Calculation update! New properties have been added to the website for dislocation monopole core structures, dynamic relaxes of both crystal and liquid phases, and melting temperatures! Currently, the results for these properties predominately focus on EAM-style potentials, but the results will be updated for other potentials as the associated calculations finish. Feel free to give us feedback on the new properties so we can improve their representations as needed.
Warning! Note that elemental potentials taken from alloy descriptions may not work well for the pure species. This is particularly true if the elements were fit for compounds instead of being optimized separately. As with all interatomic potentials, please check to make sure that the performance is adequate for your problem.
Citation: X.-Y. Liu, and J.B. Adams (1998), "Grain-boundary segregation in Al-10%Mg alloys at hot working temperatures", Acta Materialia46(10), 3467-3476. DOI: 10.1016/s1359-6454(98)00038-x.
Abstract: Monte-Carlo simulations are done to determine Mg enrichment at various grain-boundaries of Al–10%Mg alloys at hot working temperatures. The interatomic potentials used in the simulations are developed using the force-matching method. The Mg segregation levels at the grain-boundaries are found to vary from 20% to 40%. The segregation enrichment differences at different grain-boundary sites are explained in terms of atomic size and local hydrostatic stress. The segregation level varies strongly with [110] tilt boundaries from low to high angle while showing minimal variation with [100] twist boundaries. Segregation levels are found to have some correlation with grain-boundary energy. The effect on grain-boundary decohesion due to Mg segregation is found to be a modest (10--35%) reduction in fracture energy compared to the fracture energy in pure Al.
See Computed Properties Notes: To make the almg.liu file compatible with the eam/alloy style in LAMMPS, replace line 4 with "2 Mg Al" and the "D"s with "E"s in the numbers. This has been done in almg.liu.eam.alloy. File(s):
See Computed Properties Notes: Listing found at https://openkim.org. This KIM potential is based on the files from 1998--Liu-X-Y--Al-Mg--LAMMPS--ipr1. Link(s):