Warning! Note that elemental potentials taken from alloy descriptions may not work well for the pure species. This is particularly true if the elements were fit for compounds instead of being optimized separately. As with all interatomic potentials, please check to make sure that the performance is adequate for your problem.
Citation: D.K. Belashchenko (2012), "Computer simulation of the properties of liquid metals: Gallium, lead, and bismuth", Russian Journal of Physical Chemistry A, 86(5), 779-790. DOI: 10.1134/s0036024412050056.
Abstract: The embedded atom model (EAM) potentials of liquid gallium, lead, and bismuth calculated by the author using the Schommers algorithm were refined and written in a unified analytic form more convenient for applications. Pair contributions to EAM potentials are described by piecewise continuous functions. The form of EAM potentials admits the transition to a high-density state characteristic of shock compression. Series of models of these liquid metals were constructed by the molecular dynamics method at temperatures up to 1500 (Zn), 3000 (Ga, Pb), and 1800 K (Bi). For all the metals, close agreement with experiment was obtained over the whole temperature range for density, structure, bulk compression modulus, and self-diffusion coefficient. The standard deviations of model pair correlation functions (PCF) from the diffraction PCFs of gallium and lead were on the order of 0.01. As distinct from alkali metals, the calculated energy of gallium and lead models was close to actual energy over the whole temperature range, and excess electronic heat conductivity was almost unobservable. With bismuth, agreement with experiment for energy and structural characteristics was noticeably worse, which shows that the embedded atom model is less applicable to bismuth.
Notes: This potential is parameterized for the liquid-state specifically.
Date Created: October 5, 2010 | Last updated: November 20, 2024