Calculation update! New properties have been added to the website for dislocation monopole core structures, dynamic relaxes of both crystal and liquid phases, and melting temperatures! Currently, the results for these properties predominately focus on EAM-style potentials, but the results will be updated for other potentials as the associated calculations finish. Feel free to give us feedback on the new properties so we can improve their representations as needed.
Warning! Note that elemental potentials taken from alloy descriptions may not work well for the pure species. This is particularly true if the elements were fit for compounds instead of being optimized separately. As with all interatomic potentials, please check to make sure that the performance is adequate for your problem.
Citation: R. Meyer, and P. Entel (1998), "Martensite-austenite transition and phonon dispersion curves of Fe1-xNix studied by molecular-dynamics simulations", Physical Review B, 57(9), 5140-5147. DOI: 10.1103/physrevb.57.5140.
Abstract: We have done molecular-dynamics simulations of Fe1−xNix employing a semiempirical model. We present a phase diagram of the martensite-austenite transition temperatures as a function of the Ni concentration which is in good agreement with experimental observations. In addition to this we have calculated the phonon dispersion curves of Fe and Ni from the model. Results show that the vibrational properties of the metals are well reproduced by the embedded-atom-method potentials. Finally, we have derived the phonon dispersion relations of bcc Fe80Ni20. We find rather low energies of the [110]−TA1 phonons with a strong temperature dependence which we attribute to instabilities of Ni in the bcc phase. We do not find any indications of a soft mode at the martensite-austenite transition in Fe1−xNix.
See Computed Properties Notes: This file was provided by Rodrigo Freitas (Stanford) on Jan 10, 2020. It was used for the publication R. Freitas, M. Asta and M. de Koning (2016) Computational Materials Science, 112, 333-341. DOI: 10.1016/j.commatsci.2015.10.050. Update March 13, 2020: The listed LAMMPS pair style corrected from eam/alloy to eam. Update Dec 11, 2020: Lucas Hale verified that the potential's tables are consistent with the parameters in the paper, however, the elastic constants differ by roughly 10% from the published values. The id for the implementation has been updated from 1998--Meyer-R--Fe--ipr-1 to 1998--Meyer-R--Fe--LAMMPS--ipr-1 for consistency. File(s):