× Notice! This site is currently being redesigned. Please let us know any feedback on the new design or if you find something incorrect/not working.
× Updated! Computed properties are now sorted by implementation versions.

2015--Wilson-S-R-Mendelev-M-I--Ni-Zr

Citation: S.R. Wilson, and M.I. Mendelev (2015), "Anisotropy of the solid-liquid interface properties of the Ni-Zr B33 phase from molecular dynamics simulation", Philosophical Magazine, 95(2), 224-241. DOI: 10.1080/14786435.2014.995742.
Abstract: Solid–liquid interface (SLI) properties of the Ni–Zr B33 phase were determined from molecular dynamics simulations. In order to perform these measurements, a new semi-empirical potential for Ni–Zr alloy was developed that well reproduces the material properties required to model SLIs in the Ni50.0Zr50.0 alloy. In particular, the developed potential is shown to provide that the solid phase emerging from the liquid Ni50.0Zr50.0 alloy is B33 (apart from a small fraction of point defects), in agreement with the experimental phase diagram. The SLI properties obtained using the developed potential exhibit an extraordinary degree of anisotropy. It is observed that anisotropies in both the interfacial free energy and mobility are an order of magnitude larger than those measured to date in any other metallic compound. Moreover, the [0 1 0] interface is shown to play a significant role in the observed anisotropy. Our data suggest that the [0 1 0] interface simultaneously corresponds to the lowest mobility, the lowest free energy and the highest stiffness of all inclinations in B33 Ni–Zr. This finding can be understood by taking into account a rather complicated crystal structure in this crystallographic direction.

Notes: Mikhail Mendelev (Ames Laboratory) noted that the potential is an updated version of the 2012 potential, and it was designed to simulate solidification of B2, B33, and C16 phases in Ni-Zr alloys. Updated previous note on 13 Nov. 2014 to replace "NiZr2 alloy" with "Ni-Zr alloys". Updated 27 Apr 2015 to include publication information.

See Computed Properties
Notes: This file was provided by Mikhail Mendelev (Ames Laboratory) and posted with his permission on 2 Jul. 2014.
File(s):
Date Created: October 5, 2010 | Last updated: April 26, 2019