Warning! Note that elemental potentials taken from alloy descriptions may not work well for the pure species. This is particularly true if the elements were fit for compounds instead of being optimized separately. As with all interatomic potentials, please check to make sure that the performance is adequate for your problem.
Citation: G.E. Norman, S.V. Starikov, and V.V. Stegailov (2012), "Atomistic simulation of laser ablation of gold: Effect of pressure relaxation", Journal of Experimental and Theoretical Physics, 114(5), 792-800. DOI: 10.1134/s1063776112040115.
Abstract: The process of ablation of a gold target by femto- and picosecond laser radiation pulses has been studied by numerical simulations using an atomistic model with allowance for the electron subsystem and the dependence of the ion-ion interaction potential on the electron temperature. Using this potential, it is possible to take into account the change in the physical properties of the ion subsystem as a result of heating of the electron subsystem. The results of simulations reveal a significant difference between the characteristics of metal ablation by laser pulses of various durations. For ablation with subpicosecond pulses, two mechanisms of metal fracture related to the evolution of electronic pressure in the system are established.
Citation: S.V. Starikov, A.Y. Faenov, T.A. Pikuz, I.Y. Skobelev, V.E. Fortov, S. Tamotsu, M. Ishino, M. Tanaka, N. Hasegawa, M. Nishikino, T. Kaihori, T. Imazono, M. Kando, and T. Kawachi (2014), "Soft picosecond X-ray laser nanomodification of gold and aluminum surfaces", Applied Physics B, 116(4), 1005-1016. DOI: 10.1007/s00340-014-5789-y.
Abstract: Experimental and theoretical investigations of aluminum (Al) and gold (Au) surface modification by soft X-ray laser pulse are presented. Well-polished samples of Al and Au are irradiated by ps-duration pulse with wavelength of 13.9 nm at the energy range of 24-72 nJ. Differences in the melting and the ablation processes for those materials are observed. It is shown that at low laser pulse energy, the nanoscale ripples on the surface may be induced by melting without following ablation. In that case, the nanoscale changes in the surface are caused by splash of molten metal under gradient of fluence. At higher laser pulse energy, the ablation process occurs and craters are formed on the surface. However, the melting determines the size of the modified surface at all ranges of the laser energies. For interpretation of experimental results, the atomistic simulations of melting and ablation processes in Al and Au are provided. The calculated threshold fluencies for melting and ablation are well consistent with measured ones.
See Computed Properties Notes: These files were submitted by Sergey Starikov on July 23, 2018. This EAM-potential describes Au at various electronic temperatures (0.1 eV, 1.5 eV, 3.0 eV, 4.5 eV, 6.0 eV). It is implemented as a set of EAM-potentials for alloy where each component corresponds to some electron temperature. This version is compatible with LAMMPS. Validation and usage information can be found in Verification.pdf. It should be noted that the potential may be used at classical molecular dynamics simulation for study of room-temperature properties. In this case, only "Au" type of alloy is necessary. File(s):