• Citation: S.A. Etesami, M.I. Baskes, M. Laradji, and E. Asadi (2018), "Thermodynamics of solid Sn and Pb-Sn liquid mixtures using molecular dynamics simulations", Acta Materialia, 161, 320-330. DOI: 10.1016/j.actamat.2018.09.036.
    Abstract: We present a new set of modified embedded-atom method parameters for the Pb-Sn system that describes many 0 K and high temperature properties including melting point, elastic constants, and enthalpy of mixing for solid and liquid Pb-Sn alloys in agreement with experiments. Then, we calculate the phase diagram of the Sn-rich side of Pb-Sn alloys utilizing a hybrid Molecular Dynamics/Monte Carlo simulation that agrees with experimental solidus and liquidus curves as well as stability of α-Sn and β-Sn. In addition, we present structure factors of Pb-Sn liquid alloys as well as temperature-dependent thermal expansion coefficients and heat capacity. Our simulations show that the ratios of the heights of the second and third peaks over the first peak for Pb-Sn liquid mixtures are maximum at Pb-0.6Sn concentration.

    Notes: Update 2018-09-28: Reference information updated.

    Related Models:
  • See Computed Properties
    Notes: This file was sent by S. A. Etesami (University of Memphis) on 17 September 2018 and posted with his permission. Update 2018-09-28: files renamed at the request of the authors. Old names were library.PbSn.meam and PbSn.meam
    File(s):
Date Created: October 5, 2010 | Last updated: November 20, 2024