Warning! Note that elemental potentials taken from alloy descriptions may not work well for the pure species. This is particularly true if the elements were fit for compounds instead of being optimized separately. As with all interatomic potentials, please check to make sure that the performance is adequate for your problem.
Citation: P. Kumar, M.M. Ludhwani, S. Das, V. Gavini, A. Kanjarla, and I. Adlakha (2023), "Effect of hydrogen on plasticity of α-Fe: A multi-scale assessment", International Journal of Plasticity, 165, 103613. DOI: 10.1016/j.ijplas.2023.103613.
Abstract: A multi-scale study was carried out to quantify the effect of interstitial hydrogen concentration on plasticity in α-Fe. In this work, the influence of hydrogen on the screw dislocation glide behavior was examined across several length-scales. The insights obtained were integrated to provide an accurate continuum description for the effect of hydrogen on the dislocation based plasticity in polycrystalline α-Fe. At the outset of this work, a new Fe-H interatomic potential was formulated that enhanced the atomistic estimation of the variation in dislocation glide behavior in presence of hydrogen. Next, the dislocation core reconstruction observed due to the addition of hydrogen using atomistic simulations was validated with the help of large-scale DFT calculations based on the DFT-FE framework. Several atomistic simulations were carried out to comprehensively quantify the effect of hydrogen on the non-Schmid behavior exhibited during the dislocation glide in α-Fe. Finally, crystal plasticity simulations were carried out to understand the effect of hydrogen on the meso-scale deformation behavior of polycrystalline α-Fe.
Notes: Professor Adlakha notes that this potential is able to "accurately predict the correct (non-degenerate) screw dislocation core in BCC-Fe. Furthermore, the potential correctly predicts a single-hump profile for the Peierls potential. The effect of hydrogen on the screw dislocation was found to be in good agreement with large scale DFT calculations discussed in the manuscript. The potential correctly predicts hydrogen binding at various defects and surfaces in BCC-Fe. However, the potential has not been validated for finite temperature hydrogen diffusion."