× Notice! This site is currently being redesigned. Please let us know any feedback on the new design or if you find something incorrect/not working.
× Cool! Click on a potential's identifier for computed properties.
 
Citation: P.L. Williams, Y. Mishin, and J.C. Hamilton (2006), "An embedded-atom potential for the Cu-Ag system", Modelling and Simulation in Materials Science and Engineering, 14(5), 817-833. DOI: 10.1088/0965-0393/14/5/002.
Abstract: A new embedded-atom method (EAM) potential has been constructed for Ag by fitting to experimental and first-principles data. The potential accurately reproduces the lattice parameter, cohesive energy, elastic constants, phonon frequencies, thermal expansion, lattice-defect energies, as well as energies of alternate structures of Ag. Combining this potential with an existing EAM potential for Cu, a binary potential set for the Cu–Ag system has been constructed by fitting the cross-interaction function to first-principles energies of imaginary Cu–Ag compounds. Although properties used in the fit refer to the 0 K temperature (except for thermal expansion factors of pure Cu and Ag) and do not include liquid configurations, the potentials demonstrate good transferability to high-temperature properties. In particular, the entire Cu–Ag phase diagram calculated with the new potentials in conjunction with Monte Carlo simulations is in satisfactory agreement with experiment. This agreement suggests that EAM potentials accurately fit to 0 K properties can be capable of correctly predicting simple phase diagrams. Possible applications of the new potential set are outlined.

EAM tabulated functions
Notes: These files were provided by Yuri Mishin.
File(s):
LAMMPS pair_style eam/alloy (2006--Williams-P-L--Ag--LAMMPS--ipr1)
Notes: This conversion was produced by Chandler Becker on 4 February 2009 from the plt files listed above. This version is compatible with LAMMPS. Validation and usage information can be found in Ag06_releaseNotes_1.pdf. If you use this setfl file, please credit the website in addition to the original reference.
File(s):
Citation: X.W. Zhou, R.A. Johnson, and H.N.G. Wadley (2004), "Misfit-energy-increasing dislocations in vapor-deposited CoFe/NiFe multilayers", Physical Review B, 69(14), 144113. DOI: 10.1103/physrevb.69.144113.
Abstract: Recent molecular dynamics simulations of the growth of [Ni0.8Fe0.2/Au] multilayers have revealed the formation of misfit-strain-reducing dislocation structures very similar to those observed experimentally. Here we report similar simulations showing the formation of edge dislocations near the interfaces of vapor-deposited (111) [NiFe/CoFe/Cu] multilayers. Unlike misfit dislocations that accommodate lattice mismatch, the dislocation structures observed here increase the mismatch strain energy. Stop-action observations of the dynamically evolving atomic structures indicate that during deposition on the (111) surface of a fcc lattice, adatoms may occupy either fcc sites or hcp sites. This results in the random formation of fcc and hcp domains, with dislocations at the domain boundaries. These dislocations enable atoms to undergo a shift from fcc to hcp sites, or vice versa. These shifts lead to missing atoms, and therefore a later deposited layer can have missing planes compared to a previously deposited layer. This dislocation formation mechanism can create tensile stress in fcc films. The probability that such dislocations are formed was found to quickly diminish under energetic deposition conditions.

FORTRAN
Notes: These are the original files sent by X.W. Zhou (Sandia National Laboratory) and posted with his permission. C.A. Becker (NIST) modified create.f to include the reference in the generated potential files and the EAM.input file for this composition. These files can be used to generate alloy potentials for Cu, Ag, Au, Ni, Pd, Pt, Al, Pb, Fe, Mo, Ta, W, Mg, Co, Ti, and Zr by editing EAM.input. However, as addressed in the reference, these potentials were not designed for use with metal compounds.
File(s): superseded


LAMMPS pair_style eam/alloy (2004--Zhou-X-W--Ag--LAMMPS--ipr1)
Notes: This file was generated by C.A. Becker (NIST) from create.f and posted with X.W. Zhou's (Sandia National Laboratory) permission.
File(s): superseded


FORTRAN
Notes: The file Zhou04_create_v2.f is an updated version of create.f modified by L.M. Hale (NIST) following advice from X.W. Zhou (Sandia National Laboratory). This version removes spurious fluctuations in the tabulated functions of the original potential files caused by single/double precision floating point number conflicts.
File(s):
LAMMPS pair_style eam/alloy (2004--Zhou-X-W--Ag--LAMMPS--ipr2)
Notes: This file was generated by L.M. Hale from Zhou04_create_v2.f on 13 April 2018 and posted with X.W. Zhou's (Sandia National Laboratory) permission. This version corrects an issue with spurious fluctuations in the tabulated functions.
File(s):
Citation: J.B. Adams, S.M. Foiles, and W.G. Wolfer (1989), "Self-diffusion and impurity diffusion of fcc metals using the five-frequency model and the Embedded Atom Method", Journal of Materials Research, 4(1), 102-112. DOI: 10.1557/jmr.1989.0102.
Abstract: The activation energies for self-diffusion of transition metals (Au, Ag, Cu, Ni, Pd, Pt) have been calculated with the Embedded Atom Method (EAM); the results agree well with available experimental data for both mono-vacancy and di-vacancy mechanisms. The EAM was also used to calculate activation energies for vacancy migration near dilute impurities. These energies determine the atomic jump frequencies of the classic "five-frequency formula," which yields the diffusion rates of impurities by a mono-vacancy mechanism. These calculations were found to agree fairly well with experiment and with Neumann and Hirschwald's "Tm" model.

LAMMPS pair_style eam (1989--Adams-J-B--Ag--LAMMPS--ipr1)
Notes: agu6.txt was obtained from http://enpub.fulton.asu.edu/cms/ potentials/main/main.htm and posted with the permission of J.B. Adams. The name of the file was retained, even though the header information lists the potential as 'universal 4.' This file is compatible with the "pair_style eam" format in LAMMPS (19Feb09 version).
File(s):
Citation: G.J. Ackland, G. Tichy, V. Vitek, and M.W. Finnis (1987), "Simple N-body potentials for the noble metals and nickel", Philosophical Magazine A, 56(6), 735-756. DOI: 10.1080/01418618708204485.
Abstract: Using the approach of Finnis and Sinclair, N-body potentials for copper, silver, gold and nickel have been constructed. The total energy is regarded as consisting of a pair-potential part and a many body cohesive part. Both these parts are functions of the atomic separations only and are represented by cubic splines, fitted to various bulk properties. For the noble metals, the pair-potentials were fitted at short range to pressure-volume relationships calculated by Christensen and Heine so that interactions at separations smaller than that of the first-nearest neighbours can be treated in this scheme. Using these potentials, point defects, surfaces (including the surface reconstructions) and grain boundaries have been studied and satisfactory agreement with available experimental data has been found.

Moldy FS
Notes: The parameters in ag.moldy were obtained from http://homepages.ed.ac.uk/graeme/moldy/moldy.html and posted with the permission of G.J. Ackland.
File(s):
LAMMPS pair_style eam/fs (1987--Ackland-G-J--Ag--LAMMPS--ipr1)
Notes: This conversion was performed from G.J. Ackland's parameters by M.I. Mendelev. Conversion checks from M.I. Mendelev can be found in the conversion_check.pdf. These files were posted on 30 June 2009 with the permission of G.J. Ackland and M.I. Mendelev. These potentials are not designed for simulations of radiation damage.
File(s):
LAMMPS pair_style eam/fs (1987--Ackland-G-J--Ag--LAMMPS--ipr2)
Notes: A new conversion to LAMMPS performed by G.J. Ackland was submitted on 10 Oct. 2017. This version adds close-range repulsion for radiation studies.
File(s):
Citation: S.M. Foiles, M.I. Baskes, and M.S. Daw (1986), "Embedded-atom-method functions for the fcc metals Cu, Ag, Au, Ni, Pd, Pt, and their alloys", Physical Review B, 33(12), 7983-7991. DOI: 10.1103/physrevb.33.7983.
Abstract: A consistent set of embedding functions and pair interactions for use with the embedded-atom method [M.S. Daw and M. I. Baskes, Phys. Rev. B 29, 6443 (1984)] have been determined empirically to describe the fcc metals Cu, Ag, Au, Ni, Pd, and Pt as well as alloys containing these metals. The functions are determined empirically by fitting to the sublimation energy, equilibrium lattice constant, elastic constants, and vacancy-formation energies of the pure metals and the heats of solution of the binary alloys. The validity of the functions is tested by computing a wide range of properties: the formation volume and migration energy of vacancies, the formation energy, formation volume, and migration energy of divacancies and self-interstitials, the surface energy and geometries of the low-index surfaces of the pure metals, and the segregation energy of substitutional impurities to (100) surfaces.

LAMMPS pair_style eam (1986--Foiles-S-M--Ag--LAMMPS--ipr1)
Notes: This file was taken from the August 22, 2018 LAMMPS distribution.
File(s):
 
Citation: X.W. Zhou, R.A. Johnson, and H.N.G. Wadley (2004), "Misfit-energy-increasing dislocations in vapor-deposited CoFe/NiFe multilayers", Physical Review B, 69(14), 144113. DOI: 10.1103/physrevb.69.144113.
Abstract: Recent molecular dynamics simulations of the growth of [Ni0.8Fe0.2/Au] multilayers have revealed the formation of misfit-strain-reducing dislocation structures very similar to those observed experimentally. Here we report similar simulations showing the formation of edge dislocations near the interfaces of vapor-deposited (111) [NiFe/CoFe/Cu] multilayers. Unlike misfit dislocations that accommodate lattice mismatch, the dislocation structures observed here increase the mismatch strain energy. Stop-action observations of the dynamically evolving atomic structures indicate that during deposition on the (111) surface of a fcc lattice, adatoms may occupy either fcc sites or hcp sites. This results in the random formation of fcc and hcp domains, with dislocations at the domain boundaries. These dislocations enable atoms to undergo a shift from fcc to hcp sites, or vice versa. These shifts lead to missing atoms, and therefore a later deposited layer can have missing planes compared to a previously deposited layer. This dislocation formation mechanism can create tensile stress in fcc films. The probability that such dislocations are formed was found to quickly diminish under energetic deposition conditions.

FORTRAN
Notes: These are the original files sent by X.W. Zhou (Sandia National Laboratory) and posted with his permission. C.A. Becker (NIST) modified create.f to include the reference in the generated potential files and the EAM.input file for this composition. These files can be used to generate alloy potentials for Cu, Ag, Au, Ni, Pd, Pt, Al, Pb, Fe, Mo, Ta, W, Mg, Co, Ti, and Zr by editing EAM.input. However, as addressed in the reference, these potentials were not designed for use with metal compounds.
File(s): superseded


LAMMPS pair_style eam/alloy (2004--Zhou-X-W--Cu-Ag-Au--LAMMPS--ipr1)
Notes: This file was generated by C.A. Becker (NIST) from create.f and posted with X.W. Zhou's (Sandia National Laboratory) permission.
File(s): superseded


FORTRAN
Notes: The file Zhou04_create_v2.f is an updated version of create.f modified by L.M. Hale (NIST) following advice from X.W. Zhou (Sandia National Laboratory). This version removes spurious fluctuations in the tabulated functions of the original potential files caused by single/double precision floating point number conflicts.
File(s):
LAMMPS pair_style eam/alloy (2004--Zhou-X-W--Cu-Ag-Au--LAMMPS--ipr2)
Notes: This file was generated by L.M. Hale from Zhou04_create_v2.f on 13 April 2018 and posted with X.W. Zhou's (Sandia National Laboratory) permission. This version corrects an issue with spurious fluctuations in the tabulated functions.
File(s):
 
Citation: J.B. Adams, S.M. Foiles, and W.G. Wolfer (1989), "Self-diffusion and impurity diffusion of fcc metals using the five-frequency model and the Embedded Atom Method", Journal of Materials Research, 4(01), 102-112. DOI: 10.1557/jmr.1989.0102.
Abstract: The activation energies for self-diffusion of transition metals (Au, Ag, Cu, Ni, Pd, Pt) have been calculated with the Embedded Atom Method (EAM); the results agree well with available experimental data for both mono-vacancy and di-vacancy mechanisms. The EAM was also used to calculate activation energies for vacancy migration near dilute impurities. These energies determine the atomic jump frequencies of the classic "five-frequency formula," which yields the diffusion rates of impurities by a mono-vacancy mechanism. These calculations were found to agree fairly well with experiment and with Neumann and Hirschwald's "Tm" model.

Notes: Cross-element interactions were only considered for small (1-2%) impurity concentrations and use a generalized universal function.

LAMMPS pair_style eam (1989--Adams-J-B--Ag-Au-Cu-Ni-Pd-Pt--LAMMPS--ipr1)
Notes: These files were obtained from http://enpub.fulton.asu.edu/cms/ potentials/main/main.htm and posted with the permission of J.B. Adams. The name of the file was retained, even though the header information lists the potential as 'universal 4.' Except for the first comment line, "cuu6.txt" is identical to "Cu_u6.eam" in the August 22, 2018 LAMMPS distribution.
File(s):
Citation: S.M. Foiles, M.I. Baskes, and M.S. Daw (1986), "Embedded-atom-method functions for the fcc metals Cu, Ag, Au, Ni, Pd, Pt, and their alloys", Physical Review B, 33(12), 7983-7991. DOI: 10.1103/physrevb.33.7983.
Abstract: A consistent set of embedding functions and pair interactions for use with the embedded-atom method [M.S. Daw and M. I. Baskes, Phys. Rev. B 29, 6443 (1984)] have been determined empirically to describe the fcc metals Cu, Ag, Au, Ni, Pd, and Pt as well as alloys containing these metals. The functions are determined empirically by fitting to the sublimation energy, equilibrium lattice constant, elastic constants, and vacancy-formation energies of the pure metals and the heats of solution of the binary alloys. The validity of the functions is tested by computing a wide range of properties: the formation volume and migration energy of vacancies, the formation energy, formation volume, and migration energy of divacancies and self-interstitials, the surface energy and geometries of the low-index surfaces of the pure metals, and the segregation energy of substitutional impurities to (100) surfaces.

Notes: The cross-elemental interactions use a universal function designed to show trends across the metals and is not fitted for revealing compounds.

LAMMPS pair_style eam (1986--Foiles-S-M--Ag-Au-Cu-Ni-Pd-Pt--LAMMPS--ipr1)
Notes: These files were taken from the August 22, 2018 LAMMPS distribution.
File(s):
 
Citation: H.H. Wu, and D.R. Trinkle (2009), "Cu/Ag EAM potential optimized for heteroepitaxial diffusion from ab initio data", Computational Materials Science, 47(2), 577-583. DOI: 10.1016/j.commatsci.2009.09.026.
Abstract: A binary embedded-atom method (EAM) potential is optimized for Cu on Ag(1 1 1) by fitting to ab initio data. The fitting database consists of DFT calculations of Cu monomers and dimers on Ag(1 1 1), specifically their relative energies, adatom heights, and dimer separations. We start from the Mishin Cu–Ag EAM potential and first modify the Cu–Ag pair potential to match the FCC/HCP site energy difference then include Cu–Cu pair potential optimization for the entire database. The potential generated from this optimization method gives better agreement to DFT calculations of Cu monomers, dimers, and trimers than previous EAMs as well as a SEAM optimized potential. In trimer calculations, the optimized potential produces the DFT relative energy between FCC and HCP trimers, though a different ground state is predicted. We use the optimized potential to calculate diffusion barriers for Cu monomers, dimers, and trimers. The predicted monomer barrier is the same as DFT, while experimental barriers for monomers and dimers are lower than predicted here. We attribute the difference with experiment to the overestimation of surface adsorption energies by DFT and a simple correction is presented. Our results show that this optimization method is suitable for other heteroepitaxial systems; and that the optimized Cu–Ag EAM can be applied in the study of larger Cu islands on Ag(1 1 1).

Notes: 7 May 2010 Update: Reference changed from 'in preparation' at the request of Henry Wu (Univ. of Illinois).

LAMMPS pair_style eam/alloy (2009--Wu-H-H--Cu-Ag--LAMMPS--ipr1)
Notes: This file was provided by Henry H. Wu and posted with his permission. He also supplied a new file where the first line of the header was updated to reflect the publication status. The original file can be found here.
File(s):
Citation: P.L. Williams, Y. Mishin, and J.C. Hamilton (2006), "An embedded-atom potential for the Cu-Ag system", Modelling and Simulation in Materials Science and Engineering, 14(5), 817-833. DOI: 10.1088/0965-0393/14/5/002.
Abstract: A new embedded-atom method (EAM) potential has been constructed for Ag by fitting to experimental and first-principles data. The potential accurately reproduces the lattice parameter, cohesive energy, elastic constants, phonon frequencies, thermal expansion, lattice-defect energies, as well as energies of alternate structures of Ag. Combining this potential with an existing EAM potential for Cu, a binary potential set for the Cu–Ag system has been constructed by fitting the cross-interaction function to first-principles energies of imaginary Cu–Ag compounds. Although properties used in the fit refer to the 0 K temperature (except for thermal expansion factors of pure Cu and Ag) and do not include liquid configurations, the potentials demonstrate good transferability to high-temperature properties. In particular, the entire Cu–Ag phase diagram calculated with the new potentials in conjunction with Monte Carlo simulations is in satisfactory agreement with experiment. This agreement suggests that EAM potentials accurately fit to 0 K properties can be capable of correctly predicting simple phase diagrams. Possible applications of the new potential set are outlined.

EAM tabulated functions
Notes: These files were provided by Yuri Mishin.
File(s):
LAMMPS pair_style eam/alloy (2006--Williams-P-L--Cu-Ag--LAMMPS--ipr1)
Notes: This conversion was produced by Chandler Becker on 4 February 2009 from the plt files listed above. This version is compatible with LAMMPS. Validation and usage information can be found in CuAg06_releaseNotes_1.pdf. If you use this setfl file, please credit the website in addition to the original reference.
File(s):
 
Citation: L.M. Hale, B.M. Wong, J.A. Zimmerman, and X.W. Zhou (2013), "Atomistic potentials for palladium-silver hydrides", Modelling and Simulation in Materials Science and Engineering, 21(4), 45005. DOI: 10.1088/0965-0393/21/4/045005.
Abstract: New embedded-atom method potentials for the ternary palladium–silver–hydrogen system are developed by extending a previously developed palladium–hydrogen potential. The ternary potentials accurately capture the heat of mixing and structural properties associated with solid solution alloys of palladium–silver. Stable hydrides are produced with properties that smoothly transition across the compositions. Additions of silver to palladium are predicted to alter the properties of the hydrides by decreasing the miscibility gap and increasing the likelihood of hydrogen atoms occupying tetrahedral interstitial sites over octahedral interstitial sites.

Notes: This listing is for the potential with the hybrid-style Pd-Ag interaction as described in the article.

LAMMPS pair_style eam/alloy (2013--Hale-L-M--Pd-Ag-H-Hybrid--LAMMPS--ipr1)
Notes: This file was supplied by Jonathan Zimmerman (Sandia National Laboratories) and posted with his approval on 9 April 2014. Dr. Zimmerman noted that this file is the version that used the Hybrid style for the Pd-Ag interaction. This file has also been modified to include the citation in the header information and include '.alloy' in the file name for clarity.
File(s):
OpenKIM (MO_104806802344_000)
Notes: Link to the KIM-compliant version of the Hybrid-based interatomic potential. https://openkim.org/projects-using-kim/ provides links to instructions for the use of KIM-compliant versions of these potentials. Links to the KIM-related content were provided by Prof. Ryan Elliott (U. Minnesota, KIM Editor).
File(s):
Citation: L.M. Hale, B.M. Wong, J.A. Zimmerman, and X.W. Zhou (2013), "Atomistic potentials for palladium-silver hydrides", Modelling and Simulation in Materials Science and Engineering, 21(4), 45005. DOI: 10.1088/0965-0393/21/4/045005.
Abstract: New embedded-atom method potentials for the ternary palladium–silver–hydrogen system are developed by extending a previously developed palladium–hydrogen potential. The ternary potentials accurately capture the heat of mixing and structural properties associated with solid solution alloys of palladium–silver. Stable hydrides are produced with properties that smoothly transition across the compositions. Additions of silver to palladium are predicted to alter the properties of the hydrides by decreasing the miscibility gap and increasing the likelihood of hydrogen atoms occupying tetrahedral interstitial sites over octahedral interstitial sites.

Notes: This listing is for the potential with the Morse-style Pd-Ag interaction as described in the article.

LAMMPS pair_style eam/alloy (2013--Hale-L-M--Pd-Ag-H-Morse--LAMMPS--ipr1)
Notes: This file was supplied by Jonathan Zimmerman (Sandia National Laboratories) and posted with his approval on 9 April 2014. Dr. Zimmerman noted that this file is the version that used the Hybrid style for the Pd-Ag interaction. This file has also been modified to include the citation in the header information and include '.alloy' in the file name for clarity.
File(s):
OpenKIM (MO_108983864770_000)
Notes: Link to the KIM-compliant version of the Morse-based interatomic potential. https://openkim.org/projects-using-kim/ provides links to instructions for the use of KIM-compliant versions of these potentials. Links to the KIM-related content were provided by Prof. Ryan Elliott (U. Minnesota, KIM Editor).
File(s):
 
Citation: Z. Pan, V. Borovikov, M.I. Mendelev, and F. Sansoz (2018), "Development of a semi-empirical potential for simulation of Ni solute segregation into grain boundaries in Ag", Modelling and Simulation in Materials Science and Engineering, 26(7), 075004. DOI: 10.1088/1361-651x/aadea3.
Abstract: An Ag–Ni semi-empirical potential was developed to simulate the segregation of Ni solutes at Ag grain boundaries (GBs). The potential combines a new Ag potential fitted to correctly reproduce the stable and unstable stacking fault energies in this metal and the existing Ni potential from Mendelev et al (2012 Phil. Mag. 92 4454–69). The Ag–Ni cross potential functions were fitted to ab initio data on the liquid structure of the Ag80Ni20 alloy to properly incorporate the Ag–Ni interaction at small atomic separations, and to the Ni segregation energies at different sites within a high-energy Σ9 (221) symmetric tilt GB. By deploying this potential with hybrid Monte Carlo/molecular dynamics simulations, it was found that heterogeneous segregation and clustering of Ni atoms at GBs and twin boundary defects occur at low Ni concentrations, 1 and 2 at%. This behavior is profoundly different from the homogeneous interfacial dispersion generally observed for the Cu segregation in Ag. A GB transformation to amorphous intergranular films was found to prevail at higher Ni concentrations (10 at%). The developed potential opens new opportunities for studying the selective segregation behavior of Ni solutes in interface-hardened Ag metals and its effect on plasticity.

Notes: Update 2018-10-05: Reference information updated. Previously referred to as 2018--Mendelev-M-I--Ag-Ni.

LAMMPS pair_style eam/fs (2018--Pan-Z--Ag-Ni--LAMMPS--ipr1)
Notes: This file was sent by M.I. Mendelev (Ames Laboratory) on 3 June 2018 and posted with his permission.
File(s):
 
Citation: H. Gao, A. Otero-de-la-Roza, S.M. Aouadi, E.R. Johnson, and A. Martini (2013), "An empirical model for silver tantalate", Modelling and Simulation in Materials Science and Engineering, 21(5), 55002. DOI: 10.1088/0965-0393/21/5/055002.
Abstract: A set of parameters for the modified embedded atom method (MEAM) potential was developed to describe the perovskite silver tantalate (AgTaO3). First, MEAM parameters for AgO and TaO were determined based on the structural and elastic properties of the materials in a B1 reference structure predicted by density-functional theory (DFT). Then, using the fitted binary parameters, additional potential parameters were adjusted to enable the empirical potential to reproduce DFT-predicted lattice structure, elastic constants, cohesive energy and equation of state for the ternary AgTaO3. Finally, thermal expansion was predicted by a molecular dynamics (MD) simulation using the newly developed potential and compared directly to experimental values. The agreement with known experimental data for AgTaO3 is satisfactory, and confirms that the new empirical model is a good starting point for further MD studies.

LAMMPS pair_style meam (2013--Gao-H--AgTaO3--LAMMPS--ipr2)
Notes: These files were sent by Dr. Ashlie Martini (Univ. California Merced) and approved for distribution on 6 Jul. 2013. The file AgTaO3_40atoms.dat contains atomic coordinates for the 40-atom cell described in the paper. A sample LAMMPS input script to calculate the cohesive energy of that configuration is in in.AgTaO3. This potential was tested on the following versions of LAMMPS: 5Mar12, 12Apr12, 19May12, 4Jul12, 28Oct12, 21Feb13, 5Jun13, 13Jun13, 17Jun13.
File(s):
Date Created: October 5, 2010 | Last updated: October 05, 2018