Calculation update! New properties have been added to the website for dislocation monopole core structures, dynamic relaxes of both crystal and liquid phases, and melting temperatures! Currently, the results for these properties predominately focus on EAM-style potentials, but the results will be updated for other potentials as the associated calculations finish. Feel free to give us feedback on the new properties so we can improve their representations as needed.
Warning! Note that elemental potentials taken from alloy descriptions may not work well for the pure species. This is particularly true if the elements were fit for compounds instead of being optimized separately. As with all interatomic potentials, please check to make sure that the performance is adequate for your problem.
Citation: H.-S. Jang, D. Seol, and B.-J. Lee (2019), "Modified embedded-atom method interatomic potential for the Mg–Zn–Ca ternary system", Calphad67, 101674. DOI: 10.1016/j.calphad.2019.101674.
Abstract: Mg–Zn–Ca alloys are representative Mg alloys with high formability at room temperature. Their high formability is thought to be related to slip, twinning, and recrystallization of the alloys, but the detailed mechanisms have not yet been clarified. To enable atomistic simulations for investigating those behaviors, an interatomic potential for the Mg–Zn–Ca ternary system was developed. The development was based on the second nearest-neighbor modified embedded-atom method formalism, combining previously developed Mg–Zn and Mg–Ca potentials with the newly developed Zn–Ca binary potential. The Zn–Ca and Mg–Zn–Ca potentials reproduce structural, elastic, and thermodynamic properties of compounds and solution phases of relevant alloy systems in reasonable agreement with experimental data, first-principles and CALPHAD calculations. The applicability of the developed potentials is demonstrated through calculations of the effects of Zn and Ca solutes on the generalized stacking fault energy for various slip systems, segregation energy on twin boundaries, and volumetric misfit strain.