× Updated! Potentials that share interactions are now listed as related models.

2023--Jana-R-Caro-M-A--Fe

Citation: R. Jana, and M.A. Caro (2023), "Searching for iron nanoparticles with a general-purpose Gaussian approximation potential", Physical Review B, 107(24), . DOI: 10.1103/physrevb.107.245421.
Abstract: We present a general-purpose machine learning Gaussian approximation potential (GAP) for iron that is applicable to all bulk crystal structures found experimentally under diverse thermodynamic conditions, as well as surfaces and nanoparticles (NPs). By studying its phase diagram, we show that our GAP remains stable at extreme conditions, including those found in the Earth's core. The new GAP is particularly accurate for the description of NPs. We use it to identify new low-energy NPs, whose stability is verified by performing density functional theory calculations on the GAP structures. Many of these NPs are lower in energy than those previously available in the literature up to Natoms = 100. We further extend the convex hull of available stable structures to Natoms = 200. For these NPs, we study characteristic surface atomic motifs using data clustering and low-dimensional embedding techniques. With a few exceptions, e.g., at magic numbers Natoms = 59, 65, 76, and 78, we find that iron tends to form irregularly shaped NPs without a dominant surface character or characteristic atomic motif, and no reminiscence of crystalline features. We hypothesize that the observed disorder stems from an intricate balance and competition between the stable bulk motif formation, with bcc structure, and the stable surface motif formation, with fcc structure. We expect these results to improve our understanding of the fundamental properties and structure of low-dimensional forms of iron and to facilitate future work in the field of iron-based catalysis.

Notes: Richard Jana notes that "This potential is suitable for a wide range of applications and structures, so we consider it general purpose. However, it is particularly intended for Fe nano particles."

Implementation Information

This page displays computed properties for the 2023--Jana-R--Fe--LAMMPS--ipr1 implementation of the 2023--Jana-R-Caro-M-A--Fe potential. Computed values for other implementations can be seen by clicking on the links below:

Diatom Energy vs. Interatomic Spacing

Plots of the potential energy vs interatomic spacing, r, are shown below for all diatom sets associated with the interatomic potential. This calculation provides insights into the functional form of the potential's two-body interactions. A system consisting of only two atoms is created, and the potential energy is evaluated for the atoms separated by 0.02 Å <= r <= 6.0> Å in intervals of 0.02 Å. Two plots are shown: one for the "standard" interaction distance range, and one for small values of r. The small r plot is useful for determining whether the potential is suitable for radiation studies.

The calculation method used is available as the iprPy diatom_scan calculation method.

Clicking on the image of a plot will open an interactive version of it in a new tab. The underlying data for the plots can be downloaded by clicking on the links above each plot.

Notes and Disclaimers:

  • These values are meant to be guidelines for comparing potentials, not the absolute values for any potential's properties. Values listed here may change if the calculation methods are updated due to improvements/corrections. Variations in the values may occur for variations in calculation methods, simulation software and implementations of the interatomic potentials.
  • As this calculation only involves two atoms, it neglects any multi-body interactions that may be important in molecules, liquids and crystals.
  • NIST disclaimer

Version Information:

  • 2019-11-14. Maximum value range on the shortrange plots are now limited to "expected" levels as details are otherwise lost.
  • 2019-08-07. Plots added.

Download data

Click on plot to load interactive version

2023--Jana-R--Fe--LAMMPS--ipr1/diatom

Click on plot to load interactive version

2023--Jana-R--Fe--LAMMPS--ipr1/diatom_short

Cohesive Energy vs. Interatomic Spacing

Plots of potential energy vs interatomic spacing, r, are shown below for a number of crystal structures. The structures are generated based on the ideal atomic positions and b/a and c/a lattice parameter ratios for a given crystal prototype. The size of the system is then uniformly scaled, and the energy calculated without relaxing the system. To obtain these plots, values of r are evaluated every 0.02 Å up to 6 Å.

The calculation method used is available as the iprPy E_vs_r_scan calculation method.

Clicking on the image of a plot will open an interactive version of it in a new tab. The underlying data for the plots can be downloaded by clicking on the links above each plot.

Notes and Disclaimers:

  • These values are meant to be guidelines for comparing potentials, not the absolute values for any potential's properties. Values listed here may change if the calculation methods are updated due to improvements/corrections. Variations in the values may occur for variations in calculation methods, simulation software and implementations of the interatomic potentials.
  • The minima identified by this calculation do not guarantee that the associated crystal structures will be stable since no relaxation is performed.
  • NIST disclaimer

Version Information:

  • 2020-12-18. Descriptions, tables and plots updated to reflect that the energy values are the measuredper atom potential energy rather than cohesive energy as some potentials have non-zero isolated atom energies.
  • 2019-02-04. Values regenerated with even r spacings of 0.02 Å, and now include values less than 2 Å when possible. Updated calculation method and parameters enhance compatibility with more potential styles.
  • 2019-04-26. Results for hcp, double hcp, α-As and L10 prototypes regenerated from different unit cell representations. Only α-As results show noticable (>1e-5 eV) difference due to using a different coordinate for Wykoff site c position.
  • 2018-06-13. Values for MEAM potentials corrected. Dynamic versions of the plots moved to separate pages to improve page loading. Cosmetic changes to how data is shown and updates to the documentation.
  • 2017-01-11. Replaced png pictures with interactive Bokeh plots. Data regenerated with 200 values of r instead of 300.
  • 2016-09-28. Plots for binary structures added. Data and plots for elemental structures regenerated. Data values match the values of the previous version. Data table formatting slightly changed to increase precision and ensure spaces between large values. Composition added to plot title and structure names made longer.
  • 2016-04-07. Plots for elemental structures added.

Select a composition:

Download data

Click on plot to load interactive version

2023--Jana-R--Fe--LAMMPS--ipr1/EvsR.26
Date Created: October 5, 2010 | Last updated: October 24, 2023