× Updated! Potentials that share interactions are now listed as related models.


Citation: M.I. Mendelev, M.J. Kramer, R.T. Ott, D.J. Sordelet, D. Yagodin, and P. Popel (2009), "Development of suitable interatomic potentials for simulation of liquid and amorphous Cu-Zr alloys", Philosophical Magazine, 89(11), 967-987. DOI: 10.1080/14786430902832773.
Abstract: We present a new semi-empirical potential suitable for molecular dynamics simulations of liquid and amorphous Cu–Zr alloys. To provide input data for developing the potential, new experimental measurements of the structure factors for amorphous Cu64.5Zr35.5 alloy were performed. In this work, we propose a new method to include diffraction data in the potential development procedure, which also includes fitting to first-principles and liquid density and enthalpy of mixing data. To refine the new potential, we used first-principles and liquid enthalpy of mixing data published earlier combined with the densities of liquid Cu64.5Zr35.5 measured over a range of temperatures. We show that the potential predicts a liquid-to-glass transition temperature that agrees reasonably well with experimental data. Finally, we compare the new potential with two previously developed semi-empirical potentials for Cu–Zr alloys and examine their comparative and contrasting descriptions of structure and properties for Cu64.5Zr35.5 liquids and glasses.

Notes: Update 22 Apr. 2009: the reference was added. Update 14 Oct. 2010: the Cu part of this potential is available separately as 2008--Mendelev-M-I-Kramer-M-J-Becker-C-A-Asta-M--Cu.

See Computed Properties
Notes: This file was supplied by Mikhail Mendelev on 28 Nov. 2008. Update 19 July 2021: The contact email in the file's header has been changed. Update Jan 14 2022: Citation information has been updated in the file's header.
See Computed Properties
Notes: Listing found at https://openkim.org. This KIM potential is based on the files from 2009--Mendelev-M-I--Cu-Zr--LAMMPS--ipr1.
Date Created: October 5, 2010 | Last updated: June 09, 2022