× Updated! Potentials that share interactions are now listed as related models.

2017--Kim-Y-K-Kim-H-K-Jung-W-S-Lee-B-J--Ni-Al-Ti

Citation: Y.-K. Kim, H.-K. Kim, W.-S. Jung, and B.-J. Lee (2017), "Development and application of Ni-Ti and Ni-Al-Ti 2NN-MEAM interatomic potentials for Ni-base superalloys", Computational Materials Science, 139, 225-233. DOI: 10.1016/j.commatsci.2017.08.002.
Abstract: Interatomic potentials for the Ni-Ti and Ni-Al-Ti systems have been developed based on the second nearest-neighbor modified embedded-atom method (2NN-MEAM) formalism. The Ni-Ti binary potential reproduces fundamental materials properties (structural, elastic, thermodynamic, and thermal stability) of alloy systems in reasonable agreement with experiments, first-principles calculations and thermodynamic calculations. Atomistic simulations using the Ni-Al-Ti ternary potential validate that the potential can be applied successfully to atomic-scale investigations to clarify the effects of titanium on important materials phenomena (site preference in γ', γ-γ' phase transition, and segregation on grain boundaries) in Ni-Al-Ti ternary superalloys.

See Computed Properties
Notes: These potential files were obtained from http://cmse.postech.ac.kr/home_2nnmeam, accessed Nov 9, 2020.
File(s):
Date Created: October 5, 2010 | Last updated: July 09, 2021