Warning! Note that elemental potentials taken from alloy descriptions may not work well for the pure species. This is particularly true if the elements were fit for compounds instead of being optimized separately. As with all interatomic potentials, please check to make sure that the performance is adequate for your problem.
Citation: A. Kumar, A. Chernatynskiy, T. Liang, K. Choudhary, M.J. Noordhoek, Y.-T. Cheng, S.R. Phillpot, and S.B. Sinnott (2015), "Charge optimized many-body (COMB) potential for dynamical simulation of Ni-Al phases", Journal of Physics: Condensed Matter, 27(33), 336302. DOI: 10.1088/0953-8984/27/33/336302.
Abstract: An interatomic potential for the Ni–Al system is presented within the third-generation charge optimized many-body (COMB3) formalism. The potential has been optimized for Ni3Al, or the γ' phase in Ni-based superalloys. The formation energies predicted for other Ni–Al phases are in reasonable agreement with first-principles results. The potential further predicts good mechanical properties for Ni3Al, which includes the values of the complex stacking fault (CSF) and the anti-phase boundary (APB) energies for the (1 1 1) and (1 0 0) planes. It is also used to investigate dislocation propagation across the Ni3Al (1 1 0)–Ni (1 1 0) interface, and the results are consistent with simulation results reported in the literature. The potential is further used in combination with a recent COMB3 potential for Al2O3 to investigate the Ni3Al (1 1 1)–Al2O3 (0 0 0 1) interface, which has not been modeled previously at the classical atomistic level due to the lack of a reactive potential to describe both Ni3Al and Al2O3 as well as interactions between them. The calculated work of adhesion for this interface is predicted to be 1.85 J m−2, which is in agreement with available experimental data. The predicted interlayer distance is further consistent with the available first-principles results for Ni (1 1 1)–Al2O3 (0 0 0 1).