Calculation update! New properties have been added to the website for dislocation monopole core structures, dynamic relaxes of both crystal and liquid phases, and melting temperatures! Currently, the results for these properties predominately focus on EAM-style potentials, but the results will be updated for other potentials as the associated calculations finish. Feel free to give us feedback on the new properties so we can improve their representations as needed.
Warning! Note that elemental potentials taken from alloy descriptions may not work well for the pure species. This is particularly true if the elements were fit for compounds instead of being optimized separately. As with all interatomic potentials, please check to make sure that the performance is adequate for your problem.
Citation: B.-J. Lee, and J.-H. Shim (2004), "A modified embedded atom method interatomic potential for the Cu–Ni system", Calphad, 28(2), 125-132. DOI: 10.1016/j.calphad.2004.06.001.
Abstract: A semi-empirical interatomic potential, the MEAM, has been applied to obtain an interatomic potential for the Cu–Ni system, based on the previously developed potentials for pure Cu and Ni. The procedure for the determination of potential parameter values is presented. It is shown that the potential describes the basic thermodynamic properties and alloy behaviors of the fcc solid solution (enthalpy of mixing, miscibility gap and lattice parameter) in good agreement with CALPHAD calculation and experimental information. It is also shown how the CALPHAD calculation (enthalpy of mixing) can be used for optimization of the interatomic potential parameters.