× Updated! Potentials that share interactions are now listed as related models.


Citation: X.W. Zhou, R.E. Jones, and K. Chu (2017), "Polymorphic improvement of Stillinger-Weber potential for InGaN", Journal of Applied Physics, 122(23), 235703. DOI: 10.1063/1.5001339.
Abstract: A Stillinger-Weber potential is computationally very efficient for molecular dynamics simulations. Despite its simple mathematical form, the Stillinger-Weber potential can be easily parameterized to ensure that crystal structures with tetrahedral bond angles (e.g., diamond-cubic, zinc-blende, and wurtzite) are stable and have the lowest energy. As a result, the Stillinger-Weber potential has been widely used to study a variety of semiconductor elements and alloys. When studying an A-B binary system, however, the Stillinger-Weber potential is associated with two major drawbacks. First, it significantly overestimates the elastic constants of elements A and B, limiting its use for systems involving both compounds and elements (e.g., an A/AB multilayer). Second, it prescribes equal energy for zinc-blende and wurtzite crystals, limiting its use for compounds with large stacking fault energies. Here, we utilize the polymorphic potential style recently implemented in LAMMPS to develop a modified Stillinger-Weber potential for InGaN that overcomes these two problems.

LAMMPS pair_style polymorphic (2017--Zhou-X-W--In-Ga-N--LAMMPS--ipr1)
See Computed Properties
Notes: This file was provided by Xiaowang Zhou (Sandia) on 16 August 2019.
Date Created: October 5, 2010 | Last updated: June 09, 2022