Warning! Note that elemental potentials taken from alloy descriptions may not work well for the pure species. This is particularly true if the elements were fit for compounds instead of being optimized separately. As with all interatomic potentials, please check to make sure that the performance is adequate for your problem.
Citation: S. Starikov, P. Grigorev, and P.A.T. Olsson (2024), "Angular-dependent interatomic potential for large-scale atomistic simulation of W-Mo-Nb ternary alloys", Computational Materials Science, 233, 112734. DOI: 10.1016/j.commatsci.2023.112734.
Abstract: We present a new classical interatomic potential designed for simulation of the W-Mo-Nb system. The angular-dependent format of the potential allows for reproduction of many important properties of pure metals and complex concentrated alloys with good accuracy. Special attention during the development and validation of the potential was paid to the description of vacancies, screw dislocations and planar defects, as well as thermo-mechanical properties. Here, the applicability of the developed model is demonstrated by studying the temperature dependence of the elastic moduli and average atomic displacement in pure metals and concentrated alloys up to the melting point.