× Updated! Potentials that share interactions are now listed as related models.
 
Citation: A. Mahata, T. Mukhopadhyay, and M. Asle Zaeem (2022), "Modified embedded-atom method interatomic potentials for Al-Cu, Al-Fe and Al-Ni binary alloys: From room temperature to melting point", Computational Materials Science, 201, 110902. DOI: 10.1016/j.commatsci.2021.110902.
Abstract: Second nearest neighbor modified embedded-atom method (2NN-MEAM) interatomic potentials are developed for binary aluminum (Al) alloys applicable from room temperature to the melting point. The binary alloys studied in this work are Al-Cu, Al-Fe and Al-Ni. Sensitivity and uncertainty analyses are performed on potential parameters based on the perturbation approach. The outcome of the sensitivity analysis shows that some of the MEAM parameters interdependently influence all MEAM model outputs, allowing for the definition of an ordered calibration procedure to target specific MEAM outputs. Using these 2NN-MEAM interatomic potentials, molecular dynamics (MD) simulations are performed to calculate low and high-temperature properties, such as the formation energies of stable phases and unstable intermetallics, lattice parameters, elastic constants, thermal expansion coefficients, enthalpy of formation of solids, liquid mixing enthalpy, and liquidus temperatures at a wide range of compositions. The computed data are compared with the available first principle calculations and experimental data, showing high accuracy of the 2NN-MEAM interatomic potentials. In addition, the liquidus temperature of the Al binary alloys is compared to the phase diagrams determined by the CALPHAD method.

See Computed Properties
Notes: These files were provided by Mohsen Asle Zaeem on Oct 8, 2021 and posted with his permission.
File(s):
Citation: X.W. Zhou, D.K. Ward, and M.E. Foster (2016), "An analytical bond-order potential for the aluminum copper binary system", Journal of Alloys and Compounds, 680, 752-767. DOI: 10.1016/j.jallcom.2016.04.055.
Abstract: Al-rich Al1−xCux alloys are important structural materials in the aerospace industry due to their high strength to density ratio. They are also emerging materials for hydrogen containing structures due to their potentially high resistance to hydrogen embrittlement. To enable accurate simulations of the mechanical behavior of Al1−xCux alloys that can guide material improvement, we have developed a high-fidelity analytical bond-order potential (BOP) for the Al-Cu system (the code is publically available in molecular dynamics package LAMMPS). The formalism of the potential is derived from quantum mechanical theories, and the parameters are optimized in an iteration fashion. The iterations begin by fitting properties of a variety of elemental and compound configurations (with coordination varying from 1 to 12) including small clusters, bulk lattices, defects, and surfaces. Following the fitting process, crystalline growth of important equilibrium phases is checked through molecular dynamics simulations of vapor deposition. It is demonstrated that this Al-Cu bond-order potential has unique advantages relative to existing literature potentials in reproducing structural and property tends from experiments and quantum-mechanical calculations, and providing good descriptions of melting temperature, defect characteristics, and surface energies. Most importantly, this BOP is the only potential currently available capable of capturing the Al-rich end of the Al-Cu phase diagram. This capability is rigorously verified by the potential's ability to capture the crystalline growth of the ground-state structures for elemental Al and Cu, as well as, the θ and θ′ phases of the Al2Cu compound in vapor deposition simulations.

See Computed Properties
Notes: This file was taken from the August 22, 2018 LAMMPS distribution and listed as having been created by X.W. Zhou (Sandia) Update Jan 15, 2020: It was noticed that the original file hosted here was truncated and incomplete. The incomplete file will not work with LAMMPS versions after 7 Aug 2019. For earlier LAMMPS versions, both versions of the parameter file appear to behave identically.
File(s): superseded


See Computed Properties
Notes: This file was provided by Xiaowang Zhou (Sandia) on Dec 19, 2019. Unlike the eariler implementation above, this file is complete and should work with any version of LAMMPS that supports the bop pair style.
File(s):
Citation: F. Apostol, and Y. Mishin (2011), "Interatomic potential for the Al-Cu system", Physical Review B, 83(5), 054116. DOI: 10.1103/physrevb.83.054116.
Abstract: An angular-dependent interatomic potential has been developed for the Al-Cu system based on existing embedded-atom method potentials for Al and Cu and fitting of the cross-interaction functions to experimental and first-principles data. The potential reproduces lattice parameters, formation energies, and elastic constants of the θ and θ′ phases of this system. It predicts the θ′ phase to be more stable than θ at 0 K but to become less stable at hight temperatures due to vibrational entropy. The temperate and entropy of this phase transformation are in good agreement with previous first-principles calculations [C. Wolverton and V. Ozoliņš, Phys. Rev. Lett. 86, 5518 (2001)]. The potential provides a reasonable description of the phase stability across the Al-Cu phase diagram, dilute heats of solution, and other thermodynamic properties. It has also been tested for generalized stacking fault energies in the presence of a copper layer embedded in Al. This configuration bears some resemblance to Guinier-Preston zones that strengthen Al-Cu alloys. The trends predicted by the potential for uniform shearing of this configuration are in agreement with results of first-principles density-functional calculations performed in this work. The potential is expected to be suitable for atomistic simulations of precipitation hardening of Al-Cu alloys.

Notes: Prof. Mishin requested the following be noted: There was a typing error in the original ADP paper (Y. Mishin, et al., Acta Mat. 53, 4029 (2005)). More information and a correction can be found in the FAQ.

ADP tabulated functions (2011--Apostol-F--Al-Cu--table--ipr1)
See Computed Properties
Notes: This file was taken from the August 22, 2018 LAMMPS distribution and listed as having been created by CV Singh (Cornell). The tabulated functions and their numerical derivatives appear consistent between this file and the tables listed above.
File(s):
Citation: X.-Y. Liu, C.-L. Liu, and L.J. Borucki (1999), "A new investigation of copper's role in enhancing Al-Cu interconnect electromigration resistance from an atomistic view", Acta Materialia, 47(11), 3227-3231. DOI: 10.1016/s1359-6454(99)00186-x.
Abstract: An explanation of why Cu prolongs the electromigration lifetime of Al–Cu interconnects in comparison to Al is provided based on atomistic calculations. Copper preferentially segregates to the grain-boundary (GB) interstitial sites. The overall GB diffusivity is reduced with Cu segregation at GB sites. Calculation results predict that in Al(Cu) lines, Cu will diffuse first, with Al diffusion essentially suppressed because of a higher diffusion activation energy. The activation energy for Cu incubation diffusion is calculated to be 0.95 eV. The predictions are in excellent agreement with experiments.

EAM setfl (1999--Liu-X-Y--Al-Cu--table--ipr1)
Notes: al-cu-set.txt was obtained from http://enpub.fulton.asu.edu/cms/potentials/main/main.htm and posted with the permission of J.B. Adams.
File(s):
LAMMPS pair_style eam/alloy (1999--Liu-X-Y--Al-Cu--LAMMPS--ipr1)
See Computed Properties
Notes: To make the al-cu-set.txt file compatible with the eam/alloy style in LAMMPS, replace line 4 with "2 Al Cu" and the "D"s with "E"s in the numbers. This has been done in al-cu-set.eam.alloy.
File(s):
See Computed Properties
Notes: Listing found at https://openkim.org. This KIM potential is based on the files from 1999--Liu-X-Y--Al-Cu--LAMMPS--ipr1.
Link(s):
Citation: J. Cai, and Y.Y. Ye (1996), "Simple analytical embedded-atom-potential model including a long-range force for fcc metals and their alloys", Physical Review B, 54(12), 8398-8410. DOI: 10.1103/physrevb.54.8398.
Abstract: A simple analytical embedded-atom method (EAM) model is developed. The model includes a long-range force. In this model, the electron-density function is taken as a decreasing exponential function, the two-body potential is defined as a function like a form given by Rose et al. [Phys. Rev. B 33, 7983 (1986)], and the embedding energy is assumed to be an universal form recently suggested by Banerjea and Smith. The embedding energy has a positive curvature. The model is applied to seven fcc metals (Al, Ag, Au, Cu, Ni, Pd, and Pt) and their binary alloys. All the considered properties, whether for pure metal systems or for alloy systems, are predicted to be satisfactory at least qualitatively. The model resolves the problems of Johnson’s model for predicting the properties of the alloys involving metal Pd. However, more importantly, (i) by investigating the structure stability of seven fcc metals using the present model, we found that the stability energy is dominated by both the embedding energy and the pair potential for fcc-bcc stability while the pair potential dominates and is underestimated for fcc-hcp stability; and (ii) we find that the predicted total energy as a function of lattice parameter is in good agreement with the equation of state of Rose et al. for all seven fcc metals, and that this agreement is closely related to the electron density, i.e., the lower the contribution from atoms of the second-nearest neighbor to host density, the better the agreement becomes. We conclude the following: (i) for an EAM, where angle force is not considered, the long-range force is necessary for a prediction of the structure stability; or (ii) the dependence of the electron density on angle should be considered so as to improve the structure-stability energy. The conclusions are valid for all EAM models where an angle force is not considered.

See Computed Properties
Notes: Listing found at https://openkim.org.
Link(s):
Date Created: October 5, 2010 | Last updated: June 09, 2022