×
Warning! Note that elemental potentials taken from alloy descriptions may not work well for the pure species. This is particularly true if the elements were fit for compounds instead of being optimized separately. As with all interatomic potentials, please check to make sure that the performance is adequate for your problem.
×
Updated! Potentials that share interactions are now listed as related models.
2015--Kim-K-H-Jeon-J-B-Lee-B-J--Ca
Citation: K.-H. Kim, J.B. Jeon, and B.-J. Lee (2015), "Modified embedded-atom method interatomic potentials for Mg-X (X=Y, Sn, Ca) binary systems",
Calphad,
48, 27-34. DOI:
10.1016/j.calphad.2014.10.001.
Abstract: Interatomic potentials for pure Ca and Mg-X (X=Y,Sn,Ca) binary systems have been developed on the basis of the second nearest-neighbor modified embedded-atom method (2NN MEAM) formalism. The potentials can describe various fundamental physical properties of pure Ca (bulk, defect and thermal properties) and the alloy behavior (structural, thermodynamic and defect properties of solid solutions and compounds) of binary systems in reasonable agreement with experimental data or first-principles and other calculations. The applicability of the developed potentials to atomistic investigations of the deformation behavior of Mg and its alloys is discussed together with some challenging points that need further attention.
See Computed PropertiesNotes: These files are based on files obtained from http://cmse.postech.ac.kr/home_2nnmeam.
File(s):
Date Created: October 5, 2010 | Last updated: June 09, 2022