Warning! Note that elemental potentials taken from alloy descriptions may not work well for the pure species. This is particularly true if the elements were fit for compounds instead of being optimized separately. As with all interatomic potentials, please check to make sure that the performance is adequate for your problem.
Citation: M. Müller, P. Erhart, and K. Albe (2007), "Analytic bond-order potential for bcc and fcc iron—comparison with established embedded-atom method potentials", Journal of Physics: Condensed Matter, 19(32), 326220. DOI: 10.1088/0953-8984/19/32/326220.
Abstract: A new analytic bond-order potential for iron is presented that has been fitted to experimental data and results from first-principles calculations. The angular-dependent functional form allows a proper description of a large variety of bulk, surface and defect properties, including the Bain path, phonon dispersions, defect diffusivities and defect formation energies. By calculating Gibbs free energies of body-centred cubic (bcc) and face-centred cubic (fcc) iron as a function of temperature, we show that this potential is able to reproduce the transitions from α-iron to γ-iron and δ-iron before the melting point. The results are compared to four widely used embedded-atom-method potentials for iron.