ab initio formation energies of several real or imaginary intermetallic compounds with different crystal structures and chemical compositions. The potential accurately reproduces a variety of physical properties of the NiAl and Ni3Al phases, and shows reasonable agreement with experimental and ab initio data for phase stability across the Ni-Al phase diagram. Most of the properties reproduced by the new potential were not involved in the fitting process, which demonstrates its excellent transferability. Advantages and certain weaknesses of the new potential in comparison with other existing potentials are discussed in detail. The potential is expected to be especially suitable for simulations of heterophase interfaces and mechanical behavior of Ni-Al alloys.

EAM tabulated functions
Notes: These files were provided by Yuri Mishin.
File(s):
LAMMPS pair_style eam/alloy (2009--Purja-Pun-G-P--Ni-Al--LAMMPS--ipr1)
Notes: This conversion was produced by Chandler Becker on 13 Aug. 2009 from the plt files listed above. This version is compatible with LAMMPS. Validation and usage information can be found in Mishin-Ni-Al-2009_releaseNotes_1.pdf. 15 Dec. 2009: Reference was updated from "in press."
File(s):
Citation: Y. Mishin (2004), "Atomistic modeling of the γ and γ'-phases of the Ni-Al system", Acta Materialia, 52(6), 1451-1467. DOI: 10.1016/j.actamat.2003.11.026.
Abstract: A new embedded-atom potential has been developed for Ni3Al by fitting to experimental and first-principles data. The potential describes lattice properties of Ni3Al, point defects, planar faults, as well as the γ and γ′ fields on the Ni–Al phase diagram. The potential is applied to calculate the energies of coherent Ni/Ni3Al interphase boundaries with three different crystallographic orientations. Depending on the orientation, the interface energy varies between 12 and 46 mJ/m2. Coherent γ/γ′ interfaces existing at high temperatures are shown to be more diffuse and are likely to have a lower energy than Ni/Ni3Al interfaces.

EAM tabulated functions
Notes: These files were provided by Yuri Mishin.
File(s):
LAMMPS pair_style eam/alloy (2004--Mishin-Y--Ni-Al--LAMMPS--ipr1)
Notes: This conversion was produced by Chandler Becker on 7 Jan 2009 from the plt files listed above. This version is compatible with LAMMPS. Validation and usage information can be found in NiAl04_releaseNotes_2.pdf. If you use this setfl file, please include the following citation (in addition to the Mishin reference): C.A. Becker, et al. (2011) Philos Mag 91(27) 3578-3597.
File(s):
Citation: Y. Mishin, M.J. Mehl, and D.A. Papaconstantopoulos (2002), "Embedded-atom potential for B2-NiAl", Physical Review B, 65(22), 224114. DOI: 10.1103/physrevb.65.224114.
Abstract: An embedded-atom potential has been constructed for the intermetallic compound B2−NiAl by fitting to both experimental properties and ab initio data. The ab initio data have been generated in the form of energy-volume relations for a number of alternative structures of NiAl and Ni3Al, as well as for Ni and Al. The potential accurately reproduces the basic lattice properties of B2−NiAl, planar faults, and point-defect characteristics. It also reproduces the energetics and stability of all other structures included in the fit. The potential is applied to calculate equilibrium point-defect concentrations in B2−NiAl as functions of temperature and composition near the stoichiometry. In contrast to previous calculations, the defect formation entropies arising from atomic vibrations are included in our calculation within the quasiharmonic approximation. Such entropies tend to increase the concentrations of thermal point defects in B2−NiAl at high temperatures, but the atomic disorder mechanism remains triple-defect type up to the melting point.

Notes: As described in the reference, this potential was highly optimized for the B2 phase of NiAl. For other phases (including the elements), it does not work nearly as well as other potentials. For additional information, see C.A. Becker, et al., Phil. Mag. 91, 3578 (2011).

EAM tabulated functions
Notes: These files were provided by Yuri Mishin.
File(s):
LAMMPS pair_style eam/alloy (2002--Mishin-Y--Ni-Al--LAMMPS--ipr1)
Notes: This conversion was produced by Chandler Becker on 14 February 2009 from the plt files listed above. This version is compatible with LAMMPS. Validation and usage information can be found here. If you use this setfl file, please credit the website in addition to the original reference.
File(s):
Date Created: October 5, 2010 | Last updated: October 02, 2018