Warning! Note that elemental potentials taken from alloy descriptions may not work well for the pure species. This is particularly true if the elements were fit for compounds instead of being optimized separately. As with all interatomic potentials, please check to make sure that the performance is adequate for your problem.
Citation: J. Byggmästar, M. Nagel, K. Albe, K. Henriksson, and K. Nordlund (2019), "Analytical interatomic bond-order potential for simulations of oxygen defects in iron", Journal of Physics: Condensed Matter, 31, 215401. DOI: 10.1088/1361-648x/ab0931.
Abstract: We present an analytical bond-order potential for the Fe–O system, capable of reproducing the basic properties of wüstite as well as the energetics of oxygen impurities in α-iron. The potential predicts binding energies of various small oxygen-vacancy clusters in α-iron in good agreement with density functional theory results, and is therefore suitable for simulations of oxygen-based defects in iron. We apply the potential in simulations of the stability and structure of Fe/FeO interfaces and FeO precipitates in iron, and observe that the shape of FeO precipitates can change due to formation of well-defined Fe/FeO interfaces. The interface with crystalline Fe also ensures that the precipitates never become fully amorphous, no matter how small they are.
Notes: The potential is not suitable for simulations of the Fe2O3 and Fe3O4 phases.
See Computed Properties Notes: This file was provided by Jesper Byggmästar (University of Helsinki) on 20 March 2019 and posted with his permission. File(s):